Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
Add more filters

Publication year range
1.
Clin Chem Lab Med ; 62(10): 1950-1961, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-38915248

ABSTRACT

OBJECTIVES: Metabolomics aims for comprehensive characterization and measurement of small molecule metabolites (<1700 Da) in complex biological matrices. This study sought to assess the current understanding and usage of metabolomics in laboratory medicine globally and evaluate the perception of its promise and future implementation. METHODS: A survey was conducted by the IFCC metabolomics working group that queried 400 professionals from 79 countries. Participants provided insights into their experience levels, knowledge, and usage of metabolomics approaches, along with detailing the applications and methodologies employed. RESULTS: Findings revealed a varying level of experience among respondents, with varying degrees of familiarity and utilization of metabolomics techniques. Targeted approaches dominated the field, particularly liquid chromatography coupled to a triple quadrupole mass spectrometer, with untargeted methods also receiving significant usage. Applications spanned clinical research, epidemiological studies, clinical diagnostics, patient monitoring, and prognostics across various medical domains, including metabolic diseases, endocrinology, oncology, cardiometabolic risk, neurodegeneration and clinical toxicology. CONCLUSIONS: Despite optimism for the future of clinical metabolomics, challenges such as technical complexity, standardization issues, and financial constraints remain significant hurdles. The study underscores the promising yet intricate landscape of metabolomics in clinical practice, emphasizing the need for continued efforts to overcome barriers and realize its full potential in patient care and precision medicine.


Subject(s)
Metabolomics , Metabolomics/methods , Humans , Surveys and Questionnaires , Chromatography, Liquid
2.
Eur Heart J ; 44(18): 1636-1646, 2023 05 07.
Article in English | MEDLINE | ID: mdl-36881667

ABSTRACT

AIMS: Ketone bodies (KB) are an important alternative metabolic fuel source for the myocardium. Experimental and human investigations suggest that KB may have protective effects in patients with heart failure. This study aimed to examine the association between KB and cardiovascular outcomes and mortality in an ethnically diverse population free from cardiovascular disease (CVD). METHODS AND RESULTS: This analysis included 6796 participants (mean age 62 ± 10 years, 53% women) from the Multi-Ethnic Study of Atherosclerosis. Total KB was measured by nuclear magnetic resonance spectroscopy. Multivariable-adjusted Cox proportional hazard models were used to examine the association of total KB with cardiovascular outcomes. At a mean follow-up of 13.6 years, after adjusting for traditional CVD risk factors, increasing total KB was associated with a higher rate of hard CVD, defined as a composite of myocardial infarction, resuscitated cardiac arrest, stroke, and cardiovascular death, and all CVD (additionally included adjudicated angina) [hazard ratio, HR (95% confidence interval, CI): 1.54 (1.12-2.12) and 1.37 (1.04-1.80) per 10-fold increase in total KB, respectively]. Participants also experienced an 87% (95% CI: 1.17-2.97) increased rate of CVD mortality and an 81% (1.45-2.23) increased rate of all-cause mortality per 10-fold increase in total KB. Moreover, a higher rate of incident heart failure was observed with increasing total KB [1.68 (1.07-2.65), per 10-fold increase in total KB]. CONCLUSION: The study found that elevated endogenous KB in a healthy community-based population is associated with a higher rate of CVD and mortality. Ketone bodies could serve as a potential biomarker for cardiovascular risk assessment.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Heart Failure , Myocardial Infarction , Stroke , Humans , Female , Middle Aged , Aged , Male , Cardiovascular Diseases/epidemiology , Atherosclerosis/epidemiology , Proportional Hazards Models , Heart Failure/epidemiology , Risk Factors
3.
Molecules ; 29(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338310

ABSTRACT

Lipoprotein X (LP-X) is an abnormal cholesterol-rich lipoprotein particle that accumulates in patients with cholestatic liver disease and familial lecithin-cholesterol acyltransferase deficiency (FLD). Because there are no high-throughput diagnostic tests for its detection, a proton nuclear magnetic resonance (NMR) spectroscopy-based method was developed for use on a clinical NMR analyzer commonly used for the quantification of lipoproteins and other cardiovascular biomarkers. The LP-X assay was linear from 89 to 1615 mg/dL (cholesterol units) and had a functional sensitivity of 44 mg/dL. The intra-assay coefficient of variation (CV) varied between 1.8 and 11.8%, depending on the value of LP-X, whereas the inter-assay CV varied between 1.5 and 15.4%. The assay showed no interference with bilirubin levels up to 317 mg/dL and was also unaffected by hemolysis for hemoglobin values up to 216 mg/dL. Samples were stable when stored for up to 6 days at 4 °C but were not stable when frozen. In a large general population cohort (n = 277,000), LP-X was detected in only 50 subjects. The majority of LP-X positive cases had liver disease (64%), and in seven cases, had genetic FLD (14%). In summary, we describe a new NMR-based assay for LP-X, which can be readily implemented for routine clinical laboratory testing.


Subject(s)
Cholestasis , Liver Diseases , Humans , Lipoprotein-X , Cholestasis/diagnosis , Cholesterol , Magnetic Resonance Spectroscopy
4.
Clin Chem ; 69(1): 41-47, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36366949

ABSTRACT

BACKGROUND: Despite recent large-scale discordance studies showing definitively that atherosclerotic cardiovascular disease (ASCVD) risk correlates better with apolipoprotein B (apoB) than with low-density lipoprotein cholesterol (LDL-C), the latter remains the recommended metric for guiding lipid-lowering treatment decisions in the United States. A major barrier to change, in this regard, is the lack of guideline-recommended apoB treatment targets. We developed a simple method to "translate" apoB values into population-equivalent LDL-C units, allowing apoB-based treatment decisions to be made using LDL-C targets. METHODS: Sequentially collected, population-based samples underwent standard lipid panel analysis and apoB testing by immunoassay. Those with triglycerides greater than 1000 mg/dl were excluded, leaving a study cohort of 15 153 individuals. RESULTS: Linear regression of calculated LDL-C values against percentile-equivalent apoB values yielded an equation to convert apoB into percentile-equivalent LDL-C units: [LDL-C equivalents = 1.38(apoB) - 29] (R2 = 0.999). The extent of discordance between LDL-C and apoB was examined in subgroups with similar LDL-C, ranging from very low (55-70 mg/dL) to very high (175-190 mg/dL). Among individuals with very low LDL-C, 40% had discordantly higher apoB, indicating higher ASCVD risk. Of those with very high LDL-C, 49% had discordantly lower apoB. Across the range, a minority of patients (25%-40%) had concordant levels of apoB, confirming that discordance between these biomarkers is highly prevalent. Similar results were found in discordance analysis between apoB and non-high-density lipoprotein cholesterol (HDL-C). CONCLUSIONS: Providing visibility to discrepancies among LDL-C, non-HDL-C, and apoB should help to facilitate more rapid and widespread adoption of apoB for managing ASCVD risk.


Subject(s)
Atherosclerosis , Cholesterol , Humans , Cholesterol, LDL , Apolipoproteins B , Triglycerides , Lipoproteins , Clinical Decision-Making , Cholesterol, HDL
5.
Clin Chem ; 69(1): 80-87, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36254612

ABSTRACT

BACKGROUND: GlycA is a nuclear magnetic resonance (NMR) signal in plasma that correlates with inflammation and cardiovascular outcomes in large data sets. The signal is thought to originate from N-acetylglucosamine (GlcNAc) residues of branched plasma N-glycans, though direct experimental evidence is limited. Trace element concentrations affect plasma glycosylation patterns and may thereby also influence GlycA. METHODS: NMR GlycA signal was measured in plasma samples from 87 individuals and correlated with MALDI-MS N-glycomics and trace element analysis. We further evaluated the genetic association with GlycA at rs13107325, a single nucleotide polymorphism resulting in a missense variant within SLC39A8, a manganese transporter that influences N-glycan branching, both in our samples and existing genome-wide association studies data from 22 835 participants in the Women's Health Study (WHS). RESULTS: GlycA signal was correlated with both N-glycan branching (r2 ranging from 0.125-0.265; all P < 0.001) and copper concentration (r2 = 0.348, P < 0.0001). In addition, GlycA levels were associated with rs13107325 genotype in the WHS (ß [standard error of the mean] = -4.66 [1.2674], P = 0.0002). CONCLUSIONS: These results provide the first direct experimental evidence linking the GlycA NMR signal to N-glycan branching commonly associated with acute phase reactive proteins involved in inflammation.


Subject(s)
Inflammation , Female , Humans , Acute-Phase Proteins/analysis , Acute-Phase Proteins/chemistry , Biomarkers/chemistry , Genome-Wide Association Study , Inflammation/diagnosis , Polysaccharides/chemistry , Trace Elements , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/chemistry , Cation Transport Proteins/genetics
6.
Hepatology ; 75(4): 968-982, 2022 04.
Article in English | MEDLINE | ID: mdl-34662439

ABSTRACT

BACKGROUND AND AIMS: Lipoprotein Z (LP-Z) is an abnormal free cholesterol (FC)-enriched LDL-like particle discovered from patients with cholestatic liver disease. This study aims to define the diagnostic value of LP-Z in alcohol-associated hepatitis (AH) and interrogate the biology behind its formation. APPROACH AND RESULTS: We measured serum levels of LP-Z using nuclear magnetic resonance spectroscopy, a well-established clinical assay. Serum levels of LP-Z were significantly elevated in four AH cohorts compared with control groups, including heavy drinkers and patients with cirrhosis. We defined a Z-index, calculated by the ratio of LP-Z to total apolipoprotein B-containing lipoproteins, representing the degree of deviation from normal VLDL metabolism. A high Z-index was associated with 90-day mortality independent from the Model for End-Stage Liver Disease (MELD) and provided added prognosticative value. Both a Z-index ≤ 0.6 and a decline of Z-index by ≥0.1 in 2 weeks predicted 90-day survival. RNA-sequencing analyses of liver tissues demonstrated an inverse association in the expression of enzymes responsible for the extrahepatic conversion of VLDL to LDL and AH disease severity, which was further confirmed by the measurement of serum enzyme activity. To evaluate whether the FC in LP-Z could contribute to the pathogenesis of AH, we found significantly altered FC levels in liver explant of patients with AH. Furthermore, FC in reconstituted LP-Z particles caused direct toxicity to human hepatocytes in a concentration-dependent manner, supporting a pathogenic role of FC in LP-Z. CONCLUSIONS: Impaired lipoprotein metabolism in AH leads to the accumulation of LP-Z in the circulation, which is hepatotoxic from excessive FC. A Z-index ≤ 0.6 predicts 90-day survival independent from conventional biomarkers for disease prognostication.


Subject(s)
End Stage Liver Disease , Hepatitis, Alcoholic , Apolipoproteins B , Cholesterol , Humans , Lipoprotein(a) , Lipoproteins , Severity of Illness Index
7.
Arterioscler Thromb Vasc Biol ; 42(10): 1272-1282, 2022 10.
Article in English | MEDLINE | ID: mdl-35979837

ABSTRACT

BACKGROUND: Aortic valve calcification (AVC) shares pathological features with atherosclerosis. Lipoprotein components have been detected in aortic valve tissue, including HDL (high-density lipoprotein). HDL measures have inverse associations with cardiovascular disease, but relationships with long-term AVC progression are unclear. We investigated associations of HDL cholesterol, HDL-particle number and size, apoC3-defined HDL subtypes, and, secondarily, CETP (cholesteryl ester transfer protein) mass and activity, with long-term incidence and progression of AVC. METHODS: We used linear mixed-effects models to evaluate the associations of baseline HDL indices with AVC. AVC was quantified by Agatston scoring of up to 3 serial computed tomography scans over a median of 8.9 (maximum 11.2) years of follow-up in the Multi-Ethnic Study of Atherosclerosis (n=6784). RESULTS: After adjustment, higher concentrations of HDL-C (high-density lipoprotein cholesterol), HDL-P (HDL particles), large HDL-P, and apoC3-lacking HDL-C were significantly associated with lower incidence/progression of AVC. Neither small or medium HDL-P nor apoC3-containing HDL-C was significantly associated with AVC incidence/progression. When included together, a significant association was observed only for HDL-C, but not for HDL-P. Secondary analyses showed an inverse relationship between CETP mass, but not activity, and AVC incidence/progression. In exploratory assessments, inverse associations for HDL-C, HDL-P, large HDL-P, and apoC3-lacking HDL with AVC incidence/progression were more pronounced for older, male, and White participants. ApoC3-containing HDL-C only showed a positive association with AVC in these subgroups. CONCLUSIONS: In a multiethnic population, HDL-C, HDL-P, large HDL-P, and apoC3-lacking HDL-C were inversely associated with long-term incidence and progression of AVC. Further investigation of HDL composition and mechanisms could be useful in understanding pathways that slow AVC.


Subject(s)
Aortic Valve Stenosis , Atherosclerosis , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Aortic Valve Stenosis/epidemiology , Atherosclerosis/complications , Atherosclerosis/diagnostic imaging , Atherosclerosis/epidemiology , Calcinosis , Cholesterol Ester Transfer Proteins , Cholesterol, HDL , Humans , Incidence , Lipoproteins, HDL , Male
8.
J Lipid Res ; 63(12): 100299, 2022 12.
Article in English | MEDLINE | ID: mdl-36272600

ABSTRACT

The cumulative exposure to apolipoprotein B (apoB)-containing lipoproteins in the blood during early adult life is a central determinant of atherosclerotic cardiovascular disease risk. To date, the patterns and rates of change in apoB through early adult life have not been described. Here, we used NMR to measure apoB concentrations in up to 3055 Coronary Artery Risk Development in Young Adults (CARDIA) Study participants who attended the years 2 (Y2), 7 (Y7), 15 (Y15), 20 (Y20), and 30 (Y30) exams. We examined individual-level spaghetti plots of apoB change, and we calculated average annualized rate of apoB concentration change during follow-up. We used multivariable linear regression models to assess the associations between CARDIA participant characteristics and annualized rates of apoB change. Male sex, higher measures of adiposity, lower HDL-C, lower Healthy Eating Index, and higher blood pressures were observed more commonly in individuals with higher apoB level at Y2 and Y20. Inter- and intra-individual variation in apoB concentration over time was substantial-while the mean (SD) rate of change was 0.52 (1.0) mg/dl/year, the range of annualized rates of change was -6.26 to +9.21 mg/dl/year. At baseline, lower first apoB measurement, female sex, White race, lower BMI, and current tobacco use were associated with apoB increase. We conclude that the significant variance in apoB level over time and the modest association between baseline measures and rates of apoB change suggest that the ability to predict an individual's future apoB serum concentrations, and thus their cumulative apoB exposure, after a one-time assessment in young adulthood is low.


Subject(s)
Apolipoproteins B , Coronary Vessels , Young Adult , Humans , Male , Female , Adult , Risk Factors , Heart , Obesity
9.
Circulation ; 142(7): 657-669, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32804568

ABSTRACT

BACKGROUND: High-density lipoprotein (HDL) cholesterol concentration (HDL-C) is an established atheroprotective marker, in particular for coronary artery disease; however, HDL particle concentration (HDL-P) may better predict risk. The associations of HDL-C and HDL-P with ischemic stroke and myocardial infarction (MI) among women and Blacks have not been well studied. We hypothesized that HDL-P would consistently be associated with MI and stroke among women and Blacks compared with HDL-C. METHODS: We analyzed individual-level participant data in a pooled cohort of 4 large population studies without baseline atherosclerotic cardiovascular disease: DHS (Dallas Heart Study; n=2535), ARIC (Atherosclerosis Risk in Communities; n=1595), MESA (Multi-Ethnic Study of Atherosclerosis; n=6632), and PREVEND (Prevention of Renal and Vascular Endstage Disease; n=5022). HDL markers were analyzed in adjusted Cox proportional hazard models for MI and ischemic stroke. RESULTS: In the overall population (n=15 784), HDL-P was inversely associated with the combined outcome of MI and ischemic stroke, adjusted for cardiometabolic risk factors (hazard ratio [HR] for quartile 4 [Q4] versus quartile 1 [Q1], 0.64 [95% CI, 0.52-0.78]), as was HDL-C (HR for Q4 versus Q1, 0.76 [95% CI, 0.61-0.94]). Adjustment for HDL-C did not attenuate the inverse relationship between HDL-P and atherosclerotic cardiovascular disease, whereas adjustment for HDL-P attenuated all associations between HDL-C and events. HDL-P was inversely associated with the individual end points of MI and ischemic stroke in the overall population, including in women. HDL-P was inversely associated with MI among White participants but not among Black participants (HR for Q4 versus Q1 for Whites, 0.49 [95% CI, 0.35-0.69]; for Blacks, 1.22 [95% CI, 0.76-1.98]; Pinteraction=0.001). Similarly, HDL-C was inversely associated with MI among White participants (HR for Q4 versus Q1, 0.53 [95% CI, 0.36-0.78]) but had a weak direct association with MI among Black participants (HR for Q4 versus Q1, 1.75 [95% CI, 1.08-2.83]; Pinteraction<0.0001). CONCLUSIONS: Compared with HDL-C, HDL-P was consistently associated with MI and ischemic stroke in the overall population. Differential associations of both HDL-C and HDL-P for MI by Black ethnicity suggest that atherosclerotic cardiovascular disease risk may differ by vascular domain and ethnicity. Future studies should examine individual outcomes separately.


Subject(s)
Black or African American , Cholesterol, HDL/blood , Coronary Artery Disease , Ischemic Stroke , Myocardial Infarction , White People , Adult , Aged , Coronary Artery Disease/blood , Coronary Artery Disease/ethnology , Female , Humans , Ischemic Stroke/blood , Ischemic Stroke/ethnology , Male , Middle Aged , Myocardial Infarction/blood , Myocardial Infarction/ethnology
10.
Eur J Clin Invest ; 51(5): e13468, 2021 May.
Article in English | MEDLINE | ID: mdl-33616911

ABSTRACT

BACKGROUND: In the failing heart, energy metabolism is shifted towards increased ketone body oxidation. Nevertheless, the association of beta-hydroxybutyrate (ß-OHB) with development of heart failure (HF) remains unclear. We investigated the association between plasma ß-OHB and the risk of HF in a prospective population-based cohort. DESIGN: Plasma ß-OHB concentrations were measured in 6134 participants of the PREVEND study. Risk of incident HF with reduced (HFrEF) or preserved (HFpEF) ejection fraction was estimated using multivariable-adjusted Cox regression models. RESULTS: During median follow-up for 8.2 years, 227 subjects were diagnosed with HF (137 with HFrEF; 90 with HFpEF). Cox regression analyses revealed a significant association of higher ß-OHB concentrations with incident HF (HR per 1 standard deviation increase, 1.40 (95% CI: 1.21-1.63; P < .001), which was largely attributable to HFrEF. In women, the hazard ratio (HR) for HFrEF per 1 standard deviation increase in ß-OHB was 1.73 (95% confidence interval (CI): 1.17-2.56, P = .005) in age, BMI, type 2 diabetes, hypertension, myocardial infarction, smoking, alcohol consumption, total cholesterol, HDL-C, triglycerides, glucose, eGFR and UAE adjusted analysis. In men, in the same fully adjusted analysis, the HR was 1.14 (CI: 0.86-1.53, P = .36) (P < .01 for sex interaction). In N-terminal pro-brain natriuretic peptide (NT-proBNP)-stratified analysis, the age-adjusted association with HF was significant in women with higher NT-proBNP levels (P = .008). CONCLUSIONS: This prospective study suggests that high plasma concentrations of ß-OHB are associated with an increased risk of HFrEF, particularly in women. The mechanisms responsible for the sex differences of this association warrant further study.


Subject(s)
3-Hydroxybutyric Acid/blood , Heart Failure/blood , Adult , Aged , Cohort Studies , Female , Heart Failure/epidemiology , Heart Failure/physiopathology , Humans , Male , Middle Aged , Netherlands , Proportional Hazards Models , Sex Factors , Stroke Volume
11.
Lipids Health Dis ; 20(1): 170, 2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34838008

ABSTRACT

BACKGROUND: Dyslipoproteinemias can be classified by their distinct lipoprotein patterns, which helps determine atherosclerotic cardiovascular disease (ASCVD) risk and directs lipid management but this has required advanced laboratory testing. OBJECTIVE: To develop a new algorithm for classifying lipoprotein disorders that only relies on the standard lipid panel. METHODS: Lipid thresholds for defining the different lipoprotein phenotypes were derived for Non-High-Density Lipoprotein-Cholesterol (NonHDL-C) and Triglycerides (TG) to be concordant when possible with the current US Multi-Society guidelines for blood cholesterol management. RESULTS: The new classification method categorizes patients into all the classical Fredrickson-like phenotypes except for Type III dysbetalipoproteinemia. In addition, a new hypolipidemic phenotype (Type VI) due to genetic mutations in apoB-metabolism is described. The validity of the new algorithm was confirmed by lipid analysis by NMR (N = 11,365) and by concordance with classification by agarose gel electrophoresis/beta-quantification (N = 5504). Furthermore, based on the Atherosclerosis Risk in Communities (ARIC) cohort (N = 14,742), the lipoprotein phenotypes differ in their association with ASCVD (TypeV>IIb > IVb > IIa > IVa > normolipidemic) and can be used prognostically as risk enhancer conditions in the management of patients. CONCLUSIONS: We describe a clinically useful lipoprotein phenotyping system that is only dependent upon the standard lipid panel. It, therefore, can be easily implemented for increasing compliance with current guidelines and for improving the care of patients at risk for ASCVD.


Subject(s)
Dyslipidemias/classification , Lipids/blood , Adult , Algorithms , Dyslipidemias/blood , Female , Heart Disease Risk Factors , Humans , Lipoproteins/blood , Male , Phenotype , Triglycerides/blood
12.
Lipids Health Dis ; 19(1): 247, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33261644

ABSTRACT

BACKGROUND: Standard lipid panel assays employing chemical/enzymatic methods measure total cholesterol (TC), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C), from which are calculated estimates of low-density lipoprotein cholesterol (LDL-C). These lipid measures are used universally to guide management of atherosclerotic cardiovascular disease risk. Apolipoprotein B (apoB) is generally acknowledged to be superior to LDL-C for lipid-lowering therapeutic decision-making, but apoB immunoassays are performed relatively infrequently due to the added analytic cost. The aim of this study was to develop and validate the performance of a rapid, high-throughput, reagent-less assay producing an "Extended Lipid Panel" (ELP) that includes apoB, using the Vantera® nuclear magnetic resonance (NMR) analyzer platform already deployed clinically for lipoprotein particle and other testing. METHODS: Partial least squares regression models, using as input a defined region of proton NMR spectra of plasma or serum, were created to simultaneously quantify TC, TG, HDL-C, and apoB. Large training sets (n > ~ 1000) of patient sera analyzed independently for lipids and apoB by chemical methods were employed to ensure prediction models reflect the wide lipid compositional diversity of the population. The analytical performance of the NMR ELP assay was comprehensively evaluated. RESULTS: Excellent agreement was demonstrated between chemically-measured and ELP assay values of TC, TG, HDL-C and apoB with correlation coefficients ranging from 0.980 to 0.997. Within-run precision studies measured using low, medium, and high level serum pools gave coefficients of variation for the 4 analytes ranging from 1.0 to 3.8% for the low, 1.0 to 1.7% for the medium, and 0.9 to 1.3% for the high pools. Corresponding values for within-lab precision over 20 days were 1.4 to 3.6%, 1.2 to 2.3%, and 1.0 to 1.9%, respectively. Independent testing at three sites over 5 days produced highly consistent assay results. No major interference was observed from 38 endogenous or exogenous substances tested. CONCLUSIONS: Extensive assay performance evaluations validate that the NMR ELP assay is efficient, robust, and substantially equivalent to standard chemistry assays for the clinical measurement of lipids and apoB. Routine reporting of apoB alongside standard lipid measures could facilitate more widespread utilization of apoB for clinical decision-making.


Subject(s)
Apolipoproteins B/blood , Lipids/blood , Magnetic Resonance Spectroscopy/methods , Cholesterol/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Decision Making , Humans , Immunoassay , Least-Squares Analysis , Linear Models , Reference Standards , Regression Analysis , Reproducibility of Results , Temperature , Triglycerides/blood
14.
Am Heart J ; 202: 27-32, 2018 08.
Article in English | MEDLINE | ID: mdl-29803983

ABSTRACT

BACKGROUND: GlycA is an inflammatory marker that is raised in patients with cardiometabolic diseases and associated with cardiovascular (CV) events. We sought to determine if GlycA adds independent value to hsCRP for CV risk prediction. METHODS: Patients in the Intermountain Heart Collaborative Study who underwent coronary angiography and had plasma GlycA and hsCRP levels were studied (n = 2996). Patients were followed for 7.0 ±â€¯2.8 years. GlycA and hsCRP were moderately correlated (r = 0.46, P < .0001). GlycA and hsCRP concentrations were stratified into high and low categories by their median values. Multivariable cox hazard regression was utilized to determine the associations of GlycA quartiles, as well as high and low categories of GlycA and hsCRP, with major adverse cardiovascular events (MACE) defined as the composite of death, myocardial infarction (MI), heart failure (HF) hospitalization, and stroke. RESULTS: The highest GlycA quartile was associated with future MACE [HR: 1.43; 95% CI: 1.22-1.69; P < .0001]. Patients with high GlycA and high hsCRP had more diabetes, hyperlipidemia, hypertension, HF, renal failure and MI, but not coronary artery disease. High GlycA and hsCRP (H/H) versus low GlycA and hsCRP (L/L) was associated with MACE, death and HF hospitalization, but not MI or stroke. Combined MACE rates were 33.5%, 41.3%, 35.7% and 49.1% for L/L, L/H, H/L and H/H categories of GlycA/hsCRP, respectively (P-trend < .0001). The interaction between GlycA and hsCRP was significant for the outcome of death (P = .03). CONCLUSION: In this study, levels of GlycA and hsCRP were independent and additive markers of risk for MACE, death and HF hospitalization.


Subject(s)
Acetylglucosamine/blood , Biomarkers/blood , C-Reactive Protein/analysis , Cardiovascular Diseases/diagnosis , Glucosamine/blood , Glycoproteins/blood , Inflammation/diagnosis , Aged , Cardiovascular Diseases/mortality , Coronary Angiography , Coronary Artery Disease/blood , Coronary Artery Disease/diagnostic imaging , Enzyme-Linked Immunosorbent Assay , Female , Follow-Up Studies , Humans , Inflammation/blood , Magnetic Resonance Spectroscopy , Male , Middle Aged , Prognosis , Proportional Hazards Models , Risk Assessment/methods
15.
Ann Rheum Dis ; 77(7): 988-995, 2018 07.
Article in English | MEDLINE | ID: mdl-29463520

ABSTRACT

OBJECTIVES: Lipid profiles are altered by active disease in patients with rheumatoid arthritis (RA) and may be further modified by treatment with Janus kinase inhibitors and other disease-modifying antirheumatic drugs. METHODS: Lipid data were analysed from phase II and III studies of 4 mg (n=997) and 2 mg (n=479) oral baricitinib administered once daily in patients with moderate-to-severe active RA. Lipoprotein particle size and number and GlycA were evaluated with nuclear magnetic resonance in one phase III study. The effect of statin therapy on lipid levels was evaluated in patients on statins at baseline and in patients who initiated statins during the study. RESULTS: Treatment with baricitinib was associated with increased levels of total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides, but no significant change in LDL-C:HDL-C ratio. Lipid levels plateaued after 12 weeks of treatment. Baricitinib treatment increased large LDL and decreased small, dense LDL particle numbers and GlycA. Lipid changes from baseline were not significantly different between baseline statin users and non-users. In patients who initiated statin therapy during the study, LDL-C, triglycerides (baricitinib 4 mg only) and apolipoprotein B decreased to pre-baricitinib levels; HDL-C and apolipoprotein A-I levels remained elevated. CONCLUSIONS: Baricitinib was associated with increased LDL-C, HDL-C and triglyceride levels, but did not alter the LDL-C:HDL-C ratio. Evaluation of cardiovascular event rates during long-term treatment is warranted to further characterise these findings and their possible clinical implications. TRIAL REGISTRATION NUMBER: NCT00902486, NCT01469013, NCT01185353, NCT01721044, NCT01721057, NCT01711359, NCT01710358, NCT01885078.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Azetidines/administration & dosage , Cholesterol, HDL/drug effects , Cholesterol, LDL/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Lipid Metabolism/drug effects , Sulfonamides/administration & dosage , Administration, Oral , Adult , Aged , Antirheumatic Agents/administration & dosage , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Male , Middle Aged , Purines , Pyrazoles , Randomized Controlled Trials as Topic , Reference Values , Severity of Illness Index , Treatment Outcome
16.
Clin Chem ; 64(10): 1485-1495, 2018 10.
Article in English | MEDLINE | ID: mdl-30087138

ABSTRACT

BACKGROUND: Despite the usefulness of standard lipid parameters for cardiovascular disease risk assessment, undiagnosed residual risk remains high. Advanced lipoprotein testing (ALT) was developed to provide physicians with more predictive diagnostic tools. ALT methods separate and/or measure lipoproteins according to different parameters such as size, density, charge, or content, and equivalence of results across methods has not been demonstrated. METHODS: Through a split-sample study, 25 clinical specimens (CSs) were assayed in 10 laboratories before and after freezing using the major ALT methods for non-HDL particles (non-HDL-P) or apolipoprotein B-100 (apoB-100) measurements with the intent to assess their comparability in the current state of the art. RESULTS: The overall relative standard deviation (CV) of non-HDL-P and apoB-100 concentrations measured by electrospray differential mobility analysis, nuclear magnetic resonance, immunonephelometry, LC-MS/MS, and vertical autoprofile in the 25 frozen CSs was 14.1%. Within-method comparability was heterogeneous, and CV among 4 different LC-MS/MS methods was 11.4% for apoB-100. No significant effect of freezing and thawing was observed. CONCLUSIONS: This study demonstrates that ALT methods do not yet provide equivalent results for the measurement of non-HDL-P and apoB-100. The better agreement between methods harmonized to the WHO/IFCC reference material suggests that standardizing ALT methods by use of a common commutable calibrator will improve cross-platform comparability. This study provides further evidence that LC-MS/MS is the most suitable candidate reference measurement procedure to standardize apoB-100 measurement, as it would provide results with SI traceability. The absence of freezing and thawing effect suggests that frozen serum pools could be used as secondary reference materials.


Subject(s)
Apolipoprotein B-100/blood , Cardiovascular Diseases/blood , Clinical Laboratory Techniques , Lipoproteins, LDL/blood , Lipoproteins, VLDL/blood , Calibration , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Humans , Reference Standards , Sensitivity and Specificity , Specimen Handling
17.
J Lipid Res ; 58(9): 1916-1923, 2017 09.
Article in English | MEDLINE | ID: mdl-28743729

ABSTRACT

We aimed to determine the risk factors associated with the depletion of large HDL particles and enrichment of small HDL particles observed in adolescents with T2D. Four groups of adolescents were recruited: 1) lean insulin-sensitive (L-IS), normal BMI and no insulin resistance; 2) lean insulin-resistant (L-IR), normal BMI but insulin resistance (fasting insulin levels ≥ 25 mU/ml and homeostatic model assessment of insulin resistance ≥ 6); 3) obese insulin-sensitive (O-IS), BMI ≥ 95th percentile and no insulin resistance; and 4) obese insulin-resistant (O-IR), BMI ≥ 95th percentile and insulin resistance. Plasma was separated by using gel-filtration chromatography to assess the HDL subspecies profile and compared with that of obese adolescents with T2D (O-T2D). Large HDL subspecies were significantly lower across groups from L-IS > L-IR > O-IS > O-IR > O-T2D (P < 0.0001); small HDL particles were higher from L-IS to O-T2D (P < 0.0001); and medium-sized particles did not differ across groups. The contributions of obesity, insulin resistance, and diabetes to HDL subspecies profile were between 23% and 28%, 1% and 10%, and 4% and 9%, respectively. Obesity is the major risk factor associated with the altered HDL subspecies profile previously reported in adolescents with T2D, with smaller contributions from insulin resistance and diabetes.


Subject(s)
Lipoproteins, HDL/metabolism , Metabolic Diseases/complications , Obesity/complications , Obesity/metabolism , Adolescent , Female , Glucose/metabolism , Humans , Insulin Resistance , Male , Young Adult
18.
J Transl Med ; 15(1): 219, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29078787

ABSTRACT

BACKGROUND: GlycA is a novel spectroscopic marker of systemic inflammation with low intra-individual variability and other attributes favoring its clinical use in patients with chronic inflammatory and autoimmune diseases. GlycA is unique in its composite nature, reflecting both increased glycan complexity and circulating acute phase protein levels during local and systemic inflammation. Recent studies of GlycA from cross-sectional, observational and interventional studies have been highly informative, demonstrating that GlycA is elevated in acute and chronic inflammation, predicts death in healthy individuals and is associated with disease severity in patients with chronic inflammatory diseases such as rheumatoid arthritis, psoriasis and lupus. Moreover, following treatment with biological therapy in psoriasis, reduction in skin disease severity was accompanied by a decrease in GlycA levels and improvement in vascular inflammation. CONCLUSIONS: Collectively, these findings suggest GlycA is a marker that tracks systemic inflammation and subclinical vascular inflammation. However, larger prospective studies and randomized trials are necessary in order to assess the impact of novel therapies on GlycA in patients with chronic inflammatory conditions, which may be concomitant with cardiovascular benefits.


Subject(s)
Acetylglucosamine/blood , Cardiovascular Diseases/blood , Inflammation/blood , Biomarkers/blood , C-Reactive Protein/metabolism , Cardiovascular Diseases/mortality , Humans , Risk Factors
19.
Cardiovasc Diabetol ; 16(1): 73, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28587667

ABSTRACT

BACKGROUND: In Phase 2/3 studies of basal insulin peglispro (BIL) compared to insulin glargine, patients with type 1 or type 2 diabetes previously treated with insulin and randomized to BIL had an increase in serum triglycerides (TGs). To further understand lipoprotein changes, a lipid substudy which included liver fat content was designed to assess relationships among the measured variables for each diabetes cohort and compare the hepato-preferential insulin BIL to glargine. METHODS: In three cohorts of patients with diabetes (type 1, type 2 insulin naïve, and type 2 previously on insulin; n = 652), liver fat content (LFC) was determined by magnetic resonance imaging (MRI) and blood lipids were analyzed by nuclear magnetic resonance (NMR) spectroscopy at baseline, 26 and 52 weeks of treatment. Apolipoproteins, adiponectin, and other lipid parameters were also measured. Descriptive statistics were done, as well as correlation analyses to look for relationships among LFC and lipoproteins or other lipid measures. RESULTS: In patients with type 1 diabetes treated with BIL, but not glargine, small LDL and medium and large VLDL subclass concentrations increased from baseline. In patients with type 2 diabetes previously on insulin and treated with BIL, large VLDL concentration increased from baseline. In insulin naïve patients with type 2 diabetes treated with BIL, there were very few changes, while in those treated with glargine, small LDL and large VLDL decreased from baseline. Baseline LFC correlated significantly in one or more cohorts with baseline large VLDL, small LDL, VLDL size, and Apo C3. Changes in LFC by treatment showed generally weak correlations with lipoprotein changes, except for positive correlations with large VLDL and VLDL size. Adiponectin was higher in patients with type 1 diabetes compared to patients with type 2 diabetes, but decreased with treatment with both BIL and glargine. CONCLUSIONS: The lipoprotein changes were in line with the observed changes in serum TGs; i.e., the cohorts experiencing increased TGs and LFC with BIL treatment had decreased LDL size and increased VLDL size. These data and analyses add to the currently available information on the metabolic effects of insulins in a very carefully characterized cohort of patients with diabetes. Clinicaltrials.gov registration numbers and dates NCT01481779 (2011), NCT01435616 (2011), NCT01454284 (2011), NCT01582451 (2012).


Subject(s)
Adiposity , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin Glargine/therapeutic use , Insulin Lispro/analogs & derivatives , Lipoproteins/blood , Liver/diagnostic imaging , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Polyethylene Glycols/therapeutic use , Adult , Aged , Biomarkers/blood , Clinical Trials, Phase III as Topic , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Female , Humans , Hypoglycemic Agents/adverse effects , Insulin Glargine/adverse effects , Insulin Lispro/adverse effects , Insulin Lispro/therapeutic use , Male , Middle Aged , Particle Size , Polyethylene Glycols/adverse effects , Predictive Value of Tests , Randomized Controlled Trials as Topic , Time Factors , Treatment Outcome
20.
Arterioscler Thromb Vasc Biol ; 36(4): 736-42, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26916733

ABSTRACT

OBJECTIVE: To determine effects of single ascending doses of MDCO-216 on high-density lipoprotein (HDL) subfractions in relation to changes in cholesterol efflux capacity in healthy volunteers and in patients with stable angina pectoris. APPROACH AND RESULTS: Doses of 5- (in volunteers only), 10-, 20-, 30-, and 40-mg/kg MDCO-216 were infused during 2 hours, and plasma and serum were collected during 30 days. Plasma levels of HDL subfractions were assessed by 2-dimensional gel electrophoresis, immunoblotting, and image analysis. Lipoprotein particle concentrations and sizes were also assessed by proton nuclear magnetic resonance ((1)H-NMR). There was a rapid dose-dependent increase of total apolipoprotein A-I (apoA-I) in pre-ß1, α-1, and α-2 HDL levels and decrease in α-3 and α-4 HDL. Using a selective antibody apoA-IMilano was detected in the large α-1 and α-2 HDL on all doses and at each time point. ApoA-IMilano was also detected at the α-4 position but only at high doses. (1)H-NMR analysis similarly showed a rapid and dose-dependent shift from small- to large-sized HDL particles. The increase of basal and ATP-binding cassette transporter A1-mediated efflux capacities reported previously correlated strongly and independently with the increase in pre-ß1-HDL and α-1 HDL, but not with that in α-2 HDL. CONCLUSIONS: On infusion, MDCO-216 rapidly eliminates small HDL and leads to formation of α-1 and α-2 HDL containing both wild-type apoA-I and apoA-IMilano. In this process, endogenous apoA-I is liberated appearing as pre-ß1-HDL. In addition to pre-ß1-HDL, the newly formed α-1 HDL particle containing apoA-I Milano may have a direct effect on cholesterol efflux capacity.


Subject(s)
Anticholesteremic Agents/administration & dosage , Apolipoprotein A-I/administration & dosage , Cholesterol/blood , Coronary Artery Disease/drug therapy , Lipoproteins, HDL/blood , Macrophages/drug effects , Phosphatidylcholines/administration & dosage , ATP Binding Cassette Transporter 1/metabolism , Anticholesteremic Agents/blood , Apolipoprotein A-I/blood , Biomarkers/blood , Blotting, Western , Case-Control Studies , Coronary Artery Disease/blood , Coronary Artery Disease/diagnosis , Dose-Response Relationship, Drug , Drug Combinations , Electrophoresis, Gel, Two-Dimensional , Healthy Volunteers , High-Density Lipoproteins, Pre-beta/blood , Humans , Infusions, Intravenous , Macrophages/metabolism , Netherlands , Particle Size , Phosphatidylcholines/blood , Proton Magnetic Resonance Spectroscopy , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL