Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Mol Cell ; 77(3): 633-644.e5, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31836388

ABSTRACT

Metastatic melanoma is an aggressive disease, despite recent improvements in therapy. Eradicating all melanoma cells even in drug-sensitive tumors is unsuccessful in patients because a subset of cells can transition to a slow-cycling state, rendering them resistant to most targeted therapy. It is still unclear what pathways define these subpopulations and promote this resistant phenotype. In the current study, we show that Wnt5A, a non-canonical Wnt ligand that drives a metastatic, therapy-resistant phenotype, stabilizes the half-life of p53 and uses p53 to initiate a slow-cycling state following stress (DNA damage, targeted therapy, and aging). Inhibiting p53 blocks the slow-cycling phenotype and sensitizes melanoma cells to BRAF/MEK inhibition. In vivo, this can be accomplished with a single dose of p53 inhibitor at the commencement of BRAF/MEK inhibitor therapy. These data suggest that taking the paradoxical approach of inhibiting rather than activating wild-type p53 may sensitize previously resistant metastatic melanoma cells to therapy.


Subject(s)
Melanoma/metabolism , Tumor Suppressor Protein p53/genetics , Wnt-5a Protein/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Humans , MAP Kinase Kinase Kinases/metabolism , Melanoma/genetics , Melanoma/pathology , Molecular Targeted Therapy , Mutation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology , Tumor Microenvironment/drug effects , Tumor Suppressor Protein p53/physiology
3.
Nature ; 532(7598): 250-4, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27042933

ABSTRACT

Cancer is a disease of ageing. Clinically, aged cancer patients tend to have a poorer prognosis than young. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumour progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression, we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. Here we find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signalling cascade in melanoma cells that results in a decrease in ß-catenin and microphthalmia-associated transcription factor (MITF), and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to DNA damage induced by reactive oxygen species, rendering the cells more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumour progression, offering new possibilities for the design of therapy for the elderly.


Subject(s)
Aging/metabolism , Drug Resistance, Neoplasm , Melanoma/drug therapy , Melanoma/pathology , Membrane Proteins/metabolism , Neoplasm Metastasis , Tumor Microenvironment , Adult , Animals , Cell Line, Tumor , Culture Media, Conditioned/pharmacology , DNA Damage , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Disease Progression , Fibroblasts/metabolism , Humans , Indoles/pharmacology , Indoles/therapeutic use , Male , Melanoma/blood supply , Melanoma/genetics , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Middle Aged , Molecular Targeted Therapy , Neovascularization, Pathologic , Oxidative Stress , Phenotype , Reactive Oxygen Species/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Vemurafenib , Wnt Signaling Pathway , Wnt1 Protein/antagonists & inhibitors , beta Catenin/metabolism
5.
Cancers (Basel) ; 13(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477804

ABSTRACT

Integrin α3ß1, a cell adhesion receptor for certain laminins, is known to promote breast tumor growth and invasion. Our previous gene microarray study showed that the RELN gene, which encodes the extracellular glycoprotein Reelin, was upregulated in α3ß1-deficient (i.e., α3 knockdown) MDA-MB-231 cells. In breast cancer, reduced RELN expression is associated with increased invasion and poor prognosis. In this study we demonstrate that α3ß1 represses RELN expression to enhance breast cancer cell invasion. RELN mRNA was significantly increased upon RNAi-mediated α3 knockdown in two triple-negative breast cancer cell lines, MDA-MB-231 and SUM159. Modulation of baseline Reelin levels altered invasive potential, where enhanced Reelin expression in MDA-MB-231 cells reduced invasion, while RNAi-mediated suppression of Reelin in SUM159 cells increased invasion. Moreover, treatment of α3ß1-expressing MDA-MB-231 cells with culture medium that was conditioned by α3 knockdown MDA-MB-231 cells led to decreased invasion. RNAi-mediated suppression of Reelin in α3 knockdown MDA-MB-231 cells mitigated this effect of conditioned-medium, identifying secreted Reelin as an inhibitor of cell invasion. These results demonstrate a novel role for α3ß1 in repressing Reelin in breast cancer cells to promote invasion, supporting this integrin as a potential therapeutic target.

6.
PLoS One ; 16(7): e0254714, 2021.
Article in English | MEDLINE | ID: mdl-34270616

ABSTRACT

Integrin receptors for the extracellular matrix play critical roles at all stages of carcinogenesis, including tumor growth, tumor progression and metastasis. The laminin-binding integrin α3ß1 is expressed in all epithelial tissues where it has important roles in cell survival, migration, proliferation, and gene expression programs during normal and pathological tissue remodeling. α3ß1 signaling and adhesion functions promote tumor growth and metastasis in a number of different types of cancer cells. Previously, we used RNA interference (RNAi) technology to suppress the expression of the ITGA3 gene (encoding the α3 subunit) in the triple-negative breast cancer cell line, MDA-MB-231, thereby generating variants of this line with reduced expression of integrin α3ß1. This approach revealed that α3ß1 promotes pro-tumorigenic functions such as cell invasion, lung metastasis, and gene regulation. In the current study, we used CRISPR technology to knock out the ITGA3 gene in MDA-MB-231 cells, thereby ablating expression of integrin α3ß1 entirely. RNA-seq analysis revealed that while the global transcriptome was altered substantially by RNAi-mediated suppression of α3ß1, it was largely unaffected following CRISPR-mediated ablation of α3ß1. Moreover, restoring α3ß1 to the latter cells through inducible expression of α3 cDNA failed to alter gene expression substantially, suggesting that use of CRISPR to abolish α3ß1 led to a decoupling of the integrin from its ability to regulate the transcriptome. Interestingly, both cell invasion in vitro and metastatic colonization in vivo were reduced when α3ß1 was abolished using CRISPR, as we observed previously using RNAi to suppress α3ß1. Taken together, our results show that pro-invasive/pro-metastatic roles for α3ß1 are not dependent on its ability to regulate the transcriptome. Moreover, our finding that use of RNAi versus CRISPR to target α3ß1 produced distinct effects on gene expression underlines the importance of using multiple approaches to obtain a complete picture of an integrin's functions in cancer cells.


Subject(s)
Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Integrin alpha3beta1/genetics , Lung Neoplasms/genetics , Triple Negative Breast Neoplasms/genetics , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Datasets as Topic , Female , Gene Editing , Humans , Lung Neoplasms/secondary , Mice , Neoplasm Invasiveness/genetics , RNA Interference , RNA-Seq , Transcriptome/genetics , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
7.
Cancers (Basel) ; 13(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513758

ABSTRACT

In the current study, we demonstrate that integrin α3ß1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3ß1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3ß1 was suppressed. α3ß1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3ß1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3ß1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3ß1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.

8.
Cancer Discov ; 9(1): 82-95, 2019 01.
Article in English | MEDLINE | ID: mdl-30279172

ABSTRACT

Older patients with melanoma have lower rates of sentinel lymph node (LN) metastases yet paradoxically have inferior survival. Patient age correlated with an inability to retain Technetium radiotracer during sentinel LN biopsy in more than 1,000 patients, and high Technetium counts correlated to better survival. We hypothesized that loss of integrity in the lymphatic vasculature due to extracellular matrix (ECM) degradation might play a role. We have implicated HAPLN1 in age-dependent ECM degradation in the dermis. Here, we queried whether HAPLN1 could be altered in the lymphatic ECM. Lymphatic HAPLN1 expression was prognostic of long-term patient survival. Adding recombinant HAPLN1 to aged fibroblast ECMs in vitro reduced endothelial permeability via modulation of VE-cadherin junctions, whereas endothelial permeability was increased following HAPLN1 knockdown in young fibroblasts. In vivo, reconstitution of HAPLN1 in aged mice increased the number of LN metastases, but reduced visceral metastases. These data suggest that age-related changes in ECM can contribute to impaired lymphatics. SIGNIFICANCE: Our studies reveal that changes in the stroma during aging may influence the way tumor cells traffic through the lymphatic vasculature. Aging may dictate the route of metastatic dissemination of tumor cells, and understanding these changes may help to reveal targetable moieties in the aging tumor microenvironment.See related commentary by Marie and Merlino, p. 19.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Aging , Extracellular Matrix Proteins/metabolism , Melanoma/metabolism , Proteoglycans/metabolism , Skin/metabolism , Adult , Animals , Cells, Cultured , Humans , Immune System , Lymphatic Metastasis , Melanoma/physiopathology , Mice , Mice, Inbred C57BL , Middle Aged , Skin/physiopathology , Tumor Microenvironment
9.
Clin Cancer Res ; 24(21): 5347-5356, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29898988

ABSTRACT

Purpose: We have shown that the aged microenvironment increases melanoma metastasis, and decreases response to targeted therapy, and here we queried response to anti-PD1.Experimental Design: We analyzed the relationship between age, response to anti-PD1, and prior therapy in 538 patients. We used mouse models of melanoma, to analyze the intratumoral immune microenvironment in young versus aged mice and confirmed our findings in human melanoma biopsies.Results: Patients over the age of 60 responded more efficiently to anti-PD-1, and likelihood of response to anti-PD-1 increased with age, even when we controlled for prior MAPKi therapy. Placing genetically identical tumors in aged mice (52 weeks) significantly increased their response to anti-PD1 as compared with the same tumors in young mice (8 weeks). These data suggest that this increased response in aged patients occurs even in the absence of a more complex mutational landscape. Next, we found that young mice had a significantly higher population of regulatory T cells (Tregs), skewing the CD8+:Treg ratio. FOXP3 staining of human melanoma biopsies revealed similar increases in Tregs in young patients. Depletion of Tregs using anti-CD25 increased the response to anti-PD1 in young mice.Conclusions: While there are obvious limitations to our study, including our inability to conduct a meta-analysis due to a lack of available data, and our inability to control for mutational burden, there is a remarkable consistency in these data from over 500 patients across 8 different institutes worldwide. These results stress the importance of considering age as a factor for immunotherapy response. Clin Cancer Res; 24(21); 5347-56. ©2018 AACR See related commentary by Pawelec, p. 5193.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Immunomodulation/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Age Factors , Animals , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Melanoma/drug therapy , Melanoma/immunology , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Transgenic , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
10.
Clin Cancer Res ; 23(12): 3181-3190, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28232477

ABSTRACT

Purpose: Aging is a poor prognostic factor for melanoma. We have shown that melanoma cells in an aged microenvironment are more resistant to targeted therapy than identical cells in a young microenvironment. This is dependent on age-related secreted factors. Klotho is an age-related protein whose serum levels decrease dramatically by age 40. Most studies on klotho in cancer have focused on the expression of klotho in the tumor cell. We have shown that exogenous klotho inhibits internalization and signaling of Wnt5A, which drives melanoma metastasis and resistance to targeted therapy. We investigate here whether increasing klotho in the aged microenvironment could be an effective strategy for the treatment of melanoma.Experimental Design: PPARγ increases klotho levels and is increased by glitazones. Using rosiglitazone, we queried the effects of rosiglitazone on Klotho/Wnt5A cross-talk, in vitro and in vivo, and the implications of that for targeted therapy in young versus aged animals.Results: We show that rosiglitazone increases klotho and decreases Wnt5A in tumor cells, reducing the burden of both BRAF inhibitor-sensitive and BRAF inhibitor-resistant tumors in aged, but not young mice. However, when used in combination with PLX4720, tumor burden was reduced in both young and aged mice, even in resistant tumors.Conclusions: Using glitazones as adjuvant therapy for melanoma may provide a new treatment strategy for older melanoma patients who have developed resistance to vemurafenib. As klotho has been shown to play a role in other cancers too, our results may have wide relevance for multiple tumor types. Clin Cancer Res; 23(12); 3181-90. ©2017 AACR.


Subject(s)
Glucuronidase/genetics , Melanoma/drug therapy , Proto-Oncogene Proteins B-raf/genetics , Thiazolidinediones/administration & dosage , Wnt-5a Protein/genetics , Adult , Age Factors , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Glucuronidase/antagonists & inhibitors , Humans , Indoles/administration & dosage , Klotho Proteins , Melanoma/genetics , Melanoma/pathology , Mice , Middle Aged , Mutation , PPAR gamma/antagonists & inhibitors , PPAR gamma/genetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Rosiglitazone , Sulfonamides/administration & dosage , Thiazolidinediones/adverse effects , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
11.
Cancer Res ; 77(21): 5873-5885, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28887323

ABSTRACT

Autophagy mediates resistance to various anticancer agents. In melanoma, resistance to targeted therapy has been linked to expression of Wnt5A, an intrinsic inhibitor of ß-catenin, which also promotes invasion. In this study, we assessed the interplay between Wnt5A and autophagy by combining expression studies in human clinical biopsies with functional analyses in cell lines and mouse models. Melanoma cells with high Wnt5A and low ß-catenin displayed increased basal autophagy. Genetic blockade of autophagy revealed an unexpected feedback loop whereby knocking down the autophagy factor ATG5 in Wnt5Ahigh cells decreased Wnt5A and increased ß-catenin. To define the physiologic relevance of this loop, melanoma cells with different Wnt status were treated in vitro and in vivo with the potent lysosomotropic compound Lys05. Wnt5Ahigh cells were less sensitive to Lys05 and could be reverted by inducing ß-catenin activity. Our results suggest the efficacy of autophagy inhibitors might be improved by taking the Wnt signature of melanoma cells into account. Cancer Res; 77(21); 5873-85. ©2017 AACR.


Subject(s)
Autophagy-Related Protein 5/genetics , Autophagy/genetics , Melanoma/genetics , Wnt Signaling Pathway/genetics , Aminoquinolines/pharmacology , Animals , Autophagy/drug effects , Autophagy-Related Protein 5/metabolism , Blotting, Western , Cell Line, Tumor , Feedback, Physiological/drug effects , Gene Expression Regulation, Neoplastic , Humans , Melanoma/metabolism , Melanoma/pathology , Mice , Polyamines/pharmacology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Wnt Signaling Pathway/drug effects , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
12.
F1000Res ; 52016.
Article in English | MEDLINE | ID: mdl-27583134

ABSTRACT

Melanoma accounts for only 5% of all cancers but is the leading cause of skin cancer death due to its high metastatic potential. Patients with metastatic melanoma have a 10-year survival rate of less than 10%. While the clinical landscape for melanoma is evolving rapidly, lack of response to therapies, as well as resistance to therapy remain critical obstacles for treatment of this disease. In recent years, a myriad of therapy resistance mechanisms have been unravelled, one of which is autophagy, the focus of this review. In advanced stages of malignancy, melanoma cells hijack the autophagy machinery in order to alleviate drug-induced and metabolic stress in the tumor microenvironment, thereby promoting resistance to multiple therapies, tumor cell survival, and progression.  Autophagy is an essential cellular process that maintains cellular homeostasis through the recycling of intracellular constituents. Early studies on the role of autophagy in cancer generated controversy as to whether autophagy was pro- or anti-tumorigenic. Currently, there is a consensus that autophagy is tumor-suppressive in the early stages of cancer and tumor-promoting in established tumors.  This review aims to highlight current understandings on the role of autophagy in melanoma malignancy, and specifically therapy resistance; as well as to evaluate recent strategies for therapeutic autophagy modulation.

13.
Cancer Immunol Res ; 4(10): 845-857, 2016 10.
Article in English | MEDLINE | ID: mdl-27589875

ABSTRACT

The programmed cell death protein 1 (PD-1) limits effector T-cell functions in peripheral tissues, and its inhibition leads to clinical benefit in different cancers. To better understand how PD-1 blockade therapy modulates the tumor-host interactions, we evaluated three syngeneic murine tumor models, the BRAFV600E-driven YUMM1.1 and YUMM2.1 melanomas, and the carcinogen-induced murine colon adenocarcinoma MC38. The YUMM cell lines were established from mice with melanocyte-specific BRAFV600E mutation and PTEN loss (BRAFV600E/PTEN-/-). Anti-PD-1 or anti-PD-L1 therapy engendered strong antitumor activity against MC38 and YUMM2.1, but not YUMM1.1. PD-L1 expression did not differ between the three models at baseline or upon interferon stimulation. Whereas mutational load was high in MC38, it was lower in both YUMM models. In YUMM2.1, the antitumor activity of PD-1 blockade had a critical requirement for both CD4 and CD8 T cells, as well as CD28 and CD80/86 costimulation, with an increase in CD11c+CD11b+MHC-IIhigh dendritic cells and tumor-associated macrophages in the tumors after PD-1 blockade. Compared with YUMM1.1, YUMM2.1 exhibited a more inflammatory profile by RNA sequencing analysis, with an increase in expression of chemokine-trafficking genes that are related to immune cell recruitment and T-cell priming. In conclusion, response to PD-1 blockade therapy in tumor models requires CD4 and CD8 T cells and costimulation that is mediated by dendritic cells and macrophages. Cancer Immunol Res; 4(10); 845-57. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Melanoma/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized , Cell Line, Tumor , Dendritic Cells/immunology , Interferon-gamma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/immunology , Melanoma/genetics , Melanoma/immunology , Mice, Inbred C57BL , Mutation , Proto-Oncogene Proteins B-raf/genetics , Xenograft Model Antitumor Assays
14.
Front Biosci (Elite Ed) ; 3(2): 453-62, 2011 01 01.
Article in English | MEDLINE | ID: mdl-21196325

ABSTRACT

HIV-1-based vectors are widely used in gene therapy. In somatic cells, these vectors mainly integrate within genes. However, no distinct integration site preferences have been observed with regard to large chromosomal regions. The recent emergence of induced pluripotent stem (iPS) cells, similar to embryonic stem (ES) cells, has raised questions about where integration occurs in these cells. In this work we investigated the integration site preferences of HIV-1-based vectors in a pluripotent, ES-like cell line. We show that approximately 30% of the integrations occur in the vicinity of telomeres. We have analyzed integration sites in various somatic cells, as reported by us and other groups, and observed that this integration pattern is unique to the analyzed pluripotent cell line. We conclude that pluripotent cells may contain distinct cellular cofactors that participate in integration targeting and that are not present in somatic cells.


Subject(s)
Genetic Therapy/methods , HIV-1/metabolism , Pluripotent Stem Cells/physiology , Telomere/metabolism , Virus Integration/physiology , Cell Line, Tumor , Cloning, Molecular , DNA Primers/genetics , Genetic Vectors/genetics , Genetic Vectors/metabolism , Genomic Library , Humans , Pluripotent Stem Cells/metabolism
15.
Aging Cell ; 9(4): 580-91, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20477760

ABSTRACT

Werner syndrome (WS) is an autosomal recessive disorder, the hallmarks of which are premature aging and early onset of neoplastic diseases (Orren, 2006; Bohr, 2008). The gene, whose mutation underlies the WS phenotype, is called WRN. The protein encoded by the WRN gene, WRNp, has DNA helicase activity (Gray et al., 1997; Orren, 2006; Bohr, 2008; Opresko, 2008). Extensive evidence suggests that WRNp plays a role in DNA replication and DNA repair (Chen et al., 2003; Hickson, 2003; Orren, 2006; Turaga et al., 2007; Bohr, 2008). However, WRNp function is not yet fully understood. In this study, we show that WRNp is involved in de novo DNA methylation of the promoter of the Oct4 gene, which encodes a crucial stem cell transcription factor. We demonstrate that WRNp localizes to the Oct4 promoter during retinoic acid-induced differentiation of human pluripotent cells and associates with the de novo methyltransferase Dnmt3b in the chromatin of differentiating pluripotent cells. Depletion of WRNp does not affect demethylation of lysine 4 of the histone H3 at the Oct4 promoter, nor methylation of lysine 9 of H3, but it blocks the recruitment of Dnmt3b to the promoter and results in the reduced methylation of CpG sites within the Oct4 promoter. The lack of DNA methylation was associated with continued, albeit greatly reduced, Oct4 expression in WRN-deficient, retinoic acid-treated cells, which resulted in attenuated differentiation. The presented results reveal a novel function of WRNp and demonstrate that WRNp controls a key step in pluripotent stem cell differentiation.


Subject(s)
Epigenesis, Genetic , Exodeoxyribonucleases/metabolism , Gene Silencing , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/metabolism , RecQ Helicases/metabolism , Biomarkers/metabolism , CD4 Antigens/genetics , CD4 Antigens/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Gene Knockdown Techniques , Gene Silencing/drug effects , Histones/metabolism , Homeodomain Proteins/genetics , Humans , Models, Biological , Nanog Homeobox Protein , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Promoter Regions, Genetic/genetics , RNA, Small Interfering/metabolism , Tretinoin/pharmacology , Werner Syndrome Helicase , beta-Globins/genetics , beta-Globins/metabolism , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL