Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Development ; 149(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35132990

ABSTRACT

Despite previous intensive investigations on epiblast cell migration in avian embryos during primitive streak development before stage (st.) 4, this migration at later stages of brain development has remained uninvestigated. By live imaging of epiblast cells sparsely labeled with green fluorescence protein, we investigated anterior epiblast cell migration to form individual brain portions. Anterior epiblast cells from a broad area migrated collectively towards the head axis during st. 5-7 at a rate of 70-110 µm/h, changing directions from diagonal to parallel and forming the brain portions and abutting head ectoderm. This analysis revised the previously published head portion precursor map in anterior epiblasts at st. 4/5. Grafting outside the brain precursor region of mCherry-expressing nodes producing anterior mesendoderm (AME) or isolated AME tissues elicited new cell migration towards ectopic AME tissues. These locally convergent cells developed into secondary brains with portions that depended on the ectopic AME position in the anterior epiblast. Thus, anterior epiblast cells are bipotent for brain/head ectoderm development with given brain portion specificities. A brain portion potential map is proposed, also accounting for previous observations.


Subject(s)
Gastrula , Germ Layers , Animals , Birds , Brain , Cell Movement , Ectoderm/metabolism
2.
Genes Cells ; 25(4): 242-256, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31997540

ABSTRACT

The transcription factor (TF) SOX2 regulates various stem cells and tissue progenitors via functional interactions with cell type-specific partner TFs that co-bind to enhancer sequences. Neural progenitors are the major embryonic tissues where SOX2 assumes central regulatory roles. In order to characterize the partner TFs of SOX2 in neural progenitors, we investigated the regulation of the D1 enhancer of the Sox2 gene, which is activated in the embryonic neural tube (NT) and neural crest (NC), using chicken embryo electroporation. We identified essential TF binding sites for a SOX, and two ZIC TFs in the activation of the D1 enhancer. By comparison of dorso-ventral and antero-posterior patterns of D1 enhancer activation, and the effect of mutations on the enhancer activation patterns with TF expression patterns, we determined SOX2 and ZIC2 as the major D1 enhancer-activating TFs. Binding of these TFs to the D1 enhancer sequence was confirmed by chromatin immunoprecipitation analysis. The combination of SOX2 and ZIC2 TFs activated the enhancer in both the NT and NC. These results indicate that SOX2 and ZIC2, which have been known to play major regulatory roles in neural progenitors, do functionally cooperate. In addition, the recently demonstrated SOX2 expression during the NC development is accounted for at least partly by the D1 enhancer activity. Deletion of the D1 enhancer sequence from the mouse genome, however, did not affect the mouse development, indicating functional redundancies of other enhancers.


Subject(s)
Enhancer Elements, Genetic/genetics , Neural Crest/metabolism , Neural Tube/metabolism , SOXB1 Transcription Factors/metabolism , Transcription Factors/metabolism , Animals , Chick Embryo , Chickens , Embryo, Mammalian/metabolism , Mice , SOXB1 Transcription Factors/genetics
3.
Dev Dyn ; 249(12): 1425-1439, 2020 12.
Article in English | MEDLINE | ID: mdl-32633438

ABSTRACT

BACKGROUND: Hedgehog signaling has various regulatory functions in tissue morphogenesis and differentiation. To investigate its involvement in anterior pituitary precursor development and the lens precursor potential for anterior pituitary precursors, we investigated Talpid mutant Japanese quail embryos, in which hedgehog signaling is defective. RESULTS: Talpid mutants develop multiple pituitary precursor-like pouches of variable sizes from the oral ectoderm (OE). The ectopic pituitary pouches initially express the pituitary-associated transcription factor (TF) LHX3 similarly to Rathke's pouch, the genuine pituitary precursor. The pouches coexpress the TFs SOX2 and PAX6, a signature of lens developmental potential. Most Talpid mutant pituitary pouches downregulate LHX3 expression and activate the lens-essential TF PROX1, leading to the development of small lens tissue expressing α-, ß-, and δ-crystallins. In contrast, mutant Rathke's pouches express a lower level of LHX3, which is primarily localized in the cytoplasm, and activate the lens developmental pathway. CONCLUSIONS: Hedgehog signaling in normal embryos regulates the development of Rathke's pouch in two steps. First, by confining Rathke's pouch development in a low hedgehog signaling region of the OE. Second, by sustaining LHX3 activity to promote anterior pituitary development, while inhibiting ectopic lens development.


Subject(s)
Ectoderm/embryology , Embryonic Development/physiology , Hedgehog Proteins/metabolism , PAX6 Transcription Factor/metabolism , Pituitary Gland/embryology , SOXB1 Transcription Factors/metabolism , Animals , Cell Differentiation/physiology , Coturnix , Ectoderm/metabolism , Organogenesis/physiology , Pituitary Gland/metabolism , Signal Transduction/physiology
4.
Development ; 144(11): 1948-1958, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28455373

ABSTRACT

To obtain insight into the transcription factor (TF)-dependent regulation of epiblast stem cells (EpiSCs), we performed ChIP-seq analysis of the genomic binding regions of five major TFs. Analysis of in vivo biotinylated ZIC2, OTX2, SOX2, POU5F1 and POU3F1 binding in EpiSCs identified several new features. (1) Megabase-scale genomic domains rich in ZIC2 peaks and genes alternate with those rich in POU3F1 but sparse in genes, reflecting the clustering of regulatory regions that act at short and long-range, which involve binding of ZIC2 and POU3F1, respectively. (2) The enhancers bound by ZIC2 and OTX2 prominently regulate TF genes in EpiSCs. (3) The binding sites for SOX2 and POU5F1 in mouse embryonic stem cells (ESCs) and EpiSCs are divergent, reflecting the shift in the major acting TFs from SOX2/POU5F1 in ESCs to OTX2/ZIC2 in EpiSCs. (4) This shift in the major acting TFs appears to be primed by binding of ZIC2 in ESCs at relevant genomic positions that later function as enhancers following the disengagement of SOX2/POU5F1 from major regulatory functions and subsequent binding by OTX2. These new insights into EpiSC gene regulatory networks gained from this study are highly relevant to early stage embryogenesis.


Subject(s)
Chromatin Immunoprecipitation , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Germ Layers/cytology , Mouse Embryonic Stem Cells/metabolism , Sequence Analysis, RNA , Transcription Factors/metabolism , Animals , Binding Sites/genetics , Biotinylation , Genome , Germ Layers/metabolism , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Octamer Transcription Factor-3/metabolism , Otx Transcription Factors/metabolism , Protein Binding , SOXB1 Transcription Factors/metabolism , Transcription Factors/genetics
5.
Dev Growth Differ ; 62(4): 243-259, 2020 May.
Article in English | MEDLINE | ID: mdl-32277710

ABSTRACT

Endoderm precursors expressing FoxA2 and Sox17 develop from the epiblast through the gastrulation process. In this study, we developed an experimental system to model the endoderm-generating gastrulation process using epiblast stem cells (EpiSCs). To this end, we established an EpiSC line i22, in which enhanced green fluorescent protein is coexpressed with Foxa2. Culturing i22 EpiSCs as aggregates for a few days was sufficient to initiate Foxa2 expression, and further culturing of the aggregates in Matrigel promoted the sequential activation of transcription factor genes involved in endoderm precursor development, e.g., Eomes, Gsc, and Sox17. In aggregation culture of i22 cells for 3 days, all cells expressed POU5F1, SOX2, and E-cadherin, a signature of the epiblast, whereas expression of GATA4 and SOX17 was also activated moderately in dispersed cells, suggesting priming of these cells to endodermal development. Embedding the aggregates in Matrigel for further 3 days elicited migration of the cells into the lumen of laminin-rich matrices covering the aggregates, in which FOXA2 and SOX17 were expressed at a high level with the concomitant loss of E-cadherin, indicating the migratory phase of endodermal precursors. Prolonged culturing of the aggregates generated three segregating cell populations found in post-gastrulation stage embryos: (1) definitive endoderm co-expressing high SOX17, GATA4, and E-cadherin, (2) mesodermal cells expressing a low level of GATA4 and lacking E-cadherin, and (3) primed epiblast cells expressing POU5F1, SOX2 without E-cadherin. Thus, aggregation of EpiSCs followed by embedding of aggregates in the laminin-rich matrix models the gastrulation-dependent endoderm precursor development.


Subject(s)
Endoderm/cytology , Extracellular Matrix/metabolism , Germ Layers/cytology , Models, Biological , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Animals , Endoderm/metabolism , Germ Layers/metabolism , Mice , Mice, Inbred DBA
6.
Dev Biol ; 421(2): 118-125, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27845051

ABSTRACT

Embryonic neural retinas of avians produce lenses under spreading culture conditions. This phenomenon has been regarded as a paradigm of transdifferentiation due to the overt change in cell type. Here we elucidated the underlying mechanisms. Retina-to-lens transdifferentiation occurs in spreading cultures, suggesting that it is triggered by altered cell-cell interactions. Thus, we tested the involvement of Notch signaling based on its role in retinal neurogenesis. Starting from E8 retina, a small number of crystallin-expressing lens cells began to develop after 20 days in control spreading cultures. By contrast, addition of Notch signal inhibitors to cultures after day 2 strongly promoted lens development beginning at day 11, and a 10-fold increase in δ-crystallin expression level. After Notch signal inhibition, transcription factor genes that regulate the early stage of eye development, Prox1 and Pitx3, were sequentially activated. These observations indicate that the lens differentiation potential is intrinsic to the neural retina, and this potential is repressed by Notch signaling during normal embryogenesis. Therefore, Notch suppression leads to lens transdifferentiation by disinhibiting the neural retina-intrinsic program of lens development.


Subject(s)
Cell Transdifferentiation , Lens, Crystalline/cytology , Receptors, Notch/metabolism , Retina/cytology , Signal Transduction , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Transdifferentiation/drug effects , Cells, Cultured , Chick Embryo , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Developmental/drug effects , Immunoblotting , Lens, Crystalline/drug effects , Models, Biological , Signal Transduction/drug effects , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Dev Growth Differ ; 58(9): 741-749, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27921294

ABSTRACT

The chick embryonic eye is an excellent model for the study of vertebrate organogenesis. Key events in eye development involve thickening, invagination and cytodifferentiation of the lens primordium. While these events occur successively at different developmental stages, the extent to which these events are temporally related is largely unknown. Here we show that the lens invagination is highly sensitive to temperature. Lowering of incubation temperature to 29°C at embryonic day 2 delayed the onset of invagination of the lens, but not thickening and cytodifferentiation, leading to abnormal protrusion of the eye. The temperature shift also delayed the inward bending of the underlying retinal primordium, even in the absence of the lens. Taken together, our results suggest that lens invagination is initiated independently of thickening and cytodifferentiation, possibly by mechanisms associated with morphogenesis of the primordial retina.


Subject(s)
Cell Differentiation , Cold Temperature , Lens, Crystalline/embryology , Organogenesis , Retina/embryology , Animals , Chick Embryo , Lens, Crystalline/cytology , Retina/cytology
8.
Front Cell Dev Biol ; 11: 1260528, 2023.
Article in English | MEDLINE | ID: mdl-38405136

ABSTRACT

The specification of the embryonic central nervous system (CNS) into future brain (forebrain, midbrain, or hindbrain) and spinal cord (SC) regions is a critical step of CNS development. A previous chicken embryo study indicated that anterior epiblast cells marked by Sox2 N2 enhancer activity are specified to the respective brain regions during the transition phase of the epiblast to the neural plate-forming neural primordium. The present study showed that the SC precursors positioned posterior to the hindbrain precursors in the anterior epiblast migrated posteriorly in contrast to the anterior migration of brain precursors. The anteroposterior specification of the CNS precursors occurs at an analogous time (∼E7.5) in mouse embryos, in which an anterior-to-posterior incremental gradient of Wnt signal strength was observed. To examine the possible Wnt signal contribution to the anteroposterior CNS primordium specification, we utilized mouse epiblast stem cell (EpiSC)-derived neurogenesis in culture. EpiSCs maintained in an activin- and FGF2-containing medium start neural development after the removal of activin, following a day in a transitory state. We placed activin-free EpiSCs in EGF- and FGF2-containing medium to arrest neural development and expand the cells into neural stem cells (NSCs). Simultaneously, a Wnt antagonist or agonist was added to the culture, with the anticipation that different levels of Wnt signals would act on the transitory cells to specify CNS regionality; then, the Wnt-treated cells were expanded as NSCs. Gene expression profiles of six NSC lines were analyzed using microarrays and single-cell RNA-seq. The NSC lines demonstrated anteroposterior regional specification in response to increasing Wnt signal input levels: forebrain-midbrain-, hindbrain-, cervical SC-, and thoracic SC-like lines. The regional coverage of these NSC lines had a range; for instance, the XN1 line expressed Otx2 and En2, indicating midbrain characteristics, but additionally expressed the SC-characteristic Hoxa5. The ranges in the anteroposterior specification of neural primordia may be narrowed as neural development proceeds. The thoracic SC is presumably the posterior limit of the contribution by anterior epiblast-derived neural progenitors, as the characteristics of more posterior SC regions were not displayed.

9.
Front Cell Dev Biol ; 10: 1019845, 2022.
Article in English | MEDLINE | ID: mdl-36274851

ABSTRACT

Live imaging of migrating and interacting cells in developing embryos has opened a new means for deciphering fundamental principles in morphogenesis and patterning, which was not possible with classic approaches of experimental embryology. In our recent study, we devised a new genetic tool to sparsely label cells with a green-fluorescent protein in the broad field of chicken embryos, enabling the analysis of cell migration during the early stages of brain development. Trajectory analysis indicated that anterior epiblast cells from a broad area gather to the head axis to form the brain primordia or brain-abutting head ectoderm. Grafting the mCherry-labeled stage (st.) 4 node in an anterior embryonic region resulted in the anterior extension of the anterior mesendoderm (AME), the precursor for the prechordal plate and anterior notochord, from the node graft at st. 5. Grafting the st. 4 node or st. 5 AME at various epiblast positions that otherwise develop into the head ectoderm caused local cell gathering to the graft-derived AME. The node was not directly associated with this local epiblast-gathering activity. The gathered anterior epiblast cells developed into secondary brain tissue consisting of consecutive brain portions, e.g., forebrain and midbrain or midbrain and hindbrain, reflecting the brain portion specificities inherent to the epiblast cells. The observations indicated the bipotentiality of all anterior epiblast cells to develop into the brain or head ectoderm. Thus, a new epiblast brain field map is proposed, allowing the reinterpretation of classical node graft data, and the role of the AME is highlighted. The new model leads to the conclusion that the node does not directly participate in brain development.

SELECTION OF CITATIONS
SEARCH DETAIL