Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Publication year range
1.
Brain ; 146(6): 2502-2511, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36395092

ABSTRACT

Idiopathic rapid eye movement sleep behaviour disorder (iRBD) has now been established as an important marker of the prodromal stage of Parkinson's disease and related synucleinopathies. However, although dopamine transporter single photon emission computed tomography (SPECT) has been used to demonstrate the presence of nigro-striatal deficit in iRBD, quantifiable correlates of this are currently lacking. Sensitivity to rewarding stimuli is reduced in some people with Parkinson's disease, potentially contributing to aspects of the neuropsychiatric phenotype in these individuals. Furthermore, a role for dopaminergic degeneration is suggested by the fact that reward insensitivity can be improved by dopaminergic medications. Patients with iRBD present a unique opportunity to study the relationship between reward sensitivity and early dopaminergic deficit in the unmedicated state. Here, we investigate whether a non-invasive, objective measure of reward sensitivity might be a marker of dopaminergic status in prodromal Parkinson's disease by comparing with SPECT/CT measurement of dopaminergic loss in the basal ganglia. Striatal dopaminergic deficits in iRBD are associated with progression to Parkinsonian disorders. Therefore, identification of a clinically measurable correlate of this degenerative process might provide a basis for the development of novel risk stratification tools. Using a recently developed incentivized eye-tracking task, we quantified reward sensitivity in a cohort of 41 patients with iRBD and compared this with data from 40 patients with Parkinson's disease and 41 healthy controls. Patients with iRBD also underwent neuroimaging with dopamine transporter SPECT/CT. Overall, reward sensitivity, indexed by pupillary response to monetary incentives, was reduced in iRBD cases compared with controls and was not significantly different to that in patients with Parkinson's disease. However, in iRBD patients with normal dopamine transporter SPECT/CT imaging, reward sensitivity was not significantly different from healthy controls. Across all iRBD cases, a positive association was observed between reward sensitivity and dopaminergic SPECT/CT signal in the putamen. These findings demonstrate a direct relationship between dopaminergic deficit and reward sensitivity in patients with iRBD and suggest that measurement of pupillary responses could be of value in models of risk stratification and disease progression in these individuals.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Parkinson Disease/diagnostic imaging , Dopamine Plasma Membrane Transport Proteins , Dopamine , Reward
2.
Brain ; 146(5): 1873-1887, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36348503

ABSTRACT

Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazard ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazard ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazard ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid ß42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.


Subject(s)
Cognitive Dysfunction , Dementia , Parkinson Disease , Humans , Parkinson Disease/genetics , Dementia/complications , Cognitive Dysfunction/etiology , Apolipoproteins E/genetics , Biomarkers , Receptors, LDL
3.
Brain ; 146(8): 3232-3242, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36975168

ABSTRACT

The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.


Subject(s)
Multiple System Atrophy , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Male , Humans , Middle Aged , Aged , Female , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/drug therapy , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Magnetic Resonance Imaging , United Kingdom
4.
Brain ; 145(12): 4398-4408, 2022 12 19.
Article in English | MEDLINE | ID: mdl-35903017

ABSTRACT

Disease-modifying treatments are currently being trialled in multiple system atrophy. Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data on multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in multiple system atrophy. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study, we recruited cross-sectional and longitudinal cases in a multicentre European set-up. Plasma and CSF neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; receiver operating characteristic analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed-effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease neurofilament light chain levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival and degree of brain atrophy than the neurofilament light chain rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.


Subject(s)
Multiple System Atrophy , Humans , Cohort Studies , Cross-Sectional Studies , Intermediate Filaments , Neurofilament Proteins , Biomarkers , Disease Progression
5.
Ann Neurol ; 87(4): 584-598, 2020 04.
Article in English | MEDLINE | ID: mdl-31976583

ABSTRACT

OBJECTIVE: Rapid eye movement sleep behavior disorder (RBD) is a prodromal synucleinopathy, as >80% will eventually convert to overt synucleinopathy. We performed an in-depth analysis of the SNCA locus to identify RBD-specific risk variants. METHODS: Full sequencing and genotyping of SNCA was performed in isolated/idiopathic RBD (iRBD, n = 1,076), Parkinson disease (PD, n = 1,013), dementia with Lewy bodies (DLB, n = 415), and control subjects (n = 6,155). The iRBD cases were diagnosed with RBD prior to neurodegeneration, although some have since converted. A replication cohort from 23andMe of PD patients with probable RBD (pRBD) was also analyzed (n = 1,782 cases; n = 131,250 controls). Adjusted logistic regression models and meta-analyses were performed. Effects on conversion rate were analyzed in 432 RBD patients with available data using Kaplan-Meier survival analysis. RESULTS: A 5'-region SNCA variant (rs10005233) was associated with iRBD (odds ratio [OR] = 1.43, p = 1.1E-08), which was replicated in pRBD. This variant is in linkage disequilibrium (LD) with other 5' risk variants across the different synucleinopathies. An independent iRBD-specific suggestive association (rs11732740) was detected at the 3' of SNCA (OR = 1.32, p = 4.7E-04, not statistically significant after Bonferroni correction). Homozygous carriers of both iRBD-specific SNPs were at highly increased risk for iRBD (OR = 5.74, p = 2E-06). The known top PD-associated variant (3' variant rs356182) had an opposite direction of effect in iRBD compared to PD. INTERPRETATION: There is a distinct pattern of association at the SNCA locus in RBD as compared to PD, with an opposite direction of effect at the 3' of SNCA. Several 5' SNCA variants are associated with iRBD and with pRBD in overt synucleinopathies. ANN NEUROL 2020;87:584-598.


Subject(s)
Lewy Body Disease/genetics , Parkinson Disease/genetics , Prodromal Symptoms , REM Sleep Behavior Disorder/genetics , alpha-Synuclein/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Predisposition to Disease , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide , Synucleinopathies/genetics
6.
Ann Neurol ; 87(1): 139-153, 2020 01.
Article in English | MEDLINE | ID: mdl-31658403

ABSTRACT

OBJECTIVE: The TMEM175/GAK/DGKQ locus is the 3rd strongest risk locus in genome-wide association studies of Parkinson disease (PD). We aimed to identify the specific disease-associated variants in this locus, and their potential implications. METHODS: Full sequencing of TMEM175/GAK/DGKQ followed by genotyping of specific associated variants was performed in PD (n = 1,575) and rapid eye movement sleep behavior disorder (RBD) patients (n = 533) and in controls (n = 1,583). Adjusted regression models and a meta-analysis were performed. Association between variants and glucocerebrosidase (GCase) activity was analyzed in 715 individuals with available data. Homology modeling, molecular dynamics simulations, and lysosomal localization experiments were performed on TMEM175 variants to determine their potential effects on structure and function. RESULTS: Two coding variants, TMEM175 p.M393T (odds ratio [OR] = 1.37, p = 0.0003) and p.Q65P (OR = 0.72, p = 0.005), were associated with PD, and p.M393T was also associated with RBD (OR = 1.59, p = 0.001). TMEM175 p.M393T was associated with reduced GCase activity. Homology modeling and normal mode analysis demonstrated that TMEM175 p.M393T creates a polar side-chain in the hydrophobic core of the transmembrane, which could destabilize the domain and thus impair either its assembly, maturation, or trafficking. Molecular dynamics simulations demonstrated that the p.Q65P variant may increase stability and ion conductance of the transmembrane protein, and lysosomal localization was not affected by these variants. INTERPRETATION: Coding variants in TMEM175 are likely to be responsible for the association in the TMEM175/GAK/DGKQ locus, which could be mediated by affecting GCase activity. ANN NEUROL 2020;87:139-153.


Subject(s)
Potassium Channels/genetics , Synucleinopathies/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Predisposition to Disease/genetics , Genotype , Glucosylceramidase/metabolism , Humans , Lysosomes/metabolism , Male , Middle Aged , Models, Molecular , Molecular Dynamics Simulation , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Polymorphism, Single Nucleotide/genetics , Potassium Channels/physiology , REM Sleep Behavior Disorder/genetics , REM Sleep Behavior Disorder/physiopathology , Synucleinopathies/physiopathology
7.
Mov Disord ; 36(2): 424-433, 2021 02.
Article in English | MEDLINE | ID: mdl-33111402

ABSTRACT

BACKGROUND: There are currently no treatments that stop or slow the progression of Parkinson's disease (PD). Case-control genome-wide association studies have identified variants associated with disease risk, but not progression. The objective of the current study was to identify genetic variants associated with PD progression. METHODS: We analyzed 3 large longitudinal cohorts: Tracking Parkinson's, Oxford Discovery, and the Parkinson's Progression Markers Initiative. We included clinical data for 3364 patients with 12,144 observations (mean follow-up 4.2 years). We used a new method in PD, following a similar approach in Huntington's disease, in which we combined multiple assessments using a principal components analysis to derive scores for composite, motor, and cognitive progression. These scores were analyzed in linear regression in genome-wide association studies. We also performed a targeted analysis of the 90 PD risk loci from the latest case-control meta-analysis. RESULTS: There was no overlap between variants associated with PD risk, from case-control studies, and PD age at onset versus PD progression. The APOE ε4 tagging variant, rs429358, was significantly associated with composite and cognitive progression in PD. Conditional analysis revealed several independent signals in the APOE locus for cognitive progression. No single variants were associated with motor progression. However, in gene-based analysis, ATP8B2, a phospholipid transporter related to vesicle formation, was nominally associated with motor progression (P = 5.3 × 10-6 ). CONCLUSIONS: We provide early evidence that this new method in PD improves measurement of symptom progression. We show that the APOE ε4 allele drives progressive cognitive impairment in PD. Replication of this method and results in independent cohorts are needed. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Biomarkers , Cognition , Disease Progression , Genome-Wide Association Study , Humans , Parkinson Disease/genetics
8.
Mov Disord ; 36(1): 235-240, 2021 01.
Article in English | MEDLINE | ID: mdl-33001463

ABSTRACT

BACKGROUND: There is only partial overlap in the genetic background of isolated rapid-eye-movement sleep behavior disorder (iRBD) and Parkinson's disease (PD). OBJECTIVE: To examine the role of autosomal dominant and recessive PD or atypical parkinsonism genes in the risk of iRBD. METHODS: Ten genes, comprising the recessive genes PRKN, DJ-1 (PARK7), PINK1, VPS13C, ATP13A2, FBXO7, and PLA2G6 and the dominant genes LRRK2, GCH1, and VPS35, were fully sequenced in 1039 iRBD patients and 1852 controls of European ancestry, followed by association tests. RESULTS: We found no association between rare heterozygous variants in the tested genes and risk of iRBD. Several homozygous and compound heterozygous carriers were identified, yet there was no overrepresentation in iRBD patients versus controls. CONCLUSION: Our results do not support a major role for variants in these genes in the risk of iRBD. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , REM Sleep Behavior Disorder , Heterozygote , Humans , Parkinson Disease/genetics , Parkinsonian Disorders/genetics , REM Sleep Behavior Disorder/genetics , Sleep
9.
J Neurol Neurosurg Psychiatry ; 89(12): 1279-1287, 2018 12.
Article in English | MEDLINE | ID: mdl-30464029

ABSTRACT

OBJECTIVES: To use a data-driven approach to determine the existence and natural history of subtypes of Parkinson's disease (PD) using two large independent cohorts of patients newly diagnosed with this condition. METHODS: 1601 and 944 patients with idiopathic PD, from Tracking Parkinson's and Discovery cohorts, respectively, were evaluated in motor, cognitive and non-motor domains at the baseline assessment. Patients were recently diagnosed at entry (within 3.5 years of diagnosis) and were followed up every 18 months. We used a factor analysis followed by a k-means cluster analysis, while prognosis was measured using random slope and intercept models. RESULTS: We identified four clusters: (1)  fast motor progression with symmetrical motor disease, poor olfaction, cognition and postural hypotension; (2) mild motor and non-motor disease with intermediate motor progression; (3) severe motor disease, poor psychological well-being and  poor sleep with an intermediate motor progression; (4) slow motor progression with tremor-dominant, unilateral disease. Clusters were moderately to substantially stable across the two cohorts (kappa 0.58). Cluster 1 had the fastest motor progression in Tracking Parkinson's at 3.2 (95% CI 2.8 to 3.6) UPDRS III points per year while cluster 4 had the slowest at 0.6 (0.1-1.1). In Tracking Parkinson's, cluster 2 had the largest response to levodopa 36.3% and cluster 4 the lowest 28.8%. CONCLUSIONS: We have found four novel clusters that replicated well across two independent early PD cohorts and were associated with levodopa response and motor progression rates. This has potential implications for better understanding disease pathophysiology and the relevance of patient stratification in future clinical trials.


Subject(s)
Parkinson Disease/classification , Aged , Disease Progression , Female , Humans , Levodopa/therapeutic use , Male , Neuropsychological Tests , Parkinson Disease/drug therapy , Prospective Studies , Psychiatric Status Rating Scales , Severity of Illness Index
10.
Mov Disord ; 33(10): 1580-1590, 2018 10.
Article in English | MEDLINE | ID: mdl-30294923

ABSTRACT

BACKGROUND: Although primarily a neurodegenerative process, there is increasing awareness of peripheral disease mechanisms in Parkinson's disease. To investigate disease processes in accessible patient cells, we studied peripheral blood mononuclear cells in recently diagnosed PD patients and rapid eye movement-sleep behavior disorder patients who have a greatly increased risk of developing PD. We hypothesized that peripheral blood mononuclear cells may recapitulate cellular pathology found in the PD brain and investigated these cells for mitochondrial dysfunction and oxidative stress. METHODS: Peripheral blood mononuclear cells were isolated and studied from PD patients, rapid eye movement-sleep behavior disorder patients and age- and sex-matched control individuals from the well-characterized Oxford Discovery cohort. All participants underwent thorough clinical assessment. RESULTS: Initial characterization showed that PD patients had elevated levels of CD14 + monocytes and monocytes expressing C-C motif chemokine receptor 2. Mitochondrial dysfunction and oxidative stress were increased in PD patient peripheral blood mononuclear cells, with elevated levels of mitochondrial reactive oxygen species specifically in patient monocytes. This was combined with reduced levels of the antioxidant superoxide dismutase in blood cells from PD patients and, importantly, also in rapid eye movement-sleep behavior disorder patients. This mitochondrial dysfunction was associated with a concomitant increase in glycolysis in both PD and rapid eye movement-sleep behavior disorder patient blood cells independent of glucose uptake or monocyte activation. CONCLUSIONS: This work demonstrates functional bioenergetic deficits in PD and rapid eye movement-sleep behavior disorder patient blood cells during the early stages of human disease. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Glycolysis/physiology , Leukocytes, Mononuclear/ultrastructure , Mitochondrial Diseases/etiology , Parkinson Disease/blood , Parkinson Disease/complications , Case-Control Studies , Cytokines/metabolism , Electron Transport Complex IV/metabolism , Enzyme Inhibitors/pharmacology , Female , Flow Cytometry , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Humans , Male , Mitochondria/metabolism , Mitochondria/pathology , Oxygen Consumption/physiology , Parkinson Disease/pathology , Prodromal Symptoms , REM Sleep Behavior Disorder/blood , REM Sleep Behavior Disorder/complications , REM Sleep Behavior Disorder/pathology , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Receptors, CCR2/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
11.
Mov Disord ; 33(6): 1016-1020, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29756641

ABSTRACT

BACKGROUND: MAPT haplotypes are associated with PD, but their association with rapid eye movement sleep behavior disorder is unclear. OBJECTIVE: To study the role of MAPT variants in rapid eye movement sleep behavior disorder. METHODS: Two cohorts were included: (A) PD (n = 600), rapid eye movement sleep behavior disorder (n = 613) patients, and controls (n = 981); (B) dementia with Lewy bodies patients with rapid eye movement sleep behavior disorder (n = 271) and controls (n = 950). MAPT-associated variants and the entire coding sequence of MAPT were analyzed. Age-, sex-, and ethnicity-adjusted analyses were performed to examine the association between MAPT, PD, and rapid eye movement sleep behavior disorder. RESULTS: MAPT-H2 variants were associated with PD (odds ratios: 0.62-0.65; P = 0.010-0.019), but not with rapid eye movement sleep behavior disorder. In PD, the H1 haplotype odds ratio was 1.60 (95% confidence interval: 1.12-2.28; P = 0.009), and the H2 odds ratio was 0.68 (95% confidence interval: 0.48-0.96; P = 0.03). The H2/H1 haplotypes were not associated with rapid eye movement sleep behavior disorder. CONCLUSIONS: Our results confirm the protective effect of the MAPT-H2 haplotype in PD, and define its components. Furthermore, our results suggest that MAPT does not play a major role in rapid eye movement sleep behavior disorder, emphasizing different genetic background than in PD in this locus. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease/genetics , Polymorphism, Single Nucleotide/genetics , REM Sleep Behavior Disorder/genetics , tau Proteins/genetics , Aged , Cohort Studies , Female , Gene Frequency , Genotype , Humans , Lewy Body Disease/complications , Lewy Body Disease/genetics , Male , Middle Aged , Principal Component Analysis
12.
Brain ; 139(Pt 1): 47-53, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26582557

ABSTRACT

Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson's disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson's disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson's disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of 'prodromal' Parkinson's disease that might be useful in tracking disease progression and for disease-modifying intervention trials.


Subject(s)
Memory Disorders/complications , Memory Disorders/psychology , Memory, Short-Term , Parkinson Disease/psychology , REM Sleep Behavior Disorder/complications , REM Sleep Behavior Disorder/psychology , Visual Perception , Aged , Case-Control Studies , Female , Humans , Male , Mental Recall , Parkinson Disease/complications , Photic Stimulation , Polysomnography , Prodromal Symptoms
13.
Brain ; 139(Pt 8): 2224-34, 2016 08.
Article in English | MEDLINE | ID: mdl-27297241

ABSTRACT

SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep behaviour disorder and Parkinson's disease relative to each other and to controls. Connectivity measures of basal ganglia network dysfunction differentiated both rapid eye movement sleep behaviour disorder and Parkinson's disease from controls with high sensitivity (96%) and specificity (74% for rapid eye movement sleep behaviour disorder, 78% for Parkinson's disease), indicating its potential as an indicator of early basal ganglia dysfunction. Rapid eye movement sleep behaviour disorder was indistinguishable from Parkinson's disease on resting state functional magnetic resonance imaging despite obvious differences on dopamine transported single photon emission computerized tomography. Basal ganglia connectivity is a promising biomarker for the detection of early basal ganglia network dysfunction, and may help to identify patients at risk of developing Parkinson's disease in the future. Future risk stratification using a polymodal approach could combine basal ganglia network connectivity with clinical and other imaging measures, with important implications for future neuroprotective trials in rapid eye movement sleep behaviour disorder.


Subject(s)
Basal Ganglia Diseases , Functional Neuroimaging/methods , Parkinson Disease , REM Sleep Behavior Disorder , Aged , Basal Ganglia Diseases/diagnostic imaging , Basal Ganglia Diseases/metabolism , Basal Ganglia Diseases/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/metabolism , REM Sleep Behavior Disorder/physiopathology , Tomography, Emission-Computed, Single-Photon
14.
Neuroimage ; 124(Pt A): 704-713, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26386348

ABSTRACT

Resting state fMRI (rfMRI) is gaining in popularity, being easy to acquire and with promising clinical applications. However, rfMRI studies, especially those involving clinical groups, still lack reproducibility, largely due to the different analysis settings. This is particularly important for the development of imaging biomarkers. The aim of this work was to evaluate the reproducibility of our recent study regarding the functional connectivity of the basal ganglia network in early Parkinson's disease (PD) (Szewczyk-Krolikowski et al., 2014). In particular, we systematically analysed the influence of two rfMRI analysis steps on the results: the individual cleaning (artefact removal) of fMRI data and the choice of the set of independent components (template) used for dual regression. Our experience suggests that the use of a cleaning approach based on single-subject independent component analysis, which removes non neural-related sources of inter-individual variability, can help to increase the reproducibility of clinical findings. A template generated using an independent set of healthy controls is recommended for studies where the aim is to detect differences from a "healthy" brain, rather than an "average" template, derived from an equal number of patients and controls. While, exploratory analyses (e.g. testing multiple resting state networks) should be used to formulate new hypotheses, careful validation is necessary before promising findings can be translated into useful biomarkers.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Parkinson Disease/pathology , Aged , Artifacts , Basal Ganglia/pathology , Brain Mapping , Female , Healthy Volunteers , Humans , Individuality , Male , Middle Aged , Reference Values , Regression Analysis , Reproducibility of Results , Rest , Signal-To-Noise Ratio
15.
J Neurol Neurosurg Psychiatry ; 87(11): 1183-1190, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27671901

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) influences phenotypic variation in Parkinson's disease (PD), and is usually an indication for statin therapy. It is less clear whether cardiovascular risk factors influence PD phenotype, and if statins are prescribed appropriately. OBJECTIVES: To quantify vascular risk and statin use in recent-onset PD, and examine the relationship between vascular risk, PD severity and phenotype. METHODS: Cardiovascular risk was quantified using the QRISK2 calculator (high ≥20%, medium ≥10 and <20%, low risk <10%). Motor severity and phenotype were assessed using the Movement Disorder Society Unified PD Rating Scale (UPDRS) and cognition by the Montreal cognitive assessment. RESULTS: In 2909 individuals with recent-onset PD, the mean age was 67.5 years (SD 9.3), 63.5% were men and the mean disease duration was 1.3 years (SD 0.9). 33.8% of cases had high vascular risk, 28.7% medium risk, and 22.3% low risk, while 15.2% of cases had established CVD. Increasing vascular risk and CVD were associated with older age (p<0.001), worse motor score (p<0.001), more cognitive impairment (p<0.001) and worse motor phenotype (p=0.021). Statins were prescribed in 37.2% with high vascular risk, 15.1% with medium vascular risk and 6.5% with low vascular risk, which compared with statin usage in 75.3% of those with CVD. CONCLUSIONS: Over 60% of recent-onset PD patients have high or medium cardiovascular risk (meriting statin usage), which is associated with a worse motor and cognitive phenotype. Statins are underused in these patients, compared with those with vascular disease, which is a missed opportunity for preventive treatment. TRIAL REGISTRATION NUMBER: GN11NE062, NCT02881099.


Subject(s)
Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Drug Utilization/statistics & numerical data , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/epidemiology , Age Factors , Aged , Cardiovascular Diseases/complications , Cardiovascular Diseases/diagnosis , Comorbidity , Cross-Sectional Studies , England , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Male , Middle Aged , Parkinson Disease/complications , Parkinson Disease/diagnosis , Phenotype , Risk Assessment
16.
Mov Disord ; 31(4): 593-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26861697

ABSTRACT

INTRODUCTION: Harmonizing data across cohorts is important for validating findings or combining data in meta-analyses. We replicate and validate a previous conversion of MoCA to MMSE in PD. METHODS: We used five studies with 1,161 PD individuals and 2,091 observations measured with both the MoCA and MMSE. We compared a previously published conversion table using equipercentile equating with log-linear smoothing to our internally derived scores. RESULTS: Both conversions found good agreement within and across the studies when comparing true and converted MMSE (mean difference: 0.05; standard deviation: 1.84; median difference: 0; interquartile range: -1 to 1, using internal conversion). CONCLUSIONS: These results show that one can get a reliable and valid conversion between two commonly used measures of cognition in PD studies. These approaches need to be applied to other scales and domains to enable large-scale collaborative analyses across multiple PD cohorts.


Subject(s)
Neuropsychological Tests/statistics & numerical data , Parkinson Disease/diagnosis , Psychiatric Status Rating Scales/statistics & numerical data , Psychometrics/standards , Aged , Cohort Studies , Humans , Middle Aged
17.
Mov Disord ; 30(13): 1759-66, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26179331

ABSTRACT

Nonmotor symptoms (NMS) are an important prodromal feature of Parkinson's disease (PD). However, their frequency, treatment rates, and impact on health-related quality of life (HRQoL) in the early motor phase is unclear. Rates of NMS in enriched at-risk populations, such as first-degree PD relatives, have not been delineated. We assessed NMS in an early cohort of PD, first-degree PD relatives and control subjects to address these questions. In total, 769 population-ascertained PD subjects within 3.5 years of diagnosis, 98 first-degree PD relatives, and 287 control subjects were assessed at baseline across the following NMS domains: (1) neuropsychiatric; (2) gastrointestinal; (3) sleep; (4) sensory; (5) autonomic; and (6) sexual. NMS were much more common in PD, compared to control subjects. More than half of the PD cases had hyposmia, pain, fatigue, sleep disturbance, or urinary dysfunction. NMS were more frequent in those with the postural instability gait difficulty phenotype, compared to the tremor dominant (mean total number of NMS 7.8 vs. 6.2; P < 0.001). PD cases had worse HRQoL scores than controls (odds ratio: 4.1; P < 0.001), with depression, anxiety, and pain being stronger drivers than motor scores. NMS were rarely treated in routine clinical practice. First-degree PD relatives did not significantly differ in NMS, compared to controls, in this baseline study. NMS are common in early PD and more common in those with postural instability gait difficulty phenotype or on treatment. Despite their major impact on quality of life, NMS are usually under-recognized and untreated.


Subject(s)
Depression/etiology , Family , Mental Disorders/etiology , Parkinson Disease/complications , Parkinson Disease/genetics , Sleep Wake Disorders/etiology , Adult , Aged , Aged, 80 and over , Autonomic Nervous System Diseases/etiology , Cognition Disorders/etiology , Female , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Middle Aged , Mutation/genetics , Olfaction Disorders/etiology , Parkinson Disease/psychology , Protein Serine-Threonine Kinases/genetics , Quality of Life , Surveys and Questionnaires , beta-Glucosidase/genetics
18.
19.
Brain ; 137(Pt 8): 2303-11, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24919969

ABSTRACT

Individuals with mutation in the lysosomal enzyme glucocerebrosidase (GBA) gene are at significantly high risk of developing Parkinson's disease with cognitive deficit. We examined whether visual short-term memory impairments, long associated with patients with Parkinson's disease, are also present in GBA-positive individuals-both with and without Parkinson's disease. Precision of visual working memory was measured using a serial order task in which participants observed four bars, each of a different colour and orientation, presented sequentially at screen centre. Afterwards, they were asked to adjust a coloured probe bar's orientation to match the orientation of the bar of the same colour in the sequence. An additional attentional 'filtering' condition tested patients' ability to selectively encode one of the four bars while ignoring the others. A sensorimotor task using the same stimuli controlled for perceptual and motor factors. There was a significant deficit in memory precision in GBA-positive individuals-with or without Parkinson's disease-as well as GBA-negative patients with Parkinson's disease, compared to healthy controls. Worst recall was observed in GBA-positive cases with Parkinson's disease. Although all groups were impaired in visual short-term memory, there was a double dissociation between sources of error associated with GBA mutation and Parkinson's disease. The deficit observed in GBA-positive individuals, regardless of whether they had Parkinson's disease, was explained by a systematic increase in interference from features of other items in memory: misbinding errors. In contrast, impairments in patients with Parkinson's disease, regardless of GBA status, was explained by increased random responses. Individuals who were GBA-positive and also had Parkinson's disease suffered from both types of error, demonstrating the worst performance. These findings provide evidence for dissociable signature deficits within the domain of visual short-term memory associated with GBA mutation and with Parkinson's disease. Identification of the specific pattern of cognitive impairment in GBA mutation versus Parkinson's disease is potentially important as it might help to identify individuals at risk of developing Parkinson's disease.


Subject(s)
Glucosylceramidase/genetics , Memory Disorders/genetics , Memory, Short-Term/physiology , Parkinson Disease/genetics , Aged , Female , Gaucher Disease/complications , Gaucher Disease/genetics , Gaucher Disease/physiopathology , Genetic Testing , Heterozygote , Humans , Male , Memory Disorders/etiology , Memory Disorders/physiopathology , Middle Aged , Mutation/genetics , Neuropsychological Tests , Parkinson Disease/complications , Parkinson Disease/physiopathology , Risk , Visual Perception/physiology
20.
Mov Disord ; 29(3): 351-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24395708

ABSTRACT

The impact of Parkinson's disease (PD) dementia is substantial and has major functional and socioeconomic consequences. Early prediction of future cognitive impairment would help target future interventions. The Montreal Cognitive Assessment (MoCA), the Mini-Mental State Examination (MMSE), and fluency tests were administered to 486 patients with PD within 3.5 years of diagnosis, and the results were compared with those from 141 controls correcting for age, sex, and educational years. Eighteen-month longitudinal assessments were performed in 155 patients with PD. The proportion of patients classified with normal cognition, mild cognitive impairment (MCI), and dementia varied considerably, depending on the MoCA and MMSE thresholds used. With the MoCA total score at screening threshold, 47.7%, 40.5%, and 11.7% of patients with PD were classified with normal cognition, MCI, and dementia, respectively; by comparison, 78.7% and 21.3% of controls had normal cognition and MCI, respectively. Cognitive impairment was predicted by lower education, increased age, male sex, and quantitative motor and non-motor (smell, depression, and anxiety) measures. Longitudinal data from 155 patients with PD over 18 months showed significant reductions in MoCA scores, but not in MMSE scores, with 21.3% of patients moving from normal cognition to MCI and 4.5% moving from MCI to dementia, although 13.5% moved from MCI to normal; however, none of the patients with dementia changed their classification. The MoCA may be more sensitive than the MMSE in detecting early baseline and longitudinal cognitive impairment in PD, because it identified 25.8% of those who experienced significant cognitive decline over 18 months. Cognitive decline was associated with worse motor and non-motor features, suggesting that this reflects a faster progressive phenotype.


Subject(s)
Cognitive Dysfunction/diagnosis , Parkinson Disease/complications , Adult , Aged , Aged, 80 and over , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Cognitive Dysfunction/complications , Cognitive Dysfunction/physiopathology , Cohort Studies , Female , Humans , Male , Middle Aged , Motor Activity , Neuropsychological Tests , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL