Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Sci Technol ; 58(14): 6128-6137, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38530926

ABSTRACT

High-throughput transcriptomics (HTTr) is increasingly applied to zebrafish embryos to survey the toxicological effects of environmental chemicals. Before the adoption of this approach in regulatory testing, it is essential to characterize background noise in order to guide experimental designs. We thus empirically quantified the HTTr false discovery rate (FDR) across different embryo pool sizes, sample sizes, and concentration groups for toxicology studies. We exposed zebrafish embryos to 0.1% dimethyl sulfoxide (DMSO) for 5 days. Pools of 1, 5, 10, and 20 embryos were created (n = 24 samples for each pool size). Samples were sequenced on the TempO-Seq platform and then randomly assigned to mock treatment groups before differentially expressed gene (DEG), pathway, and benchmark concentration (BMC) analyses. Given that all samples were treated with DMSO, any significant DEGs, pathways, or BMCs are false positives. As expected, we found decreasing FDRs for DEG and pathway analyses with increasing pool and sample sizes. Similarly, FDRs for BMC analyses decreased with increasing pool size and concentration groups, with more stringent BMC premodel filtering reducing BMC FDRs. Our study provides foundational data for determining appropriate experiment designs for regulatory toxicity testing with HTTr in zebrafish embryos.


Subject(s)
Dimethyl Sulfoxide , Zebrafish , Animals , Zebrafish/genetics , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/toxicity , Benchmarking , Gene Expression Profiling , Transcriptome , Embryo, Nonmammalian/metabolism
2.
Nature ; 534(7605): 91-4, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27251281

ABSTRACT

Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Atmosphere/chemistry , Oil and Gas Fields , Oil and Gas Industry , Alberta , Climate , Human Activities , Hydrocarbons/analysis , Hydrocarbons/chemistry , Particulate Matter/analysis , Particulate Matter/chemistry , Petroleum , Volatilization
3.
Environ Res ; 207: 112169, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34624268

ABSTRACT

Temporal trends of mercury in Arctic wildlife are inconsistent within and between species and are often insignificant, which limits data interpretation. Recent multivariate analyses have shown that weather and climate factors (e.g. temperatures, sea ice conditions) are related to total Hg (THg) concentrations in wildlife tissues, though relatively few studies have explored these relationships. The present study compared time series of THg concentrations in liver of polar bear (Ursus maritimus, 2007/08-2015/16), eggs of thick-billed murres (Uria lomvia, 1993-2015) and kidney of caribou (Rangifer tarandus groenlandicus, 2006-2015) from the Hudson Bay region of Canada and statistically modelled THg over time with available climate and weather data. Significant temporal trends of THg concentrations were not detected in any species. However, in multivariate models that included time-lagged sea ice freeze up dates, THg concentrations increased 4.4% yr-1 in Qamanirjuaq caribou. Sea ice conditions were also related to THg levels in polar bear liver but not those in eggs of murres, though year was not a signifcant factor. Greater precipitation levels one to two years prior to sampling were associated with greater THg concentrations in polar bears and caribou, likely due to greater deposition, flooding and discharge from nearby wetlands and rivers. Time-lagged Arctic and/or North Atlantic Oscillation (AO/NAO) indices also generated significant, inverse models for all three species, agreeing with relationships in other time series of similar length. The magnitude and direction of many relationships were affected by season, duration of time-lags, and the length of the time series. Our findings support recent observations suggesting that temporal studies monitoring Hg in Arctic wildlife should consider including key climatic or weather factors to help identify consistent variables of influence and to improve temporal analyses of THg time series.


Subject(s)
Charadriiformes , Mercury , Reindeer , Ursidae , Animals , Arctic Regions , Climate Change , Environmental Monitoring , Mercury/analysis , Temperature
4.
Environ Res ; 204(Pt B): 112022, 2022 03.
Article in English | MEDLINE | ID: mdl-34506783

ABSTRACT

While exposure of birds to oil-related contaminants has been documented, the related adverse effects this exposure has on Arctic marine birds remain unexplored. Metabolomics can play an important role to explore biologically relevant metabolite biomarkers in relation to different stressors, even at benchmark levels of contamination. The aim of this study was to characterize the metabolomics profiles in relation to polycyclic aromatic compounds (PACs) and trace elements in the liver of two seabird species in the Canadian Arctic. In July 2018, black guillemots (Cepphus grylle) and thick-billed murres (Uria lomvia) were collected by hunters from a region where natural oil seeps occur in the seabed near Qikiqtarjuaq, Nunavut, Canada. A total of 121 metabolites were identified in liver tissue samples using reversed phase and hydrophilic interaction liquid chromatography coupled to high resolution mass spectrometry platforms to detect non-polar and polar metabolites, respectively. Sixty-nine metabolites showed excellent repeatability and linearity and were used to examine possible effects of oil-related contaminants exposure (PACs and trace elements). Metabolites including 3-hydroxy anthranilic acid, adenine, adenosine, adenosine mono-phosphate, ascorbic acid, butyrylcarnitine, cholic acid, guanosine, guanosine mono-phosphate, inosine, norepinephrine and threonine showed significant differences (more than two fold) between the two species. Elevated adenine and adenosine, along with decreased reduced/oxidized glutathione ratio, highlighted the potential for oxidative stress in murres. Lipid peroxidation and superoxide dismutase activity assays also confirmed these metabolomic findings. These results will help to characterize the baseline metabolomic profiles of Arctic seabird species with different foraging behaviour and trace element burden.


Subject(s)
Environmental Pollutants , Polycyclic Compounds , Trace Elements , Animals , Arctic Regions , Benchmarking , Birds , Canada , Environmental Monitoring , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Metabolomics
5.
Environ Sci Technol ; 55(12): 8149-8158, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34038106

ABSTRACT

Short-chain chlorinated paraffins (SCCPs) have attracted attention because of their toxicological potential in humans and wildlife at environmentally relevant doses. However, limited information is available regarding mechanistic differences across species in terms of the biological pathways that are impacted by SCCP exposure. Here, a concentration-dependent reduced human transcriptome (RHT) approach was conducted to evaluate 15 SCCPs in HepG2 cells and compared with our previous results using a reduced zebrafish transcriptome (RZT) approach in zebrafish embryos (ZFEs). Generally, SCCPs induced a broader suite of biological pathways in ZFEs than HepG2 cells, and all of the 15 SCCPs were more potent in HepG2 cells compared to ZFEs. Despite these general differences, the transcriptional potency of SCCPs in both model systems showed a significant linear relationship (p = 0.0017, r2 = 0.57), and the average ratios of transcriptional potency for each SCCP in RZT to that in RHT were ∼100,000. C10H14Cl8 was the most potent SCCP, while C10H17Cl5 was the least potent in both ZFEs and HepG2 cells. An adverse outcome pathway network-based analysis demonstrated model-specific responses, such as xenobiotic metabolism that may be mediated by different nuclear receptor-mediated pathways between HepG2 cells (e.g., CAR and AhR activation) and ZFEs (e.g., PXR activation). Moreover, induced transcriptional changes in ZFEs associated with pathways and molecular initiating events (e.g., activation of nicotinic acetylcholine receptor) suggest that SCCPs may disrupt neural development processes. The cross-model comparison of concentration-dependent transcriptomics represents a promising approach to assess and prioritize SCCPs.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Animals , China , Environmental Monitoring , Humans , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/toxicity , Paraffin/analysis , Transcriptome , Zebrafish/genetics
6.
Environ Sci Technol ; 55(11): 7521-7530, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33983718

ABSTRACT

Increasing pollution in the Arctic poses challenges in terms of geographical and ecological monitoring. The Baffin Bay-Davis Strait (BBDS) region in the Canadian Arctic Archipelago is of particular concern due to the potential for increased shipping traffic and oil exploration. However, data on background contaminants associated with oil exploration/spills/natural seeps (e.g., polycyclic aromatic compounds [PAC]) and measures of potential effects for Arctic birds are limited. We developed a toxicogenomics approach to investigate the background gene expression profiles for two Arctic-breeding seabirds, the thick-billed murre (Uria lomvia) and the black guillemot (Cepphus grylle), which will aid effects-based monitoring efforts. Chemical burdens (53 PACs and 5 trace elements) and transcriptomic profiles (31 genes using a ToxChip PCR array) were examined in liver tissues (n = 30) of each species collected from the Qaqulluit and Akpait National Wildlife Areas in the BBDS region. While chemical and transcriptomic profiles demonstrated low variability across individuals for each species, gene expression signatures were able to distinguish guillemots collected from two distinct colonies. This toxicogenomics approach provides benchmark data for two Arctic seabirds and is promising for future monitoring efforts and strategic environmental assessments in this sensitive ecosystem and areas elsewhere in the circumpolar Arctic that are undergoing change.


Subject(s)
Charadriiformes , Environmental Pollutants , Animals , Arctic Regions , Birds , Breeding , Canada , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Humans , Polymerase Chain Reaction
7.
Regul Toxicol Pharmacol ; 125: 105020, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34333066

ABSTRACT

Omics methodologies are widely used in toxicological research to understand modes and mechanisms of toxicity. Increasingly, these methodologies are being applied to questions of regulatory interest such as molecular point-of-departure derivation and chemical grouping/read-across. Despite its value, widespread regulatory acceptance of omics data has not yet occurred. Barriers to the routine application of omics data in regulatory decision making have been: 1) lack of transparency for data processing methods used to convert raw data into an interpretable list of observations; and 2) lack of standardization in reporting to ensure that omics data, associated metadata and the methodologies used to generate results are available for review by stakeholders, including regulators. Thus, in 2017, the Organisation for Economic Co-operation and Development (OECD) Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST) launched a project to develop guidance for the reporting of omics data aimed at fostering further regulatory use. Here, we report on the ongoing development of the first formal reporting framework describing the processing and analysis of both transcriptomic and metabolomic data for regulatory toxicology. We introduce the modular structure, content, harmonization and strategy for trialling this reporting framework prior to its publication by the OECD.


Subject(s)
Metabolomics/standards , Organisation for Economic Co-Operation and Development/standards , Toxicogenetics/standards , Toxicology/standards , Transcriptome/physiology , Documentation/standards , Humans
8.
Ecotoxicol Environ Saf ; 215: 112140, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33730607

ABSTRACT

Concerns about the estrogenic properties of Bisphenol A (BPA) have led to increased efforts to find BPA replacements. 1,7-bis(4-Hydroxyphenylthio)-3,5-dioxaheptane (DD-70) and 4,4'-(hexafluoroisopropylidene) diphenol (bisphenol AF, BPAF) are two potential chemical substitutes for BPA; however, toxicity data for these chemicals in avian species are limited. To determine effects on avian embryonic viability, development, and hepatic mRNA expression at two distinct developmental periods (mid-incubation [day 11] and term [day 20]), two egg injection studies were performed. Test chemicals were injected into the air cell of unincubated, fertilized chicken eggs at concentrations ranging from 0-88.2 µg/g for DD-70 and 0-114 µg/g egg for BPAF. Embryonic concentrations of DD-70 and BPAF decreased at mid-incubation and term compared to injected concentrations suggesting embryonic metabolism. Exposure to DD-70 (40.9 and 88.2 µg/g) and BPAF (114 µg/g) significantly decreased embryonic viability at mid-incubation. Exposure to DD-70 (88.2 µg/g) decreased embryo mass and increased gallbladder mass, while 114 µg/g BPAF resulted in increased gallbladder mass in term embryos. Expression of hepatic genes related to xenobiotic metabolism, lipid homeostasis, and response to estrogen were altered at both developmental stages. Given the importance of identifying suitable BPA replacements, the present study provides novel, whole animal avian toxicological data for two replacement compounds, DD-70 and BPAF. DATA AVAILABILITY: Data, associated metadata, and calculation tools are available from the corresponding author (doug.crump@canada.ca).


Subject(s)
Benzhydryl Compounds/toxicity , Phenols/toxicity , RNA, Messenger/metabolism , Animals , Chick Embryo , Chickens/metabolism , Estrogens/metabolism , Estrone/metabolism , Liver/drug effects
9.
Environ Sci Technol ; 54(12): 7504-7512, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32459094

ABSTRACT

Using omics approaches to monitor complex environmental mixtures is challenging. Previously, we evaluated in vitro transcriptomic effects of complex organic extracts derived from avian eggs. However, there is a lack of studies using wild species that are naturally exposed to contaminant mixtures. Here, we examined polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) residues and gene expression in embryonic liver tissue of double-crested cormorants (Phalacrocorax auritus) collected from six variably contaminated colonies. Colonies near industrialized areas were distinguished from less contaminated sites based on their PCB and PBDE concentrations. The most variably expressed genes between sites were involved in pathways including, xenobiotic metabolism (e.g., Cyp1a4), lipid/bile acid homeostasis (e.g., Lbfabp), and oxidative stress (e.g., Mt4). Hierarchical clustering, based on relative gene expression, revealed a grouping pattern similar to chemical residue concentrations. Further, partial least squares regression analysis was used to estimate chemical concentrations from transcriptomics data. PCB 155 and BDE 47 showed the highest slopes (0.77 and 0.69, respectively) fitted by linear regression of measured and estimated chemical concentrations. The application of transcriptomics to a wild avian species, naturally exposed to complex chemical mixtures and other stressors, represents a promising means to distinguish and prioritize variably contaminated sites.


Subject(s)
Lakes , Polychlorinated Biphenyls , Animals , Birds/genetics , Environmental Monitoring , Ovum/chemistry , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/toxicity , Toxicogenetics
10.
Proc Natl Acad Sci U S A ; 114(19): E3756-E3765, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28439021

ABSTRACT

Large-scale oil production from oil sands deposits in Alberta, Canada has raised concerns about environmental impacts, such as the magnitude of air pollution emissions. This paper reports compound emission rates (E) for 69-89 nonbiogenic volatile organic compounds (VOCs) for each of four surface mining facilities, determined with a top-down approach using aircraft measurements in the summer of 2013. The aggregate emission rate (aE) of the nonbiogenic VOCs ranged from 50 ± 14 to 70 ± 22 t/d depending on the facility. In comparison, equivalent VOC emission rates reported to the Canadian National Pollutant Release Inventory (NPRI) using accepted estimation methods were lower than the aE values by factors of 2.0 ± 0.6, 3.1 ± 1.1, 4.5 ± 1.5, and 4.1 ± 1.6 for the four facilities, indicating underestimation in the reported VOC emissions. For 11 of the combined 93 VOC species reported by all four facilities, the reported emission rate and E were similar; but for the other 82 species, the reported emission rate was lower than E The median ratio of E to that reported for all species by a facility ranged from 4.5 to 375 depending on the facility. Moreover, between 9 and 53 VOCs, for which there are existing reporting requirements to the NPRI, were not included in the facility emission reports. The comparisons between the emission reports and measurement-based emission rates indicate that improvements to VOC emission estimation methods would enhance the accuracy and completeness of emission estimates and their applicability to environmental impact assessments of oil sands developments.


Subject(s)
Mining , Petroleum , Volatile Organic Compounds/analysis , Alberta
11.
Toxicol Appl Pharmacol ; 378: 114634, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31226361

ABSTRACT

Resource limitations often require risk assessors to extrapolate chronic toxicity from acute tests using assessment factors. Transcriptomic dose-response analysis following short-term exposures may provide a more reliable and biologically-based alternative for estimating chronic toxicity. Here, we demonstrate that transcriptomic dose-response analysis in fish following short-term exposure to endocrine disrupting chemicals (EDCs) provides estimates of chronic toxicity that may be used as protective points-of-departure (POD) for risk assessment. The benchmark dose (BMD) method was used on publicly available datasets (n = 5) to determine transcriptomic PODs in fish exposed to three EDCs (bisphenol A, ethinylestradiol, and diethylstilbestrol). To test for potential bias related to data processing, our analysis compared the effect of different normalization, filtering, and BMD-grouping methods on the transcriptomic PODs. The resulting PODs were then compared to the empirically-derived chronic LOEC of each substance. Normalization and filtering methods had limited impact on the final PODs. However, we found that PODs derived from ontology- or pathway-based gene grouping methods were highly variable, whereas PODs from grouping methods that focused on the most responsive genes were more stable and provided POD estimates that were most similar to the chronic LOEC. Overall, 72% of transcriptomic PODs were within 1 order of magnitude of the chronic LOEC, regardless of data analysis method. When our recommended analysis approach was applied, the concordance improved to 100%. These results suggest that toxicogenomic dose-response analysis has the potential to be a protective decision-support tool for compounds with chronic toxicity, such as EDCs.


Subject(s)
Endocrine Disruptors/adverse effects , Estrogens/adverse effects , Fishes/metabolism , Transcriptome/drug effects , Animals , Benchmarking/methods , Benzhydryl Compounds/adverse effects , Diethylstilbestrol/adverse effects , Dose-Response Relationship, Drug , Gene Expression Profiling/methods , Phenols/adverse effects , Risk Assessment
12.
Toxicol Appl Pharmacol ; 357: 10-18, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30165057

ABSTRACT

The Organisation for Economic Co-operation and Development (OECD) endorses test guidelines (TG) for identifying chemicals that are genotoxic, such as the transgenic rodent gene mutation assay (TG 488). Current OECD TG do not include assays for sperm DNA damage resulting in a critical testing gap. We evaluated the performance of the Sperm Chromatin Structure Assay (SCSA) and the Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate Nick end Labeling (TUNEL) assay to detect sperm DNA damage within the recommended TG 488 protocol. MutaMouse males received 0, 0.5, 1, or 2 mg/kg/day triethylenemelamine (TEM), a multifunctional alkylating agent, for 28 days orally and tissues were collected two (blood) and three (sperm and bone marrow) days later. TEM significantly increased the frequency of lacZ mutants in bone marrow, and of micronuclei (MN) in both reticulocytes (%MN-RET) and normochromatic erythrocytes (%MN-NCE) in a dose-dependent manner (P < 0.05). The percentage of DNA fragmentation index (%DFI) and %TUNEL positive cells demonstrated dose-related increases in sperm (P < 0.05), and the two assay results were strongly correlated (R = 0.9298). Within the same animal, a good correlation was observed between %MN-NCE and %DFI (R = 0.7189). Finally, benchmark dose modelling (BMD) showed comparable BMD10 values among the somatic and germ cell assays. Our results suggest that sperm DNA damage assays can be easily integrated into standard OECD designs investigating genotoxicity in somatic tissues to provide key information on whether a chemical is genotoxic in germ cells and impact its risk assessment.


Subject(s)
DNA Damage/drug effects , Mutagenicity Tests/methods , Organisation for Economic Co-Operation and Development/legislation & jurisprudence , Spermatozoa/drug effects , Triethylenemelamine/toxicity , Animals , Lac Operon , Male , Mice , Mice, Transgenic , Organisation for Economic Co-Operation and Development/standards
13.
Toxicol Appl Pharmacol ; 275(2): 104-12, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24407104

ABSTRACT

We previously demonstrated that in ovo exposure to the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) decreased plasma thyroxine levels, reduced growth parameters, and decreased gallbladder size in chicken embryos. In the current study DNA microarrays were used to evaluate global mRNA expression in liver tissue of male chicken embryos that exhibited the above mentioned effects. Injected doses were dimethyl sulfoxide vehicle control, 7.6 or 45 µg TDCPP/g egg. TDCPP caused significant changes in the expression of five genes at the low dose and 47 genes at the high dose (False Discovery Rate p ≤ 0.1, fold change ≥ 1.5). The gene expression analysis suggested a compromised immune function, a state of cholestatic liver/biliary fibrosis, and disrupted lipid and steroid metabolism. Circulating bile acid levels were elevated, which is an indication of liver dysfunction, and plasma cholesterol levels were reduced; however, hepatic bile acid and cholesterol levels were unaltered. Interactome analyses identified apolipoprotein E, hepatocyte nuclear factor 4 alpha, and peroxisome proliferator-activated receptor alpha as key regulatory molecules involved in the effects of TDCPP. Our results demonstrate a targeted effect of TDCPP toxicity on lipid metabolism, including cholesterol, that helps explain the aforementioned phenotypic effects, as chicken embryos are highly dependent on yolk lipids for growth and maintenance throughout development. Finally, our results are in concordance with the literature that describes TDCPP as a cancer-causing agent, since the majority of dysregulated genes were involved in cancer pathways.


Subject(s)
Gene Expression Regulation, Developmental , Lipid Metabolism/drug effects , Organophosphorus Compounds/toxicity , Steroids/metabolism , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Bile Acids and Salts/blood , Chick Embryo , Cholesterol/blood , Dose-Response Relationship, Drug , Fibrosis , Gene Expression Profiling , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Immune System/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Oligonucleotide Array Sequence Analysis , PPAR alpha/genetics , PPAR alpha/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thyroxine/blood
14.
Front Genet ; 15: 1374791, 2024.
Article in English | MEDLINE | ID: mdl-38784034

ABSTRACT

A key step in assessing the potential human and environmental health risks of industrial and agricultural chemicals is to determine the toxicity point of departure (POD), which is the highest dose level that causes no adverse effect. Transcriptomic POD (tPOD) values have been suggested to accurately estimate toxicity POD values. One step in the most common approach for tPOD determination involves mapping genes to annotated gene sets, a process that might lead to substantial information loss particularly in species with poor gene annotation. Alternatively, methods that calculate tPOD values directly from the distribution of individual gene POD values omit this mapping step. Using rat transcriptome data for 79 molecules obtained from Open TG-GATEs (Toxicogenomics Project Genomics Assisted Toxicity Evaluation System), the hypothesis was tested that methods based on the distribution of all individual gene POD values will give a similar tPOD value to that obtained via the gene set-based method. Gene set-based tPOD values using four different gene set structures were compared to tPOD values from five different individual gene distribution methods. Results revealed a high tPOD concordance for all methods tested, especially for molecules with at least 300 dose-responsive probesets: for 90% of those molecules, the tPOD values from all methods were within 4-fold of each other. In addition, random gene sets based upon the structure of biological knowledge-derived gene sets produced tPOD values with a median absolute fold change of 1.3-1.4 when compared to the original biological knowledge-derived gene set counterparts, suggesting that little biological information is used in the gene set-based tPOD generation approach. These findings indicate using individual gene distributions to calculate a tPOD is a viable and parsimonious alternative to using gene sets. Importantly, individual gene distribution-based tPOD methods do not require knowledge of biological organization and can be applied to any species including those with poorly annotated gene sets.

15.
Environ Pollut ; 356: 124301, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830526

ABSTRACT

Oil sands activities in the Athabasca Oil Sands Region in Alberta, Canada, are large sources of atmospheric NOx and SO2. This study investigated the impact of oil sands emissions on the atmospheric deposition of nitrogen and sulfur species at a downwind site, about 350 km from the oil sands facilities. Measurement data are from the Canadian Air and Precipitation Monitoring Network (CAPMoN) from 2015 to 2019, including ambient concentrations of HNO3, pNO3-, NO2, pNH4+, NH3, SO2, pSO42- and base cations, as well as concentrations of NO3-, SO42-, NH4+, and base cations in precipitation. Sector analysis of air mass back trajectories was conducted to distinguish measurements with different air mass origins. Median atmospheric concentrations and dry deposition fluxes of HNO3, pNO3-, NO2, pNH4+, pSO42-, and SO2 on days when the air masses came from the oil sands sector were significantly greater than those with the "Clean" sector by 34-67%, whereas the difference in NH3 concentration was not significant. Contributions of the oil sands emissions to dry deposition fluxes of these species ranged from 3.8 to 13.1%. The precipitation-weighted mean concentrations of NO3-, SO42-, and NH4+ in samples with the oil sands sector were 76 %, 65 % and 81 % greater than those with the "Clean" sector, respectively. Contributions of the oil sands emissions to wet deposition of NO3-, SO42-, and NH4+ were 12.5 ± 8.9 %, 8.7 ± 4.4 %, and 6.0 ± 3.3 %, respectively. The annual total deposition of nitrogen and sulfur were 1.9 kg-N ha-1 and 0.74 kg-S ha-1, respectively, of which 8.0 ± 3.5 % and 8.7 ± 3.6 % were from oil sands emissions. The total deposition of sulfur and nitrogen did not exceed the critical loads (CL) of acidity, but nitrogen deposition exceeded the CLs of nutrient nitrogen in the region.

16.
Integr Environ Assess Manag ; 20(3): 725-748, 2024 May.
Article in English | MEDLINE | ID: mdl-37417421

ABSTRACT

Despite advances in toxicity testing and the development of new approach methodologies (NAMs) for hazard assessment, the ecological risk assessment (ERA) framework for terrestrial wildlife (i.e., air-breathing amphibians, reptiles, birds, and mammals) has remained unchanged for decades. While survival, growth, and reproductive endpoints derived from whole-animal toxicity tests are central to hazard assessment, nonstandard measures of biological effects at multiple levels of biological organization (e.g., molecular, cellular, tissue, organ, organism, population, community, ecosystem) have the potential to enhance the relevance of prospective and retrospective wildlife ERAs. Other factors (e.g., indirect effects of contaminants on food supplies and infectious disease processes) are influenced by toxicants at individual, population, and community levels, and need to be factored into chemically based risk assessments to enhance the "eco" component of ERAs. Regulatory and logistical challenges often relegate such nonstandard endpoints and indirect effects to postregistration evaluations of pesticides and industrial chemicals and contaminated site evaluations. While NAMs are being developed, to date, their applications in ERAs focused on wildlife have been limited. No single magic tool or model will address all uncertainties in hazard assessment. Modernizing wildlife ERAs will likely entail combinations of laboratory- and field-derived data at multiple levels of biological organization, knowledge collection solutions (e.g., systematic review, adverse outcome pathway frameworks), and inferential methods that facilitate integrations and risk estimations focused on species, populations, interspecific extrapolations, and ecosystem services modeling, with less dependence on whole-animal data and simple hazard ratios. Integr Environ Assess Manag 2024;20:725-748. © 2023 His Majesty the King in Right of Canada and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

17.
Mutat Res ; 741-742: 11-7, 2013.
Article in English | MEDLINE | ID: mdl-23499255

ABSTRACT

Exposure of male mice to genotoxic agents can increase mutation frequencies in their unexposed descendants. This phenomenon, known as transgenerational genomic instability (TGI), can persist for several generations. However, little is known about the underlying mechanisms. Chemically-induced TGI has been demonstrated in non-coding unstable tandem repeat DNA regions, but it is unclear whether it extends to other genetic endpoints. We investigated whether exposure of Muta™Mouse males to a single dose of 75mg/kg N-ethyl-N-nitrosourea (ENU) increased the spontaneous frequency of gene mutations or chromosome damage in their offspring. Treated males were mated with untreated females 3 days, 6 weeks or 10 weeks post-exposure to produce the F1 generation. Offspring were thus conceived from germ cells exposed to ENU as mature spermatozoa, dividing spermatogonia, or spermatogonial stem cells, respectively. F2 mice were generated by mating F1 descendants with untreated partners. Mutations in the lacZ transgene were quantified in bone marrow and micronucleus frequencies were evaluated in red blood cells by flow-cytometry for all F0 and their descendants. LacZ mutant frequencies were also determined in sperm for all exposed males and their male descendants. In F0 males, lacZ mutant frequencies were significantly increased in bone marrow at least 10-fold at all three time points investigated. In sperm, lacZ mutant frequency was significantly increased 7-11-fold after exposure of dividing and stem cell spermatogonia, but not in replication-deficient haploid sperm. Micronucleus frequencies assessed two days after ENU treatment were increased 5-fold in F0 males, but returned to control levels after 10 weeks. Despite the strong mutagenic response in F0 males, pre- and post-meiotic ENU exposure did not significantly increase lacZ mutant or micronucleus frequencies in F1 or F2 offspring. These findings suggest that TGI may not extend to all genetic endpoints and that further investigation of this phenomenon and its health relevance will require multiple measures of genomic damage.


Subject(s)
Alkylating Agents/toxicity , Chromosome Breakage/drug effects , Ethylnitrosourea/toxicity , Genomic Instability/drug effects , Inheritance Patterns/genetics , Prenatal Exposure Delayed Effects/chemically induced , Spermatozoa/drug effects , Animals , DNA Damage , Female , Genomic Instability/genetics , Germ Cells/drug effects , Lac Operon , Male , Mice , Mice, Mutant Strains , Mutation/genetics , Pregnancy , Prenatal Exposure Delayed Effects/genetics
18.
Toxicol Sci ; 195(1): 1-27, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37405877

ABSTRACT

Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.


Subject(s)
Adverse Outcome Pathways , Animals , Humans , Thyroid Hormones , Fishes , Reproduction , Risk Assessment/methods , Mammals
19.
Environ Sci Pollut Res Int ; 29(29): 44769-44778, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35138540

ABSTRACT

Previously, we showed that the chicken LMH cell line cultured as 3D spheroids may be a suitable animal free alternative to primary chicken embryonic hepatocytes (CEH) for avian in vitro chemical screening. In this study, cytotoxicity and mRNA expression were determined in LMH 3D spheroids following exposure to bisphenol A (BPA), five BPA replacement compounds (BPF, TGSH, DD-70, BPAF, BPSIP), and 17ß estradiol (E2). Results were compared to an earlier study that evaluated the same endpoints for these chemicals in CEH. BPA and the replacement compounds had LC50 values ranging from 16.6 to 81.8 µM; DD-70 and BPAF were the most cytotoxic replacements (LC50 = 17.23 ± 4.51 and 16.6 ± 4.78 µM). TGSH and DD-70 modulated the greatest number of genes, although fewer than observed in CEH. Based on the expression of apovitellenin and vitellogenin, BPAF was the most estrogenic compound followed by BPF, BPSIP, and BPA. More estrogen-responsive genes were modulated in LMH spheroids compared to CEH. Concentration-dependent gene expression revealed that DD-70 and BPAF altered genes related to lipid and bile acid regulation. Overall, cytotoxicity and clustering of replacements based on gene expression profiles were similar between LMH spheroids and CEH. In addition to generating novel gene expression data for five BPA replacement compounds in an in vitro avian model, this research demonstrates that LMH spheroids may represent a useful animal free alternative for avian toxicity testing.


Subject(s)
Benzhydryl Compounds , Hepatocytes , Animals , Benzhydryl Compounds/toxicity , Chick Embryo , Chickens/metabolism , Hepatocytes/metabolism , Phenols/toxicity , RNA, Messenger/metabolism
20.
Environ Toxicol Chem ; 41(3): 739-747, 2022 03.
Article in English | MEDLINE | ID: mdl-34913512

ABSTRACT

Organophosphate flame retardants (OPFRs) are used in a variety of products such as clear coats, resins, and plastics; however, research into their toxicological effects is limited. p-Tert-butylphenyl diphenyl phosphate (BPDP) and isopropylphenyl phosphate (IPPP) are two OPFRs that were prioritized for whole-animal toxicological studies based on observed effects in cultured avian hepatocytes in a previous study. The present study investigates the toxicity of BPDP and IPPP in chicken embryos at different developmental stages by evaluating morphological and gene expression endpoints. Chicken eggs were exposed via air cell injection to 0-250 µg/g (nominal) of either compound and then artificially incubated. At day 11 (midincubation), liver samples were collected for mRNA expression analysis; and at day 20 (1 day prehatch), morphological measurements and liver samples for transcriptomic evaluation were collected. At 250 µg/g, gallbladder size was significantly reduced for both compounds, head/bill length and tarsus length were significantly decreased, and liver somatic index was significantly increased following IPPP exposure only. No effects on mortality were observed up to the highest administered concentration for either chemical. Using a ToxChip polymerase chain reaction array, we report significant differences in hepatic gene expression for both compounds and time points; the most pronounced transcriptomic effects occurred at midincubation. Genes related to xenobiotic metabolism, bile acid/cholesterol regulation, and oxidative stress were significantly dysregulated. Given these changes observed throughout avian embryonic development, further research into the long-term effects of BPDP and IPPP are warranted, especially as they pertain to liver cholestasis. Environ Toxicol Chem 2022;41:739-747. © 2021 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry © 2021 SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.


Subject(s)
Chickens , Flame Retardants , Animals , Chick Embryo , Chickens/metabolism , Female , Flame Retardants/metabolism , Flame Retardants/toxicity , Liver/metabolism , Organophosphates/toxicity , Phosphates , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL