Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters

Publication year range
1.
Nature ; 626(7999): 517-522, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356066

ABSTRACT

Lifted Kramers spin degeneracy (LKSD) has been among the central topics of condensed-matter physics since the dawn of the band theory of solids1,2. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology3-7 to topological quantum matter8-14. Traditionally, LKSD has been considered to originate from two possible internal symmetry-breaking mechanisms. The first refers to time-reversal symmetry breaking by magnetization of ferromagnets and tends to be strong because of the non-relativistic exchange origin15. The second applies to crystals with broken inversion symmetry and tends to be comparatively weaker, as it originates from the relativistic spin-orbit coupling (SOC)16-19. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic20,21, that allows for LKSD without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of LKSD generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization20-23. Our observation of the altermagnetic LKSD can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors20,21, that have been either identified recently or perceived for many decades as conventional antiferromagnets21,24,25.

2.
Nature ; 576(7787): 423-428, 2019 12.
Article in English | MEDLINE | ID: mdl-31853081

ABSTRACT

Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications1-8. The edge states are hosted by a magnetic energy gap at the Dirac point2, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC (ref. 8). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted9. Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap10. Mn-doped Bi2Se3 (ref. 11) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin-orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.

3.
Phys Rev Lett ; 125(21): 216404, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33274965

ABSTRACT

We performed angle-resolved photoemission spectroscopy (ARPES) of bulk 2H-WSe_{2} for different crystal orientations linked to each other by time-reversal symmetry. We introduce a new observable called time-reversal dichroism in photoelectron angular distributions (TRDAD), which quantifies the modulation of the photoemission intensity upon effective time-reversal operation. We demonstrate that the hidden orbital pseudospin texture leaves its imprint on TRDAD, due to multiple orbital interference effects in photoemission. Our experimental results are in quantitative agreement with both the tight-binding model and state-of-the-art fully relativistic calculations performed using the one-step model of photoemission. While spin-resolved ARPES probes the spin component of entangled spin-orbital texture in multiorbital systems, we unambiguously demonstrate that TRDAD reveals its orbital pseudospin texture counterpart.

4.
Phys Rev Lett ; 121(7): 077205, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169049

ABSTRACT

Femtosecond laser excitations in half-metal (HM) compounds are theoretically predicted to induce an exotic picosecond spin dynamics. In particular, conversely to what is observed in conventional metals and semiconductors, the thermalization process in HMs leads to a long living partially thermalized configuration characterized by three Fermi-Dirac distributions for the minority, majority conduction, and majority valence electrons, respectively. Remarkably, these distributions have the same temperature but different chemical potentials. This unusual thermodynamic state is causing a persistent nonequilibrium spin polarization only well above the Fermi energy. Femtosecond spin dynamics experiments performed on Fe_{3}O_{4} by time- and spin-resolved photoelectron spectroscopy support our model. Furthermore, the spin polarization response proves to be very robust and it can be adopted to selectively test the bulk HM character in a wide range of compounds.

5.
Phys Rev Lett ; 114(23): 237601, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26196827

ABSTRACT

Electronic structure of the three-dimensional colossal magnetoresistive perovskite La(1-x)Sr(x)MnO3 has been established using soft-x-ray angle-resolved photoemission spectroscopy with its intrinsically sharp definition of three-dimensional electron momentum. The experimental results show much weaker polaronic coupling compared to the bilayer manganites and are consistent with the theoretical band structure including the empirical Hubbard parameter U. The experimental Fermi surface unveils the canonical topology of alternating three-dimensional electron spheres and hole cubes, with their shadow contours manifesting the rhombohedral lattice distortion. This picture has been confirmed by one-step photoemission calculations including displacement of the apical oxygen atoms. The rhombohedral distortion is neutral to the Jahn-Teller effect and thus polaronic coupling, but affects the double-exchange electron hopping and thus the colossal magnetoresistance effect.

6.
Phys Rev Lett ; 114(9): 097401, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793848

ABSTRACT

The prospect of optically inducing and controlling a spin-polarized current in spintronic devices has generated wide interest in the out-of-equilibrium electronic and spin structure of topological insulators. In this Letter we show that only measuring the spin intensity signal over several orders of magnitude by spin-, time-, and angle-resolved photoemission spectroscopy can provide a comprehensive description of the optically excited electronic states in Bi_{2}Se_{3}. Our experiments reveal the existence of a surface resonance state in the second bulk band gap that is benchmarked by fully relativistic ab initio spin-resolved photoemission calculations. We propose that the newly reported state plays a major role in the ultrafast dynamics of the system, acting as a bottleneck for the interaction between the topologically protected surface state and the bulk conduction band. In fact, the spin-polarization dynamics in momentum space show that these states display macroscopically different temperatures and, more importantly, different cooling rates over several picoseconds.

7.
Phys Rev Lett ; 113(8): 086801, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25192117

ABSTRACT

Using angle-resolved photoemission spectroscopy, we show that the recently discovered surface state on SrTiO(3) consists of nondegenerate t(2g) states with different dimensional characters. While the d(xy) bands have quasi-2D dispersions with weak k(z) dependence, the lifted d(xz)/d(yz) bands show 3D dispersions that differ significantly from bulk expectations and signal that electrons associated with those orbitals permeate the near-surface region. Like their more 2D counterparts, the size and character of the d(xz)/d(yz) Fermi surface components are essentially the same for different sample preparations. Irradiating SrTiO(3) in ultrahigh vacuum is one method observed so far to induce the "universal" surface metallic state. We reveal that during this process, changes in the oxygen valence band spectral weight that coincide with the emergence of surface conductivity are disproportionate to any change in the total intensity of the O 1s core level spectrum. This signifies that the formation of the metallic surface goes beyond a straightforward chemical doping scenario and occurs in conjunction with profound changes in the initial states and/or spatial distribution of near-E(F) electrons in the surface region.

8.
Nat Mater ; 11(11): 957-62, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23064495

ABSTRACT

A detailed understanding of the origin of the magnetism in dilute magnetic semiconductors is crucial to their development for applications. Using hard X-ray angle-resolved photoemission (HARPES) at 3.2 keV, we investigate the bulk electronic structure of the prototypical dilute magnetic semiconductor Ga(0.97)Mn(0.03)As, and the reference undoped GaAs. The data are compared to theory based on the coherent potential approximation and fully relativistic one-step-model photoemission calculations including matrix-element effects. Distinct differences are found between angle-resolved, as well as angle-integrated, valence spectra of Ga(0.97)Mn(0.03)As and GaAs, and these are in good agreement with theory. Direct observation of Mn-induced states between the GaAs valence-band maximum and the Fermi level, centred about 400 meV below this level, as well as changes throughout the full valence-level energy range, indicates that ferromagnetism in Ga(1-x)Mn(x)As must be considered to arise from both p-d exchange and double exchange, thus providing a more unifying picture of this controversial material.

9.
Phys Rev Lett ; 110(21): 216801, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745908

ABSTRACT

The helical Dirac fermions at the surface of topological insulators show a strong circular dichroism which has been explained as being due to either the initial-state spin angular momentum, the initial-state orbital angular momentum, or the handedness of the experimental setup. All of these interpretations conflict with our data from Bi(2)Te(3) which depend on the photon energy and show several sign changes. Our one-step photoemission calculations coupled to ab initio theory confirm the sign change and assign the dichroism to a final-state effect. Instead, the spin polarization of the photoelectrons excited with linearly polarized light remains a reliable probe for the spin in the initial state.

10.
Phys Rev Lett ; 111(9): 097201, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-24033065

ABSTRACT

We report high-resolution hard x-ray photoemission spectroscopy results on (Ga,Mn)As films as a function of Mn doping. Supported by theoretical calculations we identify, for both low (1%) and high (13%) Mn doping values, the electronic character of the states near the top of the valence band. Magnetization and temperature-dependent core-level photoemission spectra reveal how the delocalized character of the Mn states enables the bulk ferromagnetic properties of (Ga,Mn)As.

11.
Nat Commun ; 14(1): 4827, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563126

ABSTRACT

Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the photoemission final states. Our soft-X-ray ARPES data on Ag metal reveals, however, that even at high excitation energies the final states can be a way more complex, incorporating several Bloch waves with different out-of-plane momenta. Such multiband final states manifest themselves as a complex structure and added broadening of the spectral peaks from 3D electron states. We analyse the origins of this phenomenon, and trace it to other materials such as Si and GaN. Our findings are essential for accurate determination of the 3D band structure over a wide range of materials and excitation energies in the ARPES experiment.

12.
Ultramicroscopy ; 250: 113750, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178606

ABSTRACT

X-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of kll-distributions (momentum microscopy) presents a new approach to core-level photoemission. It yields full-field kx-ky XPD patterns with unprecedented acquisition speed and richness in details. Here, we show that beyond the pure diffraction information, XPD patterns exhibit pronounced circular dichroism in the angular distribution (CDAD) with asymmetries up to 80%, alongside with rapid variations on a small kll-scale (0.1 Å-1). Measurements with circularly-polarized hard X-rays (hν = 6 keV) for a number of core levels, including Si, Ge, Mo and W, prove that core-level CDAD is a general phenomenon that is independent of atomic number. The fine structure in CDAD is more pronounced compared to the corresponding intensity patterns. Additionally, they obey the same symmetry rules as found for atomic and molecular species, and valence bands. The CD is antisymmetric with respect to the mirror planes of the crystal, whose signatures are sharp zero lines. Calculations using both the Bloch-wave approach and one-step photoemission reveal the origin of the fine structure that represents the signature of Kikuchi diffraction. To disentangle the roles of photoexcitation and diffraction, XPD has been implemented into the Munich SPRKKR package to unify the one-step model of photoemission and multiple scattering theory.

13.
Nat Mater ; 10(10): 759-64, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21841798

ABSTRACT

Traditional ultraviolet/soft X-ray angle-resolved photoemission spectroscopy (ARPES) may in some cases be too strongly influenced by surface effects to be a useful probe of bulk electronic structure. Going to hard X-ray photon energies and thus larger electron inelastic mean-free paths should provide a more accurate picture of bulk electronic structure. We present experimental data for hard X-ray ARPES (HARPES) at energies of 3.2 and 6.0 keV. The systems discussed are W, as a model transition-metal system to illustrate basic principles, and GaAs, as a technologically-relevant material to illustrate the potential broad applicability of this new technique. We have investigated the effects of photon wave vector on wave vector conservation, and assessed methods for the removal of phonon-associated smearing of features and photoelectron diffraction effects. The experimental results are compared to free-electron final-state model calculations and to more precise one-step photoemission theory including matrix element effects.

14.
Phys Rev Lett ; 109(11): 117201, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-23005667

ABSTRACT

A spin reorientation accompanying the temperature-induced antiferromagnetic (AFM) to ferromagnetic (FM) phase transition is reported in strained epitaxial FeRh thin films. (57)Fe conversion electron Mössbauer spectrometry showed that the Fe moments have different orientations in FeRh grown on thick single-crystalline MgO and in FeRh grown on ion-beam-assist-deposited (IBAD) MgO. It was also observed, in both samples, that the Fe moments switch orientations at the AFM to FM phase transition. Perpendicular anisotropy was evidenced in the AFM phase of the film grown on IBAD MgO and in the FM phase of that grown on regular MgO. Density-functional theory calculations enabled this spin-reorientation transition to be accurately reproduced for both FeRh films across the AFM-FM phase transition and show that these results are due to differences in strain.

15.
ACS Nano ; 14(12): 17554-17564, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33236903

ABSTRACT

The coupling of real and momentum space is utilized to tailor electronic properties of the collinear metallic antiferromagnet Mn2Au by aligning the real space Néel vector indicating the direction of the staggered magnetization. Pulsed magnetic fields of 60 T were used to orient the sublattice magnetizations of capped epitaxial Mn2Au(001) thin films perpendicular to the applied field direction by a spin-flop transition. The electronic structure and its corresponding changes were investigated by angular-resolved photoemission spectroscopy with photon energies in the vacuum-ultraviolet, soft, and hard X-ray range. The results reveal an energetic rearrangement of conduction electrons propagating perpendicular to the Néel vector. They confirm previous predictions on the origin of the Néel spin-orbit torque and anisotropic magnetoresistance in Mn2Au and reflect the combined antiferromagnetic and spin-orbit interaction in this compound leading to inversion symmetry breaking.

16.
Phys Rev Lett ; 103(26): 267203, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-20366340

ABSTRACT

The strength of electronic correlation effects in the spin-dependent electronic structure of ferromagnetic bcc Fe(110) has been investigated by means of spin and angle-resolved photoemission spectroscopy. The experimental results are compared to theoretical calculations within the three-body scattering approximation and within the dynamical mean-field theory, together with one-step model calculations of the photoemission process. This comparison indicates that the present state of the art many-body calculations, although improving the description of correlation effects in Fe, give too small mass renormalizations and scattering rates thus demanding more refined many-body theories including nonlocal fluctuations.

17.
Med Vet Entomol ; 23(3): 284-6, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19712159

ABSTRACT

During a survey of mosquitoes in the South Moravian lowland area, the mosquito Anopheles hyrcanus (Pallas) (Diptera: Culicidae) was found breeding in an ancient fishpond (Nesyt). It is not clear whether this southern Palaearctic species, a known vector of malaria in Asia which has not been recorded in the Czech Republic until this year, has gone undetected in the past or whether it has recently moved into the region as a result of climate change.


Subject(s)
Anopheles/physiology , Water/parasitology , Animals , Climate , Czech Republic , Ecosystem , Female , Malaria/epidemiology , Malaria/parasitology , Male , Population Density , Seasons
18.
J Phys Condens Matter ; 31(28): 283001, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-30933942

ABSTRACT

The goal of the present review is to cross-compare theoretical predictions with selected experimental results on bismuth thin films exhibiting topological properties and a strong Rashba effect. The theoretical prediction that a single free-standing Bi(1 1 1) bilayer is a topological insulator has triggered a large series of studies of ultrathin Bi(1 1 1) films grown on various substrates. Using selected examples we review theoretical predictions of atomic and electronic structure of Bi thin films exhibiting topological properties due to interaction with a substrate. We also survey experimental signatures of topological surface states and Rashba effect, as obtained mostly by angle- and spin-resolved photoelectron spectroscopy.

19.
Ultramicroscopy ; 183: 19-29, 2017 12.
Article in English | MEDLINE | ID: mdl-28705441

ABSTRACT

The combination of momentum microscopy (high resolution imaging of the Fourier plane) with an imaging spin filter has recently set a benchmark in k-resolution and spin-detection efficiency. Here we show that the degree of parallelization can be further increased by time-of-flight energy recording. On the quest towards maximum information (in earlier work termed "complete" photoemission experiment) we have studied the prototypical high-Z fcc metal iridium. Large partial bandgaps and strong spin-orbit interaction lead to a sequence of spin-polarized surface resonances. Soft X-rays give access to the 4D spectral density function ρ (EB,kx,ky,kz) weighted by the photoemission cross section. The Fermi surface and all other energy isosurfaces, Fermi velocity distribution vF(kF), electron or hole conductivity, effective mass and inner potential can be obtained from the multi-dimensional array ρ by simple algorithms. Polarized light reveals the linear and circular dichroism texture in a simple manner and an imaging spin filter exposes the spin texture. One-step photoemission calculations are in fair agreement with experiment. Comparison of the Bloch spectral function with photoemission calculations uncovers that the observed high spin polarization of photoelectrons from bulk bands originates from the photoemission step and is not present in the initial state.

20.
J Phys Condens Matter ; 28(43): 436004, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27603180

ABSTRACT

Co/BaTiO3(0 0 1) is one of the most interesting multiferroic heterostructures as it combines different ferroic phases, setting this way the fundamentals for innovative technical applications. Various theoretical approaches have been applied to investigate the electronic and magnetic properties of Co/BaTiO3(0 0 1). Here we determine the magnetic properties of 3 ML Co/BaTiO3 by calculating spin-polarized electron diffraction as well as angle-resolved photoemission spectra, with both methods being well established as surface sensitive techniques. Furthermore, we discuss the impact of altering the BaTiO3 polarization on the spectra and ascribe the observed changes to characteristic details of the electronic structure.

SELECTION OF CITATIONS
SEARCH DETAIL