Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters

Publication year range
1.
Ann Neurol ; 96(2): 365-377, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38845484

ABSTRACT

OBJECTIVE: The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS: Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS: Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION: This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024;96:365-377.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Humans , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/complications , Male , Female , Adult , Middle Aged , Cohort Studies , Brain/diagnostic imaging , Brain/pathology , Aged , Aging/pathology , Aging, Premature/diagnostic imaging , Aging, Premature/pathology
2.
Brain ; 146(8): 3484-3499, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36811945

ABSTRACT

Chronic post-concussive symptoms are common after mild traumatic brain injury (mTBI) and are difficult to predict or treat. Thalamic functional integrity is particularly vulnerable in mTBI and may be related to long-term outcomes but requires further investigation. We compared structural MRI and resting state functional MRI in 108 patients with a Glasgow Coma Scale (GCS) of 13-15 and normal CT, and 76 controls. We examined whether acute changes in thalamic functional connectivity were early markers for persistent symptoms and explored neurochemical associations of our findings using PET data. Of the mTBI cohort, 47% showed incomplete recovery 6 months post-injury. Despite the absence of structural changes, we found acute thalamic hyperconnectivity in mTBI, with specific vulnerabilities of individual thalamic nuclei. Acute fMRI markers differentiated those with chronic post-concussive symptoms, with time- and outcome-dependent relationships in a sub-cohort followed longitudinally. Moreover, emotional and cognitive symptoms were associated with changes in thalamic functional connectivity to known serotonergic and noradrenergic targets, respectively. Our findings suggest that chronic symptoms can have a basis in early thalamic pathophysiology. This may aid identification of patients at risk of chronic post-concussive symptoms following mTBI, provide a basis for development of new therapies and facilitate precision medicine application of these therapies.


Subject(s)
Brain Concussion , Brain Injuries , Post-Concussion Syndrome , Humans , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Post-Concussion Syndrome/diagnostic imaging , Thalamus/diagnostic imaging , Emotions , Magnetic Resonance Imaging , Brain
3.
Br J Neurosurg ; : 1-7, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711206

ABSTRACT

BACKGROUND: After a mild traumatic brain injury (mild TBI,) a significant number of patients may experience persistent symptoms and disabilities for months to years. Early identification and timely management of persistent symptoms may help to reduce the long-term impacts of mild TBIs. There is currently no formalised method for identifying patients with persistent symptoms after mild TBI once they are discharged from emergency department. OBJECTIVE: Assess the feasibility of a remote monitoring tool for early identification of persistent symptoms after mild TBI in the outpatient setting using digital tools. METHODS: Electronic surveys were sent to patients with mild TBI who presented to the emergency department at a Major Trauma Centre in England. The surveys were completed at three different timepoints (within days of injury (S1), 1 month (S2), and 3 months (S3) after injury). The indicators used to assess feasibility were engagement, number of eligible patients for follow-up evidence of need for the intervention, and consistency with the literature. Feedback was sought from participants. RESULTS: Of the 200 people invited to participate, 134 (67.0%) completed S1, 115 (57.5%) completed S2, and 95 (47.5%) completed S3. The rates of persistent symptoms ranged from 17.9%-62.6% depending on the criteria used, and we found a significant proportion of the participants experienced morbidity 1 and 3 months after injury. The electronic follow-up tool was deemed an acceptable and user-friendly method for service delivery by participants. CONCLUSION: Using digital tools to monitor and screen mild TBI patients for persistent symptoms is feasible. This could be a scalable, cost-effective, and convenient solution which could improve access to healthcare and reduce healthcare inequalities. This could enable early identification of patients with further medical needs and facilitate timely intervention to improve the clinical workflows, patient satisfaction, and health outcomes for people with persistent morbidities after mild TBIs.

4.
PLoS Med ; 20(6): e1004243, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37315103

ABSTRACT

BACKGROUND: Single-centre studies suggest that successive Coronavirus Disease 2019 (COVID-19)-related "lockdown" restrictions in England may have led to significant changes in the characteristics of major trauma patients. There is also evidence from other countries that diversion of intensive care capacity and other healthcare resources to treating patients with COVID-19 may have impacted on outcomes for major trauma patients. We aimed to assess the impact of the COVID-19 pandemic on the number, characteristics, care pathways, and outcomes of major trauma patients presenting to hospitals in England. METHODS AND FINDINGS: We completed an observational cohort study and interrupted time series analysis including all patients eligible for inclusion in England in the national clinical audit for major trauma presenting between 1 January 2017 and 31 of August 2021 (354,202 patients). Demographic characteristics (age, sex, physiology, and injury severity) and clinical pathways of major trauma patients in the first lockdown (17,510 patients) and second lockdown (38,262 patients) were compared to pre-COVID-19 periods in 2018 to 2019 (comparator period 1: 22,243 patients; comparator period 2: 18,099 patients). Discontinuities in trends for weekly estimated excess survival rate were estimated when lockdown measures were introduced using segmented linear regression. The first lockdown had a larger associated reduction in numbers of major trauma patients (-4,733 (21%)) compared to the pre-COVID period than the second lockdown (-2,754 (6.7%)). The largest reductions observed were in numbers of people injured in road traffic collisions excepting cyclists where numbers increased. During the second lockdown, there were increases in the numbers of people injured aged 65 and over (665 (3%)) and 85 and over (828 (9.3%)). In the second week of March 2020, there was a reduction in level of major trauma excess survival rate (-1.71%; 95% CI: -2.76% to -0.66%) associated with the first lockdown. This was followed by a weekly trend of improving survival until the lifting of restrictions in July 2020 (0.25; 95% CI: 0.14 to 0.35). Limitations include eligibility criteria for inclusion to the audit and COVID status of patients not being recorded. CONCLUSIONS: This national evaluation of the impact of COVID on major trauma presentations to English hospitals has observed important public health findings: The large reduction in overall numbers injured has been primarily driven by reductions in road traffic collisions, while numbers of older people injured at home increased over the second lockdown. Future research is needed to better understand the initial reduction in likelihood of survival after major trauma observed with the implementation of the first lockdown.


Subject(s)
COVID-19 , Pandemics , Humans , Aged , COVID-19/epidemiology , Communicable Disease Control , Cohort Studies , Hospitals , Retrospective Studies
5.
Curr Opin Crit Care ; 29(2): 61-67, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36880556

ABSTRACT

PURPOSE OF REVIEW: COVID-19 and systemic critical illness are both associated with neurological complications. We provide an update on the diagnosis and critical care management of adult patients with neurological complications of COVID-19. RECENT FINDINGS: Large prospective multicentre studies conducted in the adult population over the last 18 months improved current knowledge on severe neurological complications of COVID-19. In COVID-19 patients presenting with neurological symptoms, a multimodal diagnostic workup (including CSF analysis, brain MRI, and EEG) may identify different syndromes associated with distinct trajectories and outcomes. Acute encephalopathy, which represents the most common neurological presentation of COVID-19, is associated with hypoxemia, toxic/metabolic derangements, and systemic inflammation. Other less frequent complications include cerebrovascular events, acute inflammatory syndromes, and seizures, which may be linked to more complex pathophysiological processes. Neuroimaging findings include infarction, haemorrhagic stroke, encephalitis, microhaemorrhages and leukoencephalopathy. In the absence of structural brain injury, prolonged unconsciousness is usually fully reversible, warranting a cautious approach for prognostication. Advanced quantitative MRI may provide useful insights into the extent and pathophysiology of the consequences of COVID-19 infection including atrophy and functional imaging changes in the chronic phase. SUMMARY: Our review highlights the importance of a multimodal approach for the accurate diagnosis and management of complications of COVID-19, both at the acute phase and in the long-term.


Subject(s)
COVID-19 , Encephalitis , Adult , Humans , Critical Illness , Prospective Studies , Syndrome , COVID-19/complications
6.
BMC Neurol ; 23(1): 304, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582732

ABSTRACT

BACKGROUND: It is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI. METHODS: Ninety-three patients with mTBI (GCS ≥ 13), blood sample for NF-L within 24 h of admission, and DW-MRI ≥ 90 days post-injury (median = 229) were included. Mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the skeletonized WM tracts of the whole brain. Outcome was assessed using the Extended Glasgow Outcome Scale (GOSE) at the time of imaging. Patients were divided into CT-positive and -negative, and complete (GOSE = 8) and incomplete recovery (GOSE < 8) groups. RESULTS: The levels of NF-L and FA correlated negatively in the whole cohort (p = 0.002), in CT-positive patients (p = 0.016), and in those with incomplete recovery (p = 0.005). The same groups showed a positive correlation with mean MD, AD, and RD (p < 0.001-p = 0.011). In CT-negative patients or in patients with full recovery, significant correlations were not found. CONCLUSION: In patients with mTBI, the significant correlation between NF-L levels at admission and diffusion tensor imaging (DTI) measurements of diffuse axonal injury (DAI) over more than 3 months suggests that the early levels of plasma NF-L may associate with the presence of DAI at a later phase of TBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , White Matter , Humans , Brain Concussion/diagnostic imaging , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Intermediate Filaments , Brain , White Matter/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging
7.
J Immunol ; 207(1): 90-100, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34145056

ABSTRACT

Most of the variation in outcome following severe traumatic brain injury (TBI) remains unexplained by currently recognized prognostic factors. Neuroinflammation may account for some of this difference. We hypothesized that TBI generated variable autoantibody responses between individuals that would contribute to outcome. We developed a custom protein microarray to detect autoantibodies to both CNS and systemic Ags in serum from the acute-phase (the first 7 d), late (6-12 mo), and long-term (6-13 y) intervals after TBI in human patients. We identified two distinct patterns of immune response to TBI. The first was a broad response to the majority of Ags tested, predominantly IgM mediated in the acute phase, then IgG dominant at late and long-term time points. The second was responses to specific Ags, most frequently myelin-associated glycopeptide (MAG), which persisted for several months post-TBI but then subsequently resolved. Exploratory analyses suggested that patients with a greater acute IgM response experienced worse outcomes than predicted from current known risk factors, suggesting a direct or indirect role in worsening outcome. Furthermore, late persistence of anti-MAG IgM autoantibodies correlated with raised serum neurofilament light concentrations at these time points, suggesting an association with ongoing neurodegeneration over the first year postinjury. Our results show that autoantibody production occurs in some individuals following TBI, can persist for many years, and is associated with worse patient outcome. The complexity of responses means that conventional approaches based on measuring responses to single antigenic targets may be misleading.


Subject(s)
Autoantibodies/immunology , Brain Injuries, Traumatic/immunology , Adult , Female , Humans , Male , Middle Aged , Young Adult
8.
Brain ; 145(6): 2064-2076, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35377407

ABSTRACT

There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein (GFAP) and neurofilament light have been widely explored in characterizing acute traumatic brain injury (TBI), their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following TBI. Two-hundred and three patients were recruited in two separate cohorts; 6 months post-injury (n = 165); and >5 years post-injury (n = 38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n = 199) and MRI (n = 172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualized Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects. Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at 6 months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualized brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels. GFAP and neurofilament light levels can remain elevated months to years after TBI, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow-up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify TBI survivors who are at high risk of progressive neurological damage.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , White Matter , Biomarkers , Brain Injuries/complications , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Diffusion Tensor Imaging/methods , Disease Progression , Glial Fibrillary Acidic Protein/metabolism , Humans
9.
Brain ; 145(11): 4097-4107, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36065116

ABSTRACT

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Subject(s)
Brain Injuries , COVID-19 , Influenza, Human , Humans , Neurofilament Proteins , COVID-19/complications , Biomarkers , Autoantibodies , Immunity
10.
Neurocrit Care ; 39(3): 611-617, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37552410

ABSTRACT

BACKGROUND: Over the past 5 decades, advances in neuroimaging have yielded insights into the pathophysiologic mechanisms that cause disorders of consciousness (DoC) in patients with severe brain injuries. Structural, functional, metabolic, and perfusion imaging studies have revealed specific neuroanatomic regions, such as the brainstem tegmentum, thalamus, posterior cingulate cortex, medial prefrontal cortex, and occipital cortex, where lesions correlate with the current or future state of consciousness. Advanced imaging modalities, such as diffusion tensor imaging, resting-state functional magnetic resonance imaging (fMRI), and task-based fMRI, have been used to improve the accuracy of diagnosis and long-term prognosis, culminating in the endorsement of fMRI for the clinical evaluation of patients with DoC in the 2018 US (task-based fMRI) and 2020 European (task-based and resting-state fMRI) guidelines. As diverse neuroimaging techniques are increasingly used for patients with DoC in research and clinical settings, the need for a standardized approach to reporting results is clear. The success of future multicenter collaborations and international trials fundamentally depends on the implementation of a shared nomenclature and infrastructure. METHODS: To address this need, the Neurocritical Care Society's Curing Coma Campaign convened an international panel of DoC neuroimaging experts to propose common data elements (CDEs) for data collection and reporting in this field. RESULTS: We report the recommendations of this CDE development panel and disseminate CDEs to be used in neuroimaging studies of patients with DoC. CONCLUSIONS: These CDEs will support progress in the field of DoC neuroimaging and facilitate international collaboration.


Subject(s)
Consciousness , Diffusion Tensor Imaging , Humans , Consciousness/physiology , Diffusion Tensor Imaging/adverse effects , Consciousness Disorders/etiology , Common Data Elements , Neuroimaging/methods , Magnetic Resonance Imaging/methods
11.
Emerg Med J ; 40(9): 671-677, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37438096

ABSTRACT

Mild traumatic brain injury is a common presentation to the emergency department, with current management often focusing on determining whether a patient requires a CT head scan and/or neurosurgical intervention. There is a growing appreciation that approximately 20%-40% of patients, including those with a negative (normal) CT, will develop ongoing symptoms for months to years, often termed post-concussion syndrome. Owing to the requirement for improved diagnostic and prognostic mechanisms, there has been increasing evidence concerning the utility of both imaging and blood biomarkers.Blood biomarkers offer the potential to better risk stratify patients for requirement of neuroimaging than current clinical decisions rules. However, improved assessment of the clinical utility is required prior to wide adoption. MRI, using clinical sequences and advanced quantitative methods, can detect lesions not visible on CT in up to 30% of patients that may explain, at least in part, some of the ongoing problems. The ability of an acute biomarker (be it imaging, blood or other) to highlight those patients at greater risk of ongoing deficits would allow for greater personalisation of follow-up care and resource allocation.We discuss here both the current evidence and the future potential clinical usage of blood biomarkers and advanced MRI to improve diagnostic pathways and outcome prediction following mild traumatic brain injury.


Subject(s)
Brain Concussion , Emergency Medicine , Humans , Brain Concussion/diagnostic imaging , Neuroimaging/methods , Magnetic Resonance Imaging/methods , Biomarkers
12.
Semin Neurol ; 42(3): 325-334, 2022 06.
Article in English | MEDLINE | ID: mdl-35790201

ABSTRACT

Disorder of consciousness (DoC) after severe brain injury presents numerous challenges to clinicians, as the diagnosis, prognosis, and management are often uncertain. Magnetic resonance imaging (MRI) has long been used to evaluate brain structure in patients with DoC. More recently, advances in MRI technology have permitted more detailed investigations of the brain's structural integrity (via diffusion MRI) and function (via functional MRI). A growing literature has begun to show that these advanced forms of MRI may improve our understanding of DoC pathophysiology, facilitate the identification of patient consciousness, and improve the accuracy of clinical prognostication. Here we review the emerging evidence for the application of advanced MRI for patients with DoC.


Subject(s)
Brain Injuries , Consciousness , Brain , Consciousness/physiology , Consciousness Disorders/diagnostic imaging , Humans , Magnetic Resonance Imaging
13.
Brain ; 144(11): 3492-3504, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34240124

ABSTRACT

Metabolic derangements following traumatic brain injury are poorly characterized. In this single-centre observational cohort study we combined 18F-FDG and multi-tracer oxygen-15 PET to comprehensively characterize the extent and spatial pattern of metabolic derangements. Twenty-six patients requiring sedation and ventilation with intracranial pressure monitoring following head injury within a Neurosciences Critical Care Unit, and 47 healthy volunteers were recruited. Eighteen volunteers were excluded for age over 60 years (n = 11), movement-related artefact (n = 3) or physiological instability during imaging (n = 4). We measured cerebral blood flow, blood volume, oxygen extraction fraction, and 18F-FDG transport into the brain (K1) and its phosphorylation (k3). We calculated oxygen metabolism, 18F-FDG influx rate constant (Ki), glucose metabolism and the oxygen/glucose metabolic ratio. Lesion core, penumbra and peri-penumbra, and normal-appearing brain, ischaemic brain volume and k3 hotspot regions were compared with plasma and microdialysis glucose in patients. Twenty-six head injury patients, median age 40 years (22 male, four female) underwent 34 combined 18F-FDG and oxygen-15 PET at early, intermediate, and late time points (within 24 h, Days 2-5, and Days 6-12 post-injury; n = 12, 8, and 14, respectively), and were compared with 20 volunteers, median age 43 years (15 male, five female) who underwent oxygen-15, and nine volunteers, median age 56 years (three male, six female) who underwent 18F-FDG PET. Higher plasma glucose was associated with higher microdialysate glucose. Blood flow and K1 were decreased in the vicinity of lesions, and closely related when blood flow was <25 ml/100 ml/min. Within normal-appearing brain, K1 was maintained despite lower blood flow than volunteers. Glucose utilization was globally reduced in comparison with volunteers (P < 0.001). k3 was variable; highest within lesions with some patients showing increases with blood flow <25 ml/100 ml/min, but falling steeply with blood flow lower than 12 ml/100 ml/min. k3 hotspots were found distant from lesions, with k3 increases associated with lower plasma glucose (Rho -0.33, P < 0.001) and microdialysis glucose (Rho -0.73, P = 0.02). k3 hotspots showed similar K1 and glucose metabolism to volunteers despite lower blood flow and oxygen metabolism (P < 0.001, both comparisons); oxygen extraction fraction increases consistent with ischaemia were uncommon. We show that glucose delivery was dependent on plasma glucose and cerebral blood flow. Overall glucose utilization was low, but regional increases were associated with reductions in glucose availability, blood flow and oxygen metabolism in the absence of ischaemia. Clinical management should optimize blood flow and glucose delivery and could explore the use of alternative energy substrates.


Subject(s)
Brain Injuries, Traumatic/metabolism , Cerebrovascular Circulation/physiology , Glucose/metabolism , Adult , Brain/blood supply , Brain/metabolism , Cohort Studies , Female , Humans , Male , Middle Aged , Positron-Emission Tomography
14.
Crit Care ; 26(1): 369, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36447266

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) carries prognostic importance after traumatic brain injury (TBI), especially when computed tomography (CT) fails to fully explain the level of unconsciousness. However, in critically ill patients, the risk of deterioration during transfer needs to be balanced against the benefit of detecting prognostically relevant information on MRI. We therefore aimed to assess if day of injury serum protein biomarkers could identify critically ill TBI patients in whom the risks of transfer are compensated by the likelihood of detecting management-altering neuroimaging findings. METHODS: Data were obtained from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Eligibility criteria included: TBI patients aged ≥ 16 years, Glasgow Coma Score (GCS) < 13 or patient intubated with unrecorded pre-intubation GCS, CT with Marshall score < 3, serum biomarkers (GFAP, NFL, NSE, S100B, Tau, UCH-L1) sampled ≤ 24 h of injury, MRI < 30 days of injury. The degree of axonal injury on MRI was graded using the Adams-Gentry classification. The association between serum concentrations of biomarkers and Adams-Gentry stage was assessed and the optimum threshold concentration identified, assuming different minimum sensitivities for the detection of brainstem injury (Adams-Gentry stage 3). A cost-benefit analysis for the USA and UK health care settings was also performed. RESULTS: Among 65 included patients (30 moderate-severe, 35 unrecorded) axonal injury was detected in 54 (83%) and brainstem involvement in 33 (51%). In patients with moderate-severe TBI, brainstem injury was associated with higher concentrations of NSE, Tau, UCH-L1 and GFAP. If the clinician did not want to miss any brainstem injury, NSE could have avoided MRI transfers in up to 20% of patients. If a 94% sensitivity was accepted considering potential transfer-related complications, GFAP could have avoided 30% of transfers. There was no added net cost, with savings up to £99 (UK) or $612 (US). No associations between proteins and axonal injury were found in intubated patients without a recorded pre-intubation GCS. CONCLUSIONS: Serum protein biomarkers show potential to safely reduce the number of transfers to MRI in critically ill patients with moderate-severe TBI at no added cost.


Subject(s)
Brain Injuries, Traumatic , Critical Illness , Humans , Brain Injuries, Traumatic/diagnostic imaging , Biomarkers , Magnetic Resonance Imaging , Tomography, X-Ray Computed
15.
Emerg Med J ; 39(3): 206-212, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34916280

ABSTRACT

BACKGROUND: There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting. METHODS: Adult patients (≥18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011-2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13-15 was classified as mild (mTBI); GCS 9-12 as moderate (moTBI) and GCS 3-8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed. RESULTS: Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls. CONCLUSIONS: S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting.


Subject(s)
Brain Injuries, Traumatic , Fatty Acid Binding Protein 3 , Interleukin-10 , Neurofilament Proteins , S100 Calcium Binding Protein beta Subunit , Adult , Aged , Biomarkers , Brain Injuries, Traumatic/diagnosis , Humans
16.
Curr Opin Crit Care ; 27(2): 80-86, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33534257

ABSTRACT

PURPOSE OF REVIEW: To describe the key features and epidemiology of traumatic brain injury (TBI) and how they may be changing, with an emphasis on how this may affect care in the intensive care unit. RECENT FINDINGS: TBI has been traditionally perceived as occurring mainly in a younger, predominantly male population injured in high velocity motor vehicle crashes or assaults. However, there are an increasing number of patients over 65 years who have sustained a TBI secondary to low velocity falls. Considering the effects of frailty, comorbidities and extracranial injuries is important when making management decisions. Mild TBI comprises a third of those admitted and as a significant proportion may have poor outcomes secondary to their TBI they should be assessed to ensure appropriate follow-up. Multimodal monitoring may offer a way in the future to offer more personalised management to this very complex and heterogeneous patient group. SUMMARY: This review highlights the urgent need to develop more age-inclusive TBI consensus management guidelines aimed at improving short- and long-term outcomes for the large and growing TBI population. Being elderly does not necessarily portend a poor outcome, and more research is needed to better triage, guide management and prognosticate on these patients.


Subject(s)
Brain Injuries, Traumatic , Accidental Falls , Aged , Brain Injuries, Traumatic/epidemiology , Brain Injuries, Traumatic/therapy , Hospitalization , Humans , Intensive Care Units , Male
17.
Neurocrit Care ; 34(1): 312-324, 2021 02.
Article in English | MEDLINE | ID: mdl-32462411

ABSTRACT

Secondary injuries remain an important cause of the morbidity and mortality associated with traumatic brain injury (TBI). Progression of cerebral contusions occurs in up to 75% of patients with TBI, and this contributes to subsequent clinical deterioration and requirement for surgical intervention. Despite this, the role of early clinical and radiological factors in predicting contusion progression remains relatively poorly defined due to studies investigating progression of all types of hemorrhagic injuries as a combined cohort. In this review, we summarize data from recent studies on factors which predict contusion progression, and the effect of contusion progression on clinical outcomes.


Subject(s)
Brain Contusion , Brain Injuries, Traumatic , Contusions , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/therapy , Disease Progression , Humans , Radiography
18.
Article in English | MEDLINE | ID: mdl-33268472

ABSTRACT

OBJECTIVE: Cognitive impairment is a key cause of disability after traumatic brain injury (TBI) but relationships with overall functioning in daily life are often modest. The aim is to examine cognition at different levels of function and identify domains associated with disability. METHODS: 1554 patients with mild-to-severe TBI were assessed at 6 months post injury on the Glasgow Outcome Scale-Extended (GOSE), the Short Form-12v2 and a battery of cognitive tests. Outcomes across GOSE categories were compared using analysis of covariance adjusting for age, sex and education. RESULTS: Overall effect sizes were small to medium, and greatest for tests involving processing speed (ηp 2 0.057-0.067) and learning and memory (ηp 2 0.048-0.052). Deficits in cognitive performance were particularly evident in patients who were dependent (GOSE 3 or 4) or who were unable to participate in one or more major life activities (GOSE 5). At higher levels of function (GOSE 6-8), cognitive performance was surprisingly similar across categories. There were decreases in performance even in patients reporting complete recovery without significant symptoms. Medium to large effect sizes were present for summary measures of cognition (ηp 2 0.111), mental health (ηp 2 0.131) and physical health (ηp 2 0.252). CONCLUSIONS: This large-scale study provides novel insights into cognitive performance at different levels of disability and highlights the importance of processing speed in function in daily life. At upper levels of outcome, any influence of cognition on overall function is markedly attenuated and differences in mental health are salient.

19.
J Head Trauma Rehabil ; 35(6): E513-E523, 2020.
Article in English | MEDLINE | ID: mdl-32472833

ABSTRACT

OBJECTIVE: To determine the effect of extracranial injury (ECI) on 6-month outcome in patients with mild traumatic brain injury (TBI) versus moderate-to-severe TBI. PARTICIPANTS/SETTING: Patients with TBI (n = 135) or isolated orthopedic injury (n = 25) admitted to a UK major trauma center and healthy volunteers (n = 99). DESIGN: Case-control observational study. MAIN MEASURES: Primary outcomes: (a) Glasgow Outcome Scale Extended (GOSE), (b) depression, (c) quality of life (QOL), and (d) cognitive impairment including verbal fluency, episodic memory, short-term recognition memory, working memory, sustained attention, and attentional flexibility. RESULTS: Outcome was influenced by both TBI severity and concomitant ECI. The influence of ECI was restricted to mild TBI; GOSE, QOL, and depression outcomes were significantly poorer following moderate-to-severe TBI than after isolated mild TBI (but not relative to mild TBI plus ECI). Cognitive impairment was driven solely by TBI severity. General health, bodily pain, semantic verbal fluency, spatial recognition memory, working memory span, and attentional flexibility were unaffected by TBI severity and additional ECI. CONCLUSION: The presence of concomitant ECI ought to be considered alongside brain injury severity when characterizing the functional and neurocognitive effects of TBI, with each presenting challenges to recovery.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Cognition , Brain Injuries/complications , Brain Injuries/diagnosis , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnosis , Glasgow Outcome Scale , Humans , Quality of Life , United Kingdom
20.
Neurocrit Care ; 32(2): 373-382, 2020 04.
Article in English | MEDLINE | ID: mdl-31797278

ABSTRACT

BACKGROUND: Failure of cerebral autoregulation and progression of intracranial lesion have both been shown to contribute to poor outcome in patients with acute traumatic brain injury (TBI), but the interplay between the two phenomena has not been investigated. Preliminary evidence leads us to hypothesize that brain tissue adjacent to primary injury foci may be more vulnerable to large fluctuations in blood flow in the absence of intact autoregulatory mechanisms. The goal of this study was therefore to assess the influence of cerebrovascular reactivity measures on radiological lesion expansion in a cohort of patients with acute TBI. METHODS: We conducted a retrospective cohort analysis on 50 TBI patients who had undergone high-frequency multimodal intracranial monitoring and for which at least two brain computed tomography (CT) scans had been performed in the acute phase of injury. We first performed univariate analyses on the full cohort to identify non-neurophysiological factors (i.e., initial lesion volume, timing of scan, coagulopathy) associated with traumatic lesion growth in this population. In a subset analysis of 23 patients who had intracranial recording data covering the period between the initial and repeat CT scan, we then correlated changes in serial volumetric lesion measurements with cerebrovascular reactivity metrics derived from the pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC (correlation coefficient between the pulse amplitude of intracranial pressure and cerebral perfusion pressure). Using multivariate methods, these results were subsequently adjusted for the non-neurophysiological confounders identified in the univariate analyses. RESULTS: We observed significant positive linear associations between the degree of cerebrovascular reactivity impairment and progression of pericontusional edema. The strongest correlations were observed between edema progression and the following indices of cerebrovascular reactivity between sequential scans: % time PRx > 0.25 (r = 0.69, p = 0.002) and % time PAx > 0.25 (r = 0.64, p = 0.006). These associations remained significant after adjusting for initial lesion volume and mean cerebral perfusion pressure. In contrast, progression of the hemorrhagic core and extra-axial hemorrhage volume did not appear to be strongly influenced by autoregulatory status. CONCLUSIONS: Our preliminary findings suggest a possible link between autoregulatory failure and traumatic edema progression, which warrants re-evaluation in larger-scale prospective studies.


Subject(s)
Arterial Pressure/physiology , Brain Edema/physiopathology , Brain Injuries, Traumatic/physiopathology , Cerebrovascular Circulation/physiology , Intracranial Hemorrhage, Traumatic/physiopathology , Intracranial Pressure/physiology , Adult , Brain Contusion/diagnostic imaging , Brain Contusion/physiopathology , Brain Edema/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Disease Progression , Female , Glasgow Coma Scale , Glasgow Outcome Scale , Homeostasis/physiology , Humans , Intensive Care Units , Intracranial Hemorrhage, Traumatic/diagnostic imaging , Male , Middle Aged , Retrospective Studies , Tomography, X-Ray Computed , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL