Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
J Proteome Res ; 21(6): 1449-1466, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35506863

ABSTRACT

Traumatic spinal cord injury (SCI) results in disruption of tissue integrity and loss of function. We hypothesize that glycosylation has a role in determining the occurrence of regeneration and that biomaterial treatment can influence this glycosylation response. We investigated the glycosylation response to spinal cord transection in Xenopus laevis and rat. Transected rats received an aligned collagen hydrogel. The response compared regenerative success, regenerative failure, and treatment in an established nonregenerative mammalian system. In a healthy rat spinal cord, ultraperformance liquid chromatography (UPLC) N-glycoprofiling identified complex, hybrid, and oligomannose N-glycans. Following rat SCI, complex and outer-arm fucosylated glycans decreased while oligomannose and hybrid structures increased. Sialic acid was associated with microglia/macrophages following SCI. Treatment with aligned collagen hydrogel had a minimal effect on the glycosylation response. In Xenopus, lectin histochemistry revealed increased levels of N-acetyl-glucosamine (GlcNAc) in premetamorphic animals. The addition of GlcNAc is required for processing complex-type glycans and is a necessary foundation for additional branching. A large increase in sialic acid was observed in nonregenerative animals. This work suggests that glycosylation may influence regenerative success. In particular, loss of complex glycans in rat spinal cord may contribute to regeneration failure. Targeting the glycosylation response may be a promising strategy for future therapies.


Subject(s)
N-Acetylneuraminic Acid , Spinal Cord Injuries , Animals , Glycosylation , Hydrogels , Mammals , Rats , Spinal Cord , Xenopus laevis
2.
Cell Microbiol ; 23(8): e13340, 2021 08.
Article in English | MEDLINE | ID: mdl-33822465

ABSTRACT

Trimeric Autotransporter Adhesins (TAA) found in Gram-negative bacteria play a key role in virulence. This is the case of Burkholderia cepacia complex (Bcc), a group of related bacteria able to cause infections in patients with cystic fibrosis. These bacteria use TAAs, among other virulence factors, to bind to host protein receptors and their carbohydrate ligands. Blocking such contacts is an attractive approach to inhibit Bcc infections. In this study, using an antibody produced against the TAA BCAM2418 from the epidemic strain Burkholderia cenocepacia K56-2, we were able to uncover its roles as an adhesin and the type of host glycan structures that serve as recognition targets. The neutralisation of BCAM2418 was found to cause a reduction in the adhesion of the bacteria to bronchial cells and mucins. Moreover, in vivo studies have shown that the anti-BCAM2418 antibody exerted an inhibitory effect during infection in Galleria mellonella. Finally, inferred by glycan arrays, we were able to predict for the first time, host glycan epitopes for a TAA. We show that BCAM2418 favoured binding to 3'sialyl-3-fucosyllactose, histo-blood group A, α-(1,2)-linked Fuc-containing structures, Lewis structures and GM1 gangliosides. In addition, the glycan microarrays demonstrated similar specificities of Burkholderia species for their most intensely binding carbohydrates.


Subject(s)
Burkholderia Infections , Burkholderia cenocepacia , Adhesins, Bacterial , Bacterial Adhesion , Humans , Polysaccharides
3.
Appl Microbiol Biotechnol ; 105(3): 1063-1078, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33427933

ABSTRACT

Members of the human gut microbiota use glycoside hydrolase (GH) enzymes, such as ß-galactosidases, to forage on host mucin glycans and dietary fibres. A human faecal metagenomic fosmid library was constructed and functionally screened to identify novel ß-galactosidases. Out of the 16,000 clones screened, 30 ß-galactosidase-positive clones were identified. The ß-galactosidase gene found in the majority of the clones was BAD_1582 from Bifidobacterium adolescentis, subsequently named bgaC. This gene was cloned with a hexahistidine tag, expressed in Escherichia coli and His-tagged-BgaC was purified using Ni2+-NTA affinity chromatography and size filtration. The enzyme had optimal activity at pH 7.0 and 37 °C, with a wide range of pH (4-10) and temperature (0-40 °C) stability. It required a divalent metal ion co-factor; maximum activity was detected with Mg2+, while Cu2+ and Mn2+ were inhibitory. Kinetic parameters were determined using ortho-nitrophenyl-ß-D-galactopyranoside (ONPG) and lactose substrates. BgaC had a Vmax of 107 µmol/min/mg and a Km of 2.5 mM for ONPG and a Vmax of 22 µmol/min/mg and a Km of 3.7 mM for lactose. It exhibited low product inhibition by galactose with a Ki of 116 mM and high tolerance for glucose (66% activity retained in presence of 700 mM glucose). In addition, BgaC possessed transglycosylation activity to produce galactooligosaccharides (GOS) from lactose, as determined by TLC and HPLC analysis. The enzymatic characteristics of B. adolescentis BgaC make it an ideal candidate for dairy industry applications and prebiotic manufacture.Key points• Bifidobacterium adolescentis BgaC ß-galactosidase was selected from human faecal metagenome.• BgaC possesses sought-after properties for biotechnology, e.g. low product inhibition.• BgaC has transglycosylation activity producing prebiotic oligosaccharides. Graphical Abstract.


Subject(s)
Bifidobacterium adolescentis , Galactose , Humans , Hydrogen-Ion Concentration , Lactose , Metagenome , Oligosaccharides , Temperature , beta-Galactosidase/genetics
4.
Int J Mol Sci ; 21(13)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610704

ABSTRACT

Evidence that whey proteins and peptides have health benefits beyond basic infant nutrition has increased dramatically in recent years. Previously, we demonstrated that a whey-derived immunoglobulin G-enriched powder (IGEP) enhanced adhesion of Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis) to HT-29 cells. In this study, we investigated the synergistic effect of IGEP-treated B. infantis on preventing the attachment of highly invasive Campylobacter jejuni 81-176 (C. jejuni) to intestinal HT-29 cells. The combination decreased the adherence of C. jejuni to the HT-29 cells by an average of 48% compared to the control (non-IGEP-treated B. infantis). We also confirmed that treatment of IGEP with sodium metaperiodate, which disables the biological recognition of the conjugated oligosaccharides, reduced adhesion of B. infantis to the intestinal cells. Thus, glycosylation of the IGEP components may be important in enhancing B. infantis adhesion. Interestingly, an increased adhesion phenotype was not observed when B. infantis was treated with bovine serum-derived IgG, suggesting that bioactivity was unique to milk-derived immunoglobulin-rich powders. Notably, IGEP did not induce growth of B. infantis within a 24 hours incubation period, as demonstrated by growth curves and metabolite analysis. The current study provides insight into the functionality of bovine whey components and highlights their potential in positively impacting the development of a healthy microbiota.


Subject(s)
Bifidobacterium longum subspecies infantis/drug effects , Campylobacter jejuni/drug effects , Whey Proteins/pharmacology , Whey/chemistry , Bifidobacterium/growth & development , Bifidobacterium longum subspecies infantis/genetics , Bifidobacterium longum subspecies infantis/metabolism , Campylobacter jejuni/genetics , DNA, Bacterial/genetics , HT29 Cells , Humans , Immunoglobulin G/metabolism , Intestines/microbiology , Microbiota/genetics , Whey/metabolism , Whey Proteins/metabolism
5.
Int J Mol Sci ; 21(7)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252300

ABSTRACT

The biofilm component poly-N-acetylglucosamine (PNAG) is an important virulence determinant in medical-device-related infections caused by ESKAPE group pathogens including Gram-positive Staphylococcus aureus and Gram-negative Acinetobacter baumannii. PNAG presentation on bacterial cell surfaces and its accessibility for host interactions are not fully understood. We employed a lectin microarray to examine PNAG surface presentation and interactions on methicillin-sensitive (MSSA) and methicillin-resistant S. aureus (MRSA) and a clinical A. baumannii isolate. Purified PNAG bound to wheatgerm agglutinin (WGA) and succinylated WGA (sWGA) lectins only. PNAG was the main accessible surface component on MSSA but was relatively inaccessible on the A. baumannii surface, where it modulated the presentation of other surface molecules. Carbohydrate microarrays demonstrated similar specificities of S. aureus and A. baumannii for their most intensely binding carbohydrates, including 3' and 6'sialyllactose, but differences in moderately binding ligands, including blood groups A and B. An N-acetylglucosamine-binding lectin function which binds to PNAG identified on the A. baumannii cell surface may contribute to biofilm structure and PNAG surface presentation on A. baumannii. Overall, these data indicated differences in PNAG presentation and accessibility for interactions on Gram-positive and Gram-negative cell surfaces which may play an important role in biofilm-mediated pathogenesis.


Subject(s)
Acinetobacter baumannii/metabolism , Biofilms , Glycomics , Microarray Analysis , Polysaccharides, Bacterial/metabolism , Staphylococcus aureus/metabolism , Acetylglucosamine/metabolism , Bacterial Outer Membrane/metabolism , Glycomics/methods , Humans , Microarray Analysis/methods , Models, Biological , Molecular Structure , Polysaccharides, Bacterial/chemistry , Virulence Factors/metabolism
6.
J Gen Virol ; 99(11): 1494-1508, 2018 11.
Article in English | MEDLINE | ID: mdl-30277856

ABSTRACT

Murine adenovirus 2 (MAdV-2) infects cells of the mouse gastrointestinal tract. Like human adenoviruses, it is a member of the genus Mastadenovirus, family Adenoviridae. The MAdV-2 genome has a single fibre gene that expresses a 787 residue-long protein. Through analogy to other adenovirus fibre proteins, it is expected that the carboxy-terminal virus-distal head domain of the fibre is responsible for binding to the host cell, although the natural receptor is unknown. The putative head domain has little sequence identity to adenovirus fibres of known structure. In this report, we present high-resolution crystal structures of the carboxy-terminal part of the MAdV-2 fibre. The structures reveal a domain with the typical adenovirus fibre head topology and a domain containing two triple ß-spiral repeats of the shaft domain. Through glycan microarray profiling, saturation transfer difference nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and site-directed mutagenesis, we show that the fibre specifically binds to the monosaccharide N-acetylglucosamine (GlcNAc). The crystal structure of the complex reveals that GlcNAc binds between the AB and CD loops at the top of each of the three monomers of the MAdV-2 fibre head. However, infection competition assays show that soluble GlcNAc monosaccharide and natural GlcNAc-containing polymers do not inhibit infection by MAdV-2. Furthermore, site-directed mutation of the GlcNAc-binding residues does not prevent the inhibition of infection by soluble fibre protein. On the other hand, we show that the MAdV-2 fibre protein binds GlcNAc-containing mucin glycans, which suggests that the MAdV-2 fibre protein may play a role in viral mucin penetration in the mouse gut.


Subject(s)
Acetylglucosamine/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Protein Domains , Receptors, Virus/metabolism , Animals , Crystallography, X-Ray , Mice , Protein Binding , Protein Conformation
7.
Methods ; 116: 63-83, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27832969

ABSTRACT

This study was performed to monitor the glycoform distribution of a recombinant antibody fusion protein expressed in CHO cells over the course of fed-batch bioreactor runs using high-throughput methods to accurately determine the glycosylation status of the cell culture and its product. Three different bioreactors running similar conditions were analysed at the same five time-points using the advanced methods described here. N-glycans from cell and secreted glycoproteins from CHO cells were analysed by HILIC-UPLC and MS, and the total glycosylation (both N- and O-linked glycans) secreted from the CHO cells were analysed by lectin microarrays. Cell glycoproteins contained mostly high mannose type N-linked glycans with some complex glycans; sialic acid was α-(2,3)-linked, galactose ß-(1,4)-linked, with core fucose. Glycans attached to secreted glycoproteins were mostly complex with sialic acid α-(2,3)-linked, galactose ß-(1,4)-linked, with mostly core fucose. There were no significant differences noted among the bioreactors in either the cell pellets or supernatants using the HILIC-UPLC method and only minor differences at the early time-points of days 1 and 3 by the lectin microarray method. In comparing different time-points, significant decreases in sialylation and branching with time were observed for glycans attached to both cell and secreted glycoproteins. Additionally, there was a significant decrease over time in high mannose type N-glycans from the cell glycoproteins. A combination of the complementary methods HILIC-UPLC and lectin microarrays could provide a powerful and rapid HTP profiling tool capable of yielding qualitative and quantitative data for a defined biopharmaceutical process, which would allow valuable near 'real-time' monitoring of the biopharmaceutical product.


Subject(s)
Antibodies/genetics , Lectins/chemistry , Polysaccharides/chemistry , Protein Array Analysis/instrumentation , Recombinant Fusion Proteins/genetics , Sialic Acids/chemistry , Animals , Antibodies/chemistry , Batch Cell Culture Techniques , Bioreactors , CHO Cells , Carbohydrate Sequence , Chromatography, High Pressure Liquid/methods , Cricetulus , Glycosylation , Hydrophobic and Hydrophilic Interactions , Lectins/isolation & purification , Polysaccharides/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sialic Acids/isolation & purification
8.
Mol Cell Proteomics ; 15(10): 3139-3153, 2016 10.
Article in English | MEDLINE | ID: mdl-27466253

ABSTRACT

Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.


Subject(s)
Fasciola hepatica/physiology , Glycoproteins/metabolism , Protein Array Analysis/methods , Animals , Glycosylation , Helminth Proteins/metabolism , Host-Parasite Interactions , Lectins/metabolism , Mass Spectrometry , Proteomics
9.
Sensors (Basel) ; 17(7)2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28653977

ABSTRACT

Bovine lactoferrin (LF) has been shown to prevent adhesion to and invasion of mammalian cell lines by pathogenic bacteria, with evidence for direct bacterial binding by the milk glycoprotein. However, the glycosylation pattern of LF changes over the lactation cycle. In this study, we aim to investigate the effect that this variation has on the milk glycoprotein's ability to interact with pathogens. Surface plasmon resonance technology was employed to compare the binding of LF from colostrum (early lactation) and mature milk (late lactation) to a panel of pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Cronobacter sakazakii, Streptococcus pneumoniae, Pseudomonas aeruginosa, Listeria monocytogenes and Salmonella typhimurium). Novel interactions with LF were identified for C. sakazakii, S. pneumoniae and P. aeruginosa with the highest binding ability observed for mature milk LF in all cases, with the exception of S. typhimurium. The difference in bacterial binding observed may be as a result of the varying glycosylation profiles. This work demonstrates the potential of LF as a functional food ingredient to prevent bacterial infection.


Subject(s)
Bacteria , Animals , Milk , Polysaccharides , Staphylococcus aureus , Surface Plasmon Resonance
10.
Glycobiology ; 24(6): 507-17, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24658466

ABSTRACT

Carbohydrates participate in almost every aspect of biology from protein sorting to modulating cell differentiation and cell-cell interactions. To date, the majority of data gathered on glycan expression has been obtained via analysis with either anti-glycan antibodies or lectins. A detailed understanding of the specificities of these reagents is critical to the analysis of carbohydrates in biological systems. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins (GBPs). In this study, six different glycan microarray platforms with different modes of glycan presentation were compared using five well-known lectins; concanavalin A, Helix pomatia agglutinin, Maackia amurensis lectin I, Sambucus nigra agglutinin and wheat germ agglutinin. A new method (universal threshold) was developed to facilitate systematic comparisons across distinct array platforms. The strongest binders of each lectin were identified using the universal threshold across all platforms while identification of weaker binders was influenced by platform-specific factors including presentation of determinants, array composition and self-reported thresholding methods. This work compiles a rich dataset for comparative analysis of glycan array platforms and has important implications for the implementation of microarrays in the characterization of GBPs.


Subject(s)
Carrier Proteins/metabolism , Microarray Analysis , Polysaccharides/metabolism , Binding Sites , Carbohydrates/biosynthesis , Carrier Proteins/chemistry , Concanavalin A/chemistry , Concanavalin A/metabolism , Lectins/chemistry , Lectins/metabolism , Phytohemagglutinins/chemistry , Phytohemagglutinins/metabolism , Polysaccharides/chemistry , Wheat Germ Agglutinins/chemistry , Wheat Germ Agglutinins/metabolism
11.
BMC Microbiol ; 14: 282, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25420416

ABSTRACT

BACKGROUND: Bifidobacteria constitute a specific group of commensal bacteria that commonly inhabit the mammalian gastrointestinal tract. Bifidobacterium breve UCC2003 was previously shown to utilize a variety of plant/diet/host-derived carbohydrates, including cellodextrin, starch and galactan, as well as the mucin and HMO-derived monosaccharide, sialic acid. In the current study, we investigated the ability of this strain to utilize parts of a host-derived source of carbohydrate, namely the mucin glycoprotein, when grown in co-culture with the mucin-degrading Bifidobacterium bifidum PRL2010. RESULTS: B. breve UCC2003 was shown to exhibit growth properties in a mucin-based medium, but only when grown in the presence of B. bifidum PRL2010, which is known to metabolize mucin. A combination of HPAEC-PAD and transcriptome analyses identified some of the possible monosaccharides and oligosaccharides which support this enhanced co-cultivation growth/viability phenotype. CONCLUSION: This study describes the potential existence of a gut commensal relationship between two bifidobacterial species. We demonstrate the in vitro ability of B. breve UCC2003 to cross-feed on sugars released by the mucin-degrading activity of B. bifidum PRL2010, thus advancing our knowledge on the metabolic adaptability which allows the former strain to colonize the (infant) gut by its extensive metabolic abilities to (co-)utilize available carbohydrate sources.


Subject(s)
Bifidobacterium/growth & development , Bifidobacterium/metabolism , Culture Media/chemistry , Microbial Interactions , Mucins/metabolism , Bifidobacterium/physiology , Carbohydrate Metabolism , Proteolysis
12.
Front Oncol ; 14: 1443399, 2024.
Article in English | MEDLINE | ID: mdl-39220652

ABSTRACT

Background: Breast cancer (BC) affects racial and ethnic groups differently, leading to disparities in clinical presentation and outcomes. It is unclear how Hispanic ethnicity affects BC outcomes based on geographic location and proximity to the United States (U.S.)/Mexico border. We hypothesized that the impact of race/ethnicity on BC outcomes depends on geographic location and country of origin within each BC subtype. Methods: We analyzed BC data from the Texas Cancer Registry by race/ethnicity/birthplace according to BC subtype (luminal A/luminal B/human epidermal growth factor receptor 2 [HER2]/triple-negative breast cancer[TNBC]). Other covariates included age, geographic location (U.S., Mexico), residency (border, non-border), treatments, and comorbidities. Crude and adjusted effects of race/ethnicity and birthplace on overall survival (OS) were analyzed using Cox regression methods. Results: Our analysis of 76,310 patient records with specific BC subtypes revealed that Hispanic and non-Hispanic Black (NHB) patients were diagnosed at a younger age compared with non-Hispanic White (NHW) patients for all BC subtypes. For the 19,748 BC patients with complete data on race/ethnicity/birthplace/residency, Hispanic patients had a higher mortality risk in the Luminal A subtype, regardless of birthplace, whereas U.S.-born Hispanics had a higher risk of death in the TNBC subtype. In contrast, NHB patients had a higher mortality risk in the Luminal A and HER2 subtypes. Residence along the U.S./Mexico border had little impact on OS, with better outcomes in Luminal A patients and worse outcomes in Luminal B patients aged 60-74 years. Conclusion: Race/ethnicity, geographic birth location, and residency were significant predictors of survival in BC. Migration, acculturation, and reduced healthcare access may contribute to outcome differences.

13.
Infect Immun ; 81(8): 2838-50, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23716616

ABSTRACT

Helicobacter pylori and Campylobacter jejuni colonize the stomach and intestinal mucus, respectively. Using a combination of mucus-secreting cells, purified mucins, and a novel mucin microarray platform, we examined the interactions of these two organisms with mucus and mucins. H. pylori and C. jejuni bound to distinctly different mucins. C. jejuni displayed a striking tropism for chicken gastrointestinal mucins compared to mucins from other animals and preferentially bound mucins from specific avian intestinal sites (in order of descending preference: the large intestine, proximal small intestine, and cecum). H. pylori bound to a number of animal mucins, including porcine stomach mucin, but with less avidity than that of C. jejuni for chicken mucin. The strengths of interaction of various wild-type strains of H. pylori with different animal mucins were comparable, even though they did not all express the same adhesins. The production of mucus by HT29-MTX-E12 cells promoted higher levels of infection by C. jejuni and H. pylori than those for the non-mucus-producing parental cell lines. Both C. jejuni and H. pylori bound to HT29-MTX-E12 mucus, and while both organisms bound to glycosylated epitopes in the glycolipid fraction of the mucus, only C. jejuni bound to purified mucin. This study highlights the role of mucus in promoting bacterial infection and emphasizes the potential for even closely related bacteria to interact with mucus in different ways to establish successful infections.


Subject(s)
Campylobacter jejuni/pathogenicity , Gastric Mucosa/microbiology , Helicobacter pylori/pathogenicity , Intestinal Mucosa/microbiology , Mucins/metabolism , Mucus/metabolism , Animals , Campylobacter Infections/metabolism , Campylobacter jejuni/metabolism , Fluorescent Antibody Technique , Gastric Mucosa/metabolism , HT29 Cells , Helicobacter Infections/metabolism , Helicobacter pylori/metabolism , Humans , Intestinal Mucosa/metabolism , Microarray Analysis
14.
Int J Med Microbiol ; 303(8): 563-73, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23981476

ABSTRACT

Vibrio parahaemolyticus is a seafood-borne pathogen which causes acute inflammatory gastroenteritis--a process which is mediated by the translocation of type three secretion system effector proteins. The molecular interactions governing colonization of the intestinal epithelium by this pathogen remain poorly understood. The mannose-sensitive haemagglutinin (MSHA) pilus was identified in this study as a significant factor in bacterial-host cell adherence and subsequent pathogenesis towards Caco-2 human intestinal epithelial cells. Deletion of essential components of the MSHA pilus resulted in a 60% decrease in adherence and a similar reduction in bacterial uptake by human intestinal cells. The diminished adherence of MSHA mutants correlated with significant decreases in V. parahaemolyticus-induced Caco-2 cell lysis, cell rounding and IL-8 secretion. Glycan array comparison between the V. parahaemolyticus wild type and MSHA deficient mutants identified lectin functionality for the MSHA pilus with specificity towards the fucosylated blood group oligosaccharide antigens Lewis A and X and blood groups A and B. The MSHA pilus also exhibited high affinity for the structurally related asialo-GM1 ganglioside, lacto-N-fucopentaose I and lacto-N-difucohexaose I. We hypothesize that these glycans act as receptors for the MSHA pilus in the gastrointestinal tract, thereby facilitating efficient colonization of the intestinal epithelium by V. parahaemolyticus.


Subject(s)
Bacterial Adhesion , Bacterial Secretion Systems , Fimbriae Proteins/metabolism , Hemagglutinins/metabolism , Mannose-Binding Lectin/metabolism , Vibrio parahaemolyticus/physiology , Virulence Factors/metabolism , Blood Group Antigens/metabolism , Caco-2 Cells , DNA Mutational Analysis , Epithelial Cells/microbiology , Humans , Polysaccharides/metabolism , Protein Binding , Vibrio parahaemolyticus/metabolism , Vibrio parahaemolyticus/pathogenicity
15.
Food Res Int ; 164: 112416, 2023 02.
Article in English | MEDLINE | ID: mdl-36737995

ABSTRACT

Human milk fat globule membrane (MFGM) and whey proteins are nutritionally and functionally valuable, with many beneficial bioactivities associated with their glycosylation. However glycosylation of milk components other than free milk oligosaccharides are underinvestigated. Whey protein concentrate (WPC) ingredients with various enrichments or depletions are used in infant formula (IF) formulations to contribute to human milk equivalence and bioactivity benefits, but their overall or global glycosylation has not been compared. We compared the global glycosylation of commercial WPC ingredients for use in various IF formulations; two MFGM-enriched WPC ingredients (high fat HF1 and lower fat HF2), an α-lactalbumin-enriched WPC (WPC Lac) which has α-lactalbumin concentration closer to human milk and significantly less ß-lactoglobulin which is not present in human milk, and two base WPC ingredients (WPC 80 and WPC 35) using lectin microarray profiling. WPC Lac and WPC HF1 glycosylation were highly similar to each other and both somewhat similar to WPC 35, while WPC HF2 was more similar to the base WPC 80 ingredient. N-linked glycosylation analysis demonstrated that WPC HF1 and WPC Lac were qualitatively most similar to one another, with WPC 80 and WPC 35 having similar structures, confirming lectin microarray profiling as a valuable method to compare global glycosylation. Thus WPC Lac may be a valuable ingredient for providing equivalent glycosylation to MFGM supplementation.


Subject(s)
Lactalbumin , Lectins , Infant , Humans , Whey Proteins/chemistry , Glycosylation
16.
CNS Neurosci Ther ; 29(1): 429-444, 2023 01.
Article in English | MEDLINE | ID: mdl-36377513

ABSTRACT

INTRODUCTION: Glycosylation plays a critical role during inflammation and glial scar formation upon spinal cord injury (SCI) disease progression. Astrocytes and microglia are involved in this cascade to modulate the inflammation and tissue remodeling from acute to chronic phases. Therefore, understating the glycan changes in these glial cells is paramount. METHOD AND RESULTS: A lectin microarray was undertaken using a cytokine-driven inflammatory mixed glial culture model, revealing considerable differential glycosylation from the acute to the chronic phase in a cytokine-combination generated inflamed MGC model. It was found that several N- and O-linked glycans associated with glia during SCI were differentially regulated. Pearson's correlation hierarchical clustering showed that groups were separated into several clusters, illustrating the heterogenicity among the control, cytokine combination, and LPS treated groups and the day on which treatment was given. Control and LPS treatments were observed to be in dense clusters. This was further confirmed with lectin immunostaining in which GalNAc, GlcNAc, mannose, fucose and sialic acid-binding residues were detected in astrocytes and microglia. However, the sialyltransferase inhibitor inhibited this modification (upregulation of the sialic acid expression), which indeed modulates the mitochondrial functions. CONCLUSIONS: The present study is the first functional investigation of glycosylation modulation in a mixed glial culture model, which elucidates the role of the glycome in neuroinflammation in progression and identified potential therapeutic targets for future glyco therapeutics in neuroinflammation.


Subject(s)
Lipopolysaccharides , Spinal Cord Injuries , Humans , Lipopolysaccharides/toxicity , Glycosylation , Neuroinflammatory Diseases , N-Acetylneuraminic Acid , Neuroglia/physiology , Inflammation/drug therapy , Inflammation/metabolism , Spinal Cord Injuries/metabolism , Cytokines/metabolism , Lectins/metabolism
17.
Adv Sci (Weinh) ; 10(27): e2301352, 2023 09.
Article in English | MEDLINE | ID: mdl-37518828

ABSTRACT

The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.


Subject(s)
Gliosis , Ion Channels , Rats , Animals , Ion Channels/metabolism , Ion Channels/pharmacology , Neuroglia/metabolism , Astrocytes/metabolism , Electrodes
18.
PLoS One ; 18(3): e0283537, 2023.
Article in English | MEDLINE | ID: mdl-36996259

ABSTRACT

Zoonotic spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans in December 2019 caused the coronavirus disease 2019 (COVID-19) pandemic. Serological monitoring is critical for detailed understanding of individual immune responses to infection and protection to guide clinical therapeutic and vaccine strategies. We developed a high throughput multiplexed SARS-CoV-2 antigen microarray incorporating spike (S) and nucleocapsid protein (NP) and fragments expressed in various hosts which allowed simultaneous assessment of serum IgG, IgA, and IgM responses. Antigen glycosylation influenced antibody binding, with S glycosylation generally increasing and NP glycosylation decreasing binding. Purified antibody isotypes demonstrated a binding pattern and intensity different from the same isotype in whole serum, probably due to competition from the other isotypes present. Using purified antibody isotypes from naïve Irish COVID-19 patients, we correlated antibody isotype binding to different panels of antigens with disease severity, with binding to the S region S1 expressed in insect cells (S1 Sf21) significant for IgG, IgA, and IgM. Assessing longitudinal response for constant concentrations of purified antibody isotypes for a patient subset demonstrated that the relative proportion of antigen-specific IgGs decreased over time for severe disease, but the relative proportion of antigen-specific IgA binding remained at the same magnitude at 5 and 9 months post-first symptom onset. Further, the relative proportion of IgM binding decreased for S antigens but remained the same for NP antigens. This may support antigen-specific serum IgA and IgM playing a role in maintaining longer-term protection, important for developing and assessing vaccine strategies. Overall, these data demonstrate the multiplexed platform as a sensitive and useful platform for expanded humoral immunity studies, allowing detailed elucidation of antibody isotypes response against multiple antigens. This approach will be useful for monoclonal antibody therapeutic studies and screening of donor polyclonal antibodies for patient infusions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Immunoglobulin M , Antibodies, Viral , Immunoglobulin G , Nucleocapsid Proteins , Immunoglobulin A , Patient Acuity , Spike Glycoprotein, Coronavirus
19.
Anal Chem ; 84(7): 3330-8, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22390135

ABSTRACT

Mucins are the principal components of mucus, and mucin glycosylation has important roles in defense, microbial adhesion, immunomodulation, inflammation, and cancer. Mucin expression and glycosylation are dynamic, responding to changes in local environment and disease. Potentially hundreds of heterogeneous glycans can substitute one mucin molecule, and it is difficult to identify biologically accessible glyco-epitopes. Thirty-seven mucins, from the reproductive and gastrointestinal (GI) tracts of six species (bovine, ovine, equine, porcine, chicken, and deer) and from two human-derived cell lines, were purified. Following optimization of mucin printing and construction of a novel mucin microarray, the glycoprofiles of the whole mucins on the microarray were compared using a panel of lectins and one antibody. Accessible glyco-motifs of GI mucins varied according to species and localization of mucin origin, with terminal fucose, the sialyl T-antigen, and N-linked oligosaccharides identified as potentially important. The occurrence of T- and sialyl T-antigen varied in bovine and ovine reproductive tract mucins, and terminal N-acetylgalactosamine (GalNAc) and sulfated carbohydrates were detected. This study introduces natural mucin microarrays as an effective tool for profiling mucin glyco-epitopes and highlights their potential for discovery of biologically important motifs in bacterial-host interactions and fertility.


Subject(s)
Epitopes , Mucins/chemistry , Mucins/metabolism , Protein Array Analysis/methods , Animals , Cattle , Cell Line , Gastrointestinal Tract/metabolism , Glycosylation , Humans , Monosaccharides/analysis , Printing
20.
Biochem Biophys Res Commun ; 420(3): 616-22, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22465128

ABSTRACT

Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually α-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining, and by day 8 in the case of WFA. This study demonstrated neuronal cell surface glycosylation changes in an inhibitory environment and indicated a return to normal glycosylation after treatment with ChABC, which may be promising for identifying potential therapies for neuronal regeneration strategies.


Subject(s)
Chondroitin ABC Lyase/pharmacology , Nerve Regeneration/drug effects , Neurons/drug effects , Neurons/physiology , Animals , Antigens/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/physiology , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Coculture Techniques , Glycosylation , Lectins/genetics , Neurons/metabolism , PC12 Cells , Proteoglycans/antagonists & inhibitors , Proteoglycans/pharmacology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL