Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Acta Pharmacol Sin ; 45(5): 1002-1018, 2024 May.
Article in English | MEDLINE | ID: mdl-38225395

ABSTRACT

Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 µM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Forkhead Box Protein O3 , Mice, Inbred C57BL , Pulmonary Fibrosis , Sirtuin 3 , Xanthones , Animals , Xanthones/pharmacology , Xanthones/therapeutic use , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Sirtuin 3/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Forkhead Box Protein O3/metabolism , Male , Humans , Mice , AMP-Activated Protein Kinases/metabolism , Epithelial-Mesenchymal Transition/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Streptozocin , Signal Transduction/drug effects , Endothelial-Mesenchymal Transition
2.
Mil Med Res ; 11(1): 32, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812059

ABSTRACT

Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.


Subject(s)
Mitochondria , Mitophagy , Humans , Mitochondria/metabolism , Mitochondria/physiology , Mitophagy/physiology , Mitophagy/drug effects , Mitochondrial Dynamics/physiology
3.
Front Oncol ; 14: 1393650, 2024.
Article in English | MEDLINE | ID: mdl-38737904

ABSTRACT

Objectives: To investigate the role of MRI measurements of peri-prostatic adipose tissue (PPAT) in predicting bone metastasis (BM) in patients with newly diagnosed prostate cancer (PCa). Methods: We performed a retrospective study on 156 patients newly diagnosed with PCa by prostate biopsy between October 2010 and November 2022. Clinicopathologic characteristics were collected. Measurements including PPAT volume and prostate volume were calculated by MRI, and the normalized PPAT (PPAT volume/prostate volume) was computed. Independent predictors of BM were determined by univariate and multivariate logistic regression analysis, and a new nomogram was developed based on the predictors. Receiver operating characteristic (ROC) curves were used to estimate predictive performance. Results: PPAT and normalized PPAT were associated with BM (P<0.001). Normalized PPAT positively correlated with clinical T stage(cT), clinical N stage(cN), and Grading Groups(P<0.05). The results of ROC curves indicated that PPAT and normalized PPAT had promising predictive value for BM with the AUC of 0.684 and 0.775 respectively. Univariate and multivariate analysis revealed that high normalized PPAT, cN, and alkaline phosphatase(ALP) were independently predictors of BM. The nomogram was developed and the concordance index(C-index) was 0.856. Conclusions: Normalized PPAT is an independent predictor for BM among with cN, and ALP. Normalized PPAT may help predict BM in patients with newly diagnosed prostate cancer, thus providing adjunctive information for BM risk stratification and bone scan selection.

4.
Food Funct ; 14(9): 4430-4439, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37098734

ABSTRACT

Research on fat substitutes with low calories and good flavor is important to reduce the fat content in food. In this paper, the selection of fat substitutes and the preparation of low-fat ice cream were carried out through looking at the emulsion properties of the enzymatic hydrolysis of zein. The results showed that the emulsifying activity of zein after enzymatic hydrolysis for 10 min was 66.76 m2 g-1, and the emulsifying stability was 78.51 min, showing the best emulsifying properties. Enzymatic hydrolysis of zein can effectively reduce the degree of lipid oxidation. The protein digestibility in intestinal juice was also significantly improved, and the release rate of free fatty acids in the emulsion reached more than 80%. The viscosity, shear stress, elastic modulus, electronic nose and electronic tongue of ice cream with 10% oil substitute were close to those of full-fat ice cream. It is expected to provide a basis for the development of functional foods.


Subject(s)
Fat Substitutes , Ice Cream , Zein , Emulsions , Subtilisins
5.
Food Chem ; 406: 135095, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36463600

ABSTRACT

Binding to phenolics can improve the functional properties of proteins. Changes in structure, functional properties, and antigenicity of ß-lactoglobulin (ß-LG) after covalent conjugation with ferulic acid (FA) at different mass ratios were reported here. The results of SDS-PAGE and gel exclusion chromatography confirmed that covalent complexes were formed. When the mass ratio of ß-LG and FA was 10:6, the binding content of FA was the highest. Fluorescence spectroscopy, UV-visible absorption spectrometry, and FTIR analysis showed that the structure of the complexes was more stretched compared to native ß-LG. The addition of FA significantly improved the emulsifying property of ß-LG. When the mass ratio was 10:6, the radical scavenging activities of DPPH and ABTS reached 65.06% and 88.22%, respectively, and the antigenicity of ß-LG reduced by about 35%. This study provides novel ß-LG-FA complexes in food systems to reduce the antigenicity of ß-LG and improve functional properties.


Subject(s)
Antigens , Lactoglobulins , Lactoglobulins/chemistry , Coumaric Acids , Spectrometry, Fluorescence
6.
Int J Biol Macromol ; 244: 125479, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37336374

ABSTRACT

Reduced-fat food has become a popular choice among contemporary consumers. This study aims to develop a starch-based fat substitute and incorporate it into reduced-fat milk gel acidified with glucono-δ-lactone (GDL) to achieve similar rheological properties as a full-fat gel. The gel properties of the fat substitute were assessed. The study examined the rheological properties, syneresis, textural properties and microstructure of acidified milk gels while also monitoring acidification process. Starch hydrolysates with low dextrose equivalent (DE) (<5.1 %) can serve as an effective fat substitute due to their excellent gelling properties The rheological and textural properties of the reduced-fat acidified milk gel with DE at 3.1 % of starch hydrolysate and 30 % fat substitution are similar to those of the full-fat milk gel. The syneresis and confocal laser scanning microscopy (CLSM) results indicated that the microstructure of the reduced-fat acidified milk gel was similar to the full-fat version. Moreover, the sensory properties of the reduced-fat acidified milk gel were acceptable when the DE was 3.1 %, and 30 % fat was replaced. In our study, we utilized hydrolyzed starch to produce reduced-fat acidified milk gels, which could potentially be used in the development of reduced-fat yogurt formulations.


Subject(s)
Fat Substitutes , Milk , Animals , Milk/chemistry , Fat Substitutes/analysis , Zea mays , Hydrogen-Ion Concentration , Gels/chemistry , Rheology , Starch/analysis
7.
Food Res Int ; 169: 112882, 2023 07.
Article in English | MEDLINE | ID: mdl-37254330

ABSTRACT

The development of food-derived Xanthine Oxidase (XO) inhibitors is critical to the treatment of hyperuricemia and oxidative stress-related disease. Few studies report on milk protein hydrolysates' XO inhibitory activity, with the mechanism of their interaction remaining elusive. Here, different commercial enzymes were used to hydrolyze α-lactalbumin and bovine colostrum casein. The two proteins hydrolyzed by alkaline protease exhibited the most potent XO inhibitory activity (bovine casein: IC50 = 0.13 mg mL-1; α-lactalbumin: IC50 = 0.28 mg mL-1). Eight potential XO inhibitory peptides including VYPFPGPI, GPVRGPFPIIV, VYPFPGPIPN, VYPFPGPIHN, QLKRFSFRSFIWR, LVYPFPGPIHN, AVFPSIVGR, and GFININSLR (IC50 of 4.67-8.02 mM) were purified and identified from alkaline protease hydrolysates by using gel filtration, LC-MS/MS and PeptideRanker. The most important role of inhibiting activity of peptides is linked to hydrophobic interactions and hydrogen bonding based on the results of molecular docking and molecular dynamics simulation. The enzymatic hydrolysate of α-lactalbumin and bovine colostrum casein could be a competitive candidates for hyperuricemia-resisting functional food.


Subject(s)
Hyperuricemia , Lactalbumin , Animals , Cattle , Female , Pregnancy , Lactalbumin/chemistry , Xanthine Oxidase , Caseins/chemistry , Chromatography, Liquid , Colostrum , Molecular Docking Simulation , Tandem Mass Spectrometry , Peptides/chemistry , Enzyme Inhibitors/pharmacology
8.
World Neurosurg ; 114: 217-227, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29602008

ABSTRACT

BACKGROUND: Minimally invasive surgery of posterior cervical foraminotomy (PCF) for symptomatic radiculopathy has gained popularity in the last decade. It remains to be determined whether the 2 dominant operation techniques, full-endoscopic (FE) or microendoscopic (MI), are associated with fewer complications. METHODS: An electronic retrieval from PubMed, Embase, and Web of Science was performed to identify comparative or single-arm studies concerning FE-PCF and MI-PCF. The pooled incidence of complications was calculated. RESULTS: A total of 26 studies with 2028 patients (FE, 402; MI, 1626) were identified. The overall complication rate was 5.8% for FE-PCF and 3.5% for MI-PCF, with no significant difference (P = 0.115). The pooled complication rate for single-level radiculopathy showed no statistical difference (FE, 4.5%; MI, 3.5%; P = 0.471), either. However, constituent of complications showed apparent disparity, with transient root palsy in FE-PCF (15/19, 78.9%) and dural tear (20/47, 42.6%) in MI-PCF being the most commonly reported. As for the subgroup analysis, both incidence of dural tear (FE, 1.5%; MI, 1.8%; P = 0.672) and superficial wound infection (FE, 2.2%; MI, 1.0%; P = 0.109) showed no statistical difference. Nevertheless, transient root palsy occurred at a higher incidence in the FE group than in the MI group (FE, 4.5%; MI, 1.5%; P = 0.002). CONCLUSIONS: Both FE-PCF and MI-PCF can offer relatively safe treatment for cervical radiculopathy. There is no significant difference in overall complication rate between the 2 techniques. Dural tear is the most commonly reported complication of MI-PCF, whereas transient root palsy deserves to be noticed for surgeons performing FE-PCF.


Subject(s)
Cervical Vertebrae/surgery , Foraminotomy/adverse effects , Microsurgery/adverse effects , Neuroendoscopy/adverse effects , Postoperative Complications/etiology , Radiculopathy/surgery , Cervical Vertebrae/pathology , Foraminotomy/methods , Humans , Microsurgery/methods , Minimally Invasive Surgical Procedures/adverse effects , Minimally Invasive Surgical Procedures/methods , Neuroendoscopy/methods , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Radiculopathy/diagnosis , Randomized Controlled Trials as Topic/methods
9.
Bing Du Xue Bao ; 29(1): 26-31, 2013 Jan.
Article in Zh | MEDLINE | ID: mdl-23547376

ABSTRACT

To construct a recombinant replication-defective human adenovirus type 5 expressing Cap protein of PCV2 and test the immunological efficacy in mice. In this study, the recombinant replication-defective human adenovirus type 5, named as rAd5-Cap (wt-rAd5), was constructed through homologous recombination internally in the HEK293AD cells after co-transfection of the Pac I-linearized backbone plasmid and the shuttle plasmid pacAd5CMV-Cap containing the open reading frame (ORF2) of the porcine circovirus type 2 (PCV2) cap protein or pacAd5CMV without inserted fragment. Furthermore, the rAd5-Cap could induce the expression of PCV2 cap protein in the HEK293AD cells with high efficacy evaluated by the RT-PCR and indirect immunofluorescence assay (IFA). The virus titer of rAd5-Cap could reach up to 10(8.5) TCID50/mL similarly to that of wt-rAd5, indicating that there was little affect on the virus proliferation after the insertion of PCV2 cap protein gene. The humeral immune responses could be activated and detected 14 days after the inoculation of the mice with 10(7) TCID50 rAd5-Cap intramuscularly, and constantly in crease in another 14 days. These molecular biological and animal experiments results demonstrated that the PCV2 cap protein could be efficiently expressed by the recombinant adenovirus rAd5-Cap in eukaryotic cells and induce robust immune responses in mice, which laid a good foundation for the development of new type vaccine against porcine circovirus.


Subject(s)
Adenoviruses, Human/genetics , Capsid Proteins/genetics , Circovirus/immunology , Defective Viruses/genetics , Recombinant Proteins/biosynthesis , Animals , Antibodies, Viral/blood , Capsid Proteins/immunology , HEK293 Cells , Humans , Mice , Recombinant Proteins/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL