Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Bioorg Med Chem Lett ; 42: 128046, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33865969

ABSTRACT

PI3K-δ mediates key immune cell signaling pathways and is a target of interest for treatment of oncological and immunological disorders. Here we describe the discovery and optimization of a novel series of PI3K-δ selective inhibitors. We first identified hits containing an isoindolinone scaffold using a combined ligand- and receptor-based virtual screening workflow, and then improved potency and selectivity guided by structural data and modeling. Careful optimization of molecular properties led to compounds with improved permeability and pharmacokinetic profile, and high potency in a whole blood assay.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Drug Discovery , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phthalimides/pharmacology , Class I Phosphatidylinositol 3-Kinases/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phthalimides/chemical synthesis , Phthalimides/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 47: 128214, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34166782

ABSTRACT

A novel series of IDO1 inhibitors have been identified with good IDO1 Hela cell and human whole blood activity. These inhibitors contain an indoline or a 3-azaindoline scaffold. Their structure-activity-relationship studies have been explored. Compounds 37 and 41 stood out as leads due to their good potency in IDO1 Hela assay, good IDO1 unbound hWB IC50s, reasonable unbound clearance, and good MRT in rat and dog PK studies.


Subject(s)
Aza Compounds/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacology , Animals , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Dogs , Dose-Response Relationship, Drug , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoles/chemical synthesis , Indoles/chemistry , Male , Molecular Structure , Rats , Rats, Wistar , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 30(1): 126715, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31757666

ABSTRACT

A high-throughput screening (HTS) campaign identified a class of heteroaryl piperazines with excellent baseline affinity and selectivity for phosphoinositide 3-kinase δ (PI3Kδ) over closely related isoforms. Rapid evaluation and optimization of structure-activity relationships (SAR) for this class, leveraging the modular nature of this scaffold, facilitated development of this hit class into a series of potent and selective inhibitors of PI3Kδ. This effort culminated in the identification of 29, which displayed excellent potency in enzyme and cell-based assays, as well as favorable pharmacokinetic and off-target profiles.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , High-Throughput Screening Assays/methods , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Humans , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 29(18): 2575-2580, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31416665

ABSTRACT

PI3Kδ mediates key immune cell signaling pathways and is a target of interest for multiple indications in immunology and oncology. Here we report a structure-based scaffold-hopping strategy for the design of chemically diverse PI3Kδ inhibitors. Using this strategy, we identified several scaffolds that can be combined to generate new PI3Kδ inhibitors with high potency and isoform selectivity. In particular, an oxindole-based scaffold was found to impart exquisite selectivity when combined with several hinge binding motifs.


Subject(s)
Drug Design , Oxindoles/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Binding Sites/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Oxindoles/chemical synthesis , Oxindoles/chemistry , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Structure-Activity Relationship
6.
J Am Chem Soc ; 135(5): 1891-4, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23321009

ABSTRACT

A highly enantio- and diastereoselective synthesis of indolo- and benzoquinolizidine compounds has been developed through the formal aza-Diels-Alder reaction of enones with cyclic imines. This transformation is catalyzed by a new bifunctional primary aminothiourea that achieves simultaneous activation of both the enone and imine reaction components.


Subject(s)
Aza Compounds/chemistry , Imines/chemistry , Ketones/chemistry , Quinolizidines/chemical synthesis , Thiourea/analogs & derivatives , Catalysis , Molecular Structure , Quinolizidines/chemistry , Stereoisomerism , Thiourea/chemistry
7.
J Med Chem ; 65(8): 6001-6016, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35239336

ABSTRACT

3,3-Disubstituted oxetanes have been utilized as bioisosteres for gem-dimethyl and cyclobutane functionalities. We report the discovery of a novel class of oxetane indole-amine 2,3-dioxygenase (IDO1) inhibitors suitable for Q3W (once every 3 weeks) oral and parenteral dosing. A diamide class of IDO inhibitors was discovered through an automated ligand identification system (ALIS). Installation of an oxetane and fluorophenyl dramatically improved the potency. Identification of a biaryl moiety as an unconventional amide isostere addressed the metabolic liability of amide hydrolysis. Metabolism identification (Met-ID)-guided target design and the introduction of polarity resulted in the discovery of potent IDO inhibitors with excellent pharmacokinetic (PK) profiles in multiple species. To enable rapid synthesis of the key oxetane intermediate, a novel oxetane ring cyclization was also developed, as well as optimization of a literature route on kg scale. These IDO inhibitors may enable unambiguous proof-of-concept testing for the IDO1 inhibition mechanism for oncology.


Subject(s)
Enzyme Inhibitors , Ethers, Cyclic , Amides , Cyclization , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
8.
J Med Chem ; 64(8): 5137-5156, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33797901

ABSTRACT

The approvals of idelalisib and duvelisib have validated PI3Kδ inhibitors for the treatment for hematological malignancies driven by the PI3K/AKT pathway. Our program led to the identification of structurally distinct heterocycloalkyl purine inhibitors with excellent isoform and kinome selectivity; however, they had high projected human doses. Improved ligand contacts gave potency enhancements, while replacement of metabolic liabilities led to extended half-lives in preclinical species, affording PI3Kδ inhibitors with low once-daily predicted human doses. Treatment of C57BL/6-Foxp3-GDL reporter mice with 30 and 100 mg/kg/day of 3c (MSD-496486311) led to a 70% reduction in Foxp3-expressing regulatory T cells as observed through bioluminescence imaging with luciferin, consistent with the role of PI3K/AKT signaling in Treg cell proliferation. As a model for allergic rhinitis and asthma, treatment of ovalbumin-challenged Brown Norway rats with 0.3 to 30 mg/kg/day of 3c gave a dose-dependent reduction in pulmonary bronchoalveolar lavage inflammation eosinophil cell count.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/chemistry , Immunologic Factors/chemistry , Pyrrolidines/chemistry , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Binding Sites , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Dogs , Half-Life , Humans , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Lectins, C-Type/metabolism , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Proto-Oncogene Proteins c-akt/metabolism , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Rats , Rats, Wistar , Rhinitis, Allergic/drug therapy , Signal Transduction/drug effects , Structure-Activity Relationship
9.
ACS Med Chem Lett ; 11(12): 2461-2469, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33335668

ABSTRACT

The 3,3-disubstituted oxindole moiety is a versatile and rigid three-dimensionally shaped scaffold. When engineered with a purine hinge-binding core, exceptionally selective PI3Kδ kinase inhibitors were discovered by exploiting small differences in isoform selectivity pockets. Crystal structures of early lead 2f bound to PI3Kδ and PI3Kα helped rationalize the high selectivity observed with 2f. By attenuating the lypophilicity and metabolic liabilities of an oxindole moiety, we improved the preclinical species PK and solubility and reduced adenosine uptake activity. The excellent potency and kinome selectivity of 7-azaoxindole 4d and spirooxindole 5d, together with a low plasma clearance and good half-life in rat and dog, supported a low once-daily predicted human dose.

10.
ACS Med Chem Lett ; 11(8): 1548-1554, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32832022

ABSTRACT

Indoleamine-2,3-dioxygenase 1 (IDO1) inhibition and its combination with immune checkpoint inhibitors like pembrolizumab have drawn considerable attention from both academia and the pharmaceutical industry. Here, we describe the discovery of a novel class of highly potent IDO1 heme-displacing inhibitors featuring a unique bicyclo[1.1.1]pentane motif. Compound 1, evolving from an ALIS (automated ligand identification system) hit, exhibited excellent potency but lacked the desired pharmacokinetic profile due to extensive amide hydrolysis of the benzamide moiety. Replacing the central phenyl ring in 1 with a bicyclo[1.1.1]pentane bioisostere effectively circumvented the amide hydrolysis issue, resulting in the discovery of compound 2 with a favorable overall profile such as excellent potency, selectivity, pharmacokinetics, and a low predicted human dose.

11.
ACS Med Chem Lett ; 11(4): 550-557, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32292563

ABSTRACT

Indoleamine-2,3-dioxygenase-1 (IDO1) has emerged as a target of significant interest to the field of cancer immunotherapy, as the upregulation of IDO1 in certain cancers has been linked to host immune evasion and poor prognosis for patients. In particular, IDO1 inhibition is of interest as a combination therapy with immune checkpoint inhibition. Through an Automated Ligand Identification System (ALIS) screen, a diamide class of compounds was identified as a promising lead for the inhibition of IDO1. While hit 1 possessed attractive cell-based potency, it suffered from a significant right-shift in a whole blood assay, poor solubility, and poor pharmacokinetic properties. Through a physicochemical property-based approach, including a focus on lowering AlogP98 via the strategic introduction of polar substitution, compound 13 was identified bearing a pyridyl oxetane core. Compound 13 demonstrated improved whole blood potency and solubility, and an improved pharmacokinetic profile resulting in a low predicted human dose.

12.
J Med Chem ; 62(9): 4370-4382, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30986068

ABSTRACT

PI3Kδ catalytic activity is required for immune cell activation, and has been implicated in inflammatory diseases as well as hematological malignancies in which the AKT pathway is overactive. A purine PI3Kδ inhibitor bearing a benzimidazolone-piperidine motif was found to be poorly tolerated in dog, which was attributed to diffuse vascular injury. Several strategies were implemented to mitigate this finding, including reconstruction of the benzimidazolone-piperidine selectivity motif. Structure-based design led to the identification of O- and N-linked heterocycloalkyls, with pyrrolidines being particularly ligand efficient and kinome selective, and having an improved safety pharmacology profile. A representative was advanced into a dog tolerability study where it was found to be well tolerated, with no histopathological evidence of vascular injury.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyrrolidines/pharmacology , Animals , Dogs , Drug Design , HeLa Cells , Humans , Male , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/toxicity , Purines/chemical synthesis , Purines/toxicity , Pyrrolidines/chemical synthesis , Pyrrolidines/toxicity , Rats, Wistar
13.
ACS Med Chem Lett ; 10(11): 1530-1536, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749906

ABSTRACT

Checkpoint inhibitors have demonstrated unprecedented efficacy and are evolving to become standard of care for certain types of cancers. However, low overall response rates often hamper the broad utility and potential of these breakthrough therapies. Combination therapy strategies are currently under intensive investigation in the clinic, including the combination of PD-1/PD-L1 agents with IDO1 inhibitors. Here, we report the discovery of a class of IDO1 heme-binding inhibitors featuring a unique amino-cyclobutarene motif, which was discovered through SBDD from a known and weakly active inhibitor. Subsequent optimization efforts focused on improving metabolic stability and were greatly accelerated by utilizing a robust SNAr reaction of a facile nitro-furazan intermediate to quickly explore different polar side chains. As a culmination of these efforts, compound 16 was identified and demonstrated a favorable overall profile with superior potency and selectivity. Extensive studies confirmed the chemical stability and drug-like properties of compound 16, rendering it a potential drug candidate.

15.
Org Lett ; 15(3): 706-9, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23331099

ABSTRACT

A catalytic, enantioselective synthesis of (+)-reserpine is reported. The route features a highly diastereoselective, chiral catalyst-controlled formal aza-Diels-Alder reaction between a 6-methoxytryptamine-derived dihydro-ß-carboline and an enantioenriched α-substituted enone to form a key tetracyclic intermediate. This approach addresses the challenge of setting the C3 stereogenic center by using catalyst control. Elaboration of the tetracycle to (+)-reserpine includes an intramolecular aldol cyclization and a highly diastereoselective hydrogenation of a sterically hindered enoate.


Subject(s)
Reserpine/chemical synthesis , Carbolines , Catalysis , Cyclization , Molecular Structure , Reserpine/chemistry , Stereoisomerism
16.
Org Lett ; 14(6): 1432-5, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22394197

ABSTRACT

A method for the Pd-catalyzed coupling of 2-aminothiazole derivatives with aryl bromides and triflates is described. Significantly, for this class of nucleophiles, the coupling exhibits a broad substrate scope and proceeds with a reasonable catalyst loading. Furthermore, an interesting effect of acetic acid as an additive is uncovered that facilitates catalyst activation.


Subject(s)
Palladium/chemistry , Thiazoles/chemistry , Catalysis , Hydrocarbons, Brominated/chemistry , Mesylates/chemistry , Molecular Structure
17.
Org Lett ; 14(14): 3800-3, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22765354

ABSTRACT

A method for the Pd-catalyzed N-arylation of both aryl and alkyl amidines with a wide range of aryl bromides, chlorides, and triflates is described. The reactions proceed in short reaction times and with excellent selectivity for monoarylation. A one-pot synthesis of quinazoline derivatives, via addition of an aldehyde to the crude reaction mixture following Pd-catalyzed N-arylation, is also demonstrated.


Subject(s)
Amidines/chemistry , Hydrocarbons, Halogenated/chemistry , Palladium/chemistry , Quinazolines/chemical synthesis , Catalysis , Molecular Structure , Quinazolines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL