Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Publication year range
1.
Am J Physiol Endocrinol Metab ; 326(3): E215-E225, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38117266

ABSTRACT

Immunometabolism research is uncovering the relationship between metabolic features and immune cell functions in physiological and pathological conditions. Normal pregnancy entails a fine immune and metabolic regulation of the maternal-fetal interaction to assist the energetic demands of the fetus with immune homeostasis maintenance. Here, we determined the immunometabolic status of monocytes of pregnant women compared with nonpregnant controls and its impact on monocyte anti-inflammatory functions such as efferocytosis. Monocytes from pregnant women (16-20 wk) and nonpregnant age-matched controls were studied. Single cell-based metabolic assays using freshly isolated monocytes from both groups were carried out in parallel with functional assays ex vivo to evaluate monocyte efferocytic capacity. On the other hand, various in vitro metabolic assays with human monocytes or monocyte-derived macrophages were designed to explore the effect of trophoblast cells in the profiles observed. We found that pregnancy alters monocyte metabolism and function. An increased glucose dependency and enhanced efferocytosis were detected in monocytes from pregnant women at resting states, compared with nonpregnant controls. Furthermore, monocytes display a reduced glycolytic response when stimulated with lipopolysaccharide (LPS). The metabolic profiling of monocytes at this stage of pregnancy was comparable with the immunometabolic phenotypes of human monocytes treated in vitro with human first trimester trophoblast cell conditioned media. These findings suggest that immunometabolic mechanisms are involved in the functional shaping of monocytes during pregnancy with a contribution of trophoblast cells. Results provide new clues for future hypotheses regarding pregnancies complicated by metabolic disorders.NEW & NOTEWORTHY Immunometabolism stands as a novel perspective to understand the complex regulation of the immune response and to provide small molecule-based therapies. By applying this approach to study monocytes during pregnancy, we found that these cells have a unique activation pattern. They rely more on glycolysis and show increased efferocytosis/IL-10 production, but they do not have the typical proinflammatory responses. We also present evidence that trophoblast cells can shape monocytes into this distinct immunometabolic profile.


Subject(s)
Monocytes , Trophoblasts , Pregnancy , Humans , Female , Monocytes/metabolism , Trophoblasts/metabolism , Macrophages/metabolism , Pregnancy Trimester, First
2.
J Cell Physiol ; 238(11): 2679-2691, 2023 11.
Article in English | MEDLINE | ID: mdl-37842869

ABSTRACT

Periodontitis is proposed as a risk factor for preterm delivery, fetal growth restriction, and preeclampsia with severe consequences for maternal and neonatal health, but the biological mechanisms involved are elusive. Porphyromonas gingivalis gain access to the placental bed and impair trophoblast cell function, as assessed in murine and human pregnancy, suggesting a pathogenic role in adverse pregnancy and neonatal outcomes. P. gingivalis releases outer membrane vesicles (P. gingivalis OMV) during growth that spread to distant tissues and are internalized in host cells as described in metabolic, neurological, and vascular systemic diseases. Here we tested the hypothesis that P. gingivalis OMV internalized in trophoblast cells disrupt their metabolism leading to trophoblast and placenta dysfunction and adverse pregnancy outcomes. An in vitro design with human trophoblast cells incubated with P. gingivalis OMV was used together with ex vivo and in vivo approaches in pregnant mice treated with P. gingivalis OMV. P. gingivalis OMV modulated human trophoblast cell metabolism by reducing glycolytic pathways and decreasing total reactive oxygen species with sustained mitochondrial activity. Metabolic changes induced by P. gingivalis OMV did not compromise cell viability; instead, it turned trophoblast cells into a metabolic resting state where central functions such as migration and invasion were reduced. The effects of P. gingivalis OMV on human trophoblast cells were corroborated ex vivo in mouse whole placenta and in vivo in pregnant mice: P. gingivalis OMV reduced glycolytic pathways in the placenta and led to lower placental and fetal weight gain in vivo with reduced placental expression of the glucose transporter GLUT1. The present results point to OMV as a key component of P. gingivalis involved in adverse pregnancy outcomes, and even more, unveil a metabolic cue in the deleterious effect of P. gingivalis OMV on trophoblast cells and mouse pregnancy, providing new clues to understand pathogenic mechanisms in pregnancy complications and other systemic diseases.


Subject(s)
Periodontitis , Porphyromonas gingivalis , Pregnancy , Female , Mice , Animals , Humans , Porphyromonas gingivalis/metabolism , Trophoblasts/pathology , Pregnancy Outcome , Placenta/pathology , Periodontitis/pathology
3.
Proc Natl Acad Sci U S A ; 117(12): 6630-6639, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32161138

ABSTRACT

Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1-/- ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren's syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking ß1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating ß1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c+ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3+ regulatory T cells (Tregs), and increased number of CD8+ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren's syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8+ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.


Subject(s)
Autoimmune Diseases/pathology , Galectin 1/physiology , Immune Tolerance/immunology , Salivary Glands/pathology , Sialadenitis/pathology , Sjogren's Syndrome/pathology , T-Lymphocytes, Regulatory/immunology , Adult , Age Factors , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Case-Control Studies , Dendritic Cells/immunology , Female , Glycosylation , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Middle Aged , N-Acetylglucosaminyltransferases/physiology , Polysaccharides/metabolism , Salivary Glands/immunology , Salivary Glands/metabolism , Sialadenitis/immunology , Sialadenitis/metabolism , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism
4.
J Cell Physiol ; 236(7): 4913-4925, 2021 07.
Article in English | MEDLINE | ID: mdl-33305387

ABSTRACT

Zika virus (ZIKV) re-emerged after circulating almost undetected for many years and the last spread in 2015 was the major outbreak reported. ZIKV infection was associated with congenital fetal growth anomalies such as microcephaly, brain calcifications, and low birth weight related to fetal growth restriction. In this study, we investigated the effect of ZIKV infection on first trimester trophoblast cell function and metabolism. We also studied the interaction of trophoblast cells with decidual immune populations. Results presented here demonstrate that ZIKV infection triggered a strong antiviral response in first trimester cytotrophoblast-derived cells, impaired cell migration, increased glucose uptake and GLUT3 expression, and reduced brain derived neurotrophic factor (BDNF) expression. ZIKV infection also conditioned trophoblast cells to favor a tolerogenic response since an increased recruitment of CD14+ monocytes bearing an anti-inflammatory profile, increased CD4+ T cells and NK CD56Dim and NK CD56Bright populations and an increment in the population CD4+ FOXP3+ IL-10+ cells was observed. Interestingly, when ZIKV infection of trophoblast cells occurred in the presence of the vasoactive intestinal peptide (VIP) there was lower detection of viral RNA and reduced toll-like receptor-3 and viperin messenger RNA expression, along with reduced CD56Dim cells trafficking to trophoblast conditioned media. The effects of ZIKV infection on trophoblast cell function and immune-trophoblast interaction shown here could contribute to defective placentation and ZIKV persistence at the fetal-maternal interface. The inhibitory effect of VIP on ZIKV infection of trophoblast cells highlights its potential as a candidate molecule to interfere ZIKV infection during early pregnancy.


Subject(s)
Placenta/virology , Placentation/physiology , Trophoblasts/immunology , Trophoblasts/virology , Zika Virus Infection/pathology , Brain-Derived Neurotrophic Factor/biosynthesis , CD4-Positive T-Lymphocytes/immunology , Cell Movement/physiology , Cells, Cultured , Congenital Abnormalities/virology , Energy Metabolism/physiology , Female , Fetus/abnormalities , Fetus/virology , Glucose/metabolism , Glucose Transporter Type 3/biosynthesis , Humans , Placenta/cytology , Pregnancy , Pregnancy Trimester, First , Vasoactive Intestinal Peptide/metabolism , Zika Virus/immunology
5.
Reproduction ; 159(4): R203-R211, 2020 04.
Article in English | MEDLINE | ID: mdl-31990665

ABSTRACT

Decidualization denotes the reprogramming of endometrial stromal cells that includes the secretion of different mediators like cytokines, chemokines, and the selective recruitment of immune cells. This physiological process involves changes in the secretome of the endometrial stromal cells leading to the production of immunomodulatory factors. The increased amount of protein secretion is associated with a physiological endoplasmic reticulum (ER) stress and the resulting unfolded protein response (UPR), allowing the expansion of ER and the machinery to assist the protein folding. Notably, the signaling pathways involved in the ER stress and the UPR are interconnected with the onset of a sterile inflammatory response, as well as with angiogenesis. Both of these processes have a key role in decidualization and placentation, therefore, alterations in them could lead to pregnancy complications. In this review, we will discuss how the induction of ER stress and the UPR processes that accompanies the decidualization are associated with embryo implantation and whether they might condition pregnancy outcome. The ER stress activates/triggers sensing proteins which, among others, induces kinase/RNAse-TXNIP expression, activating the NLRP3 inflammasome. This multiprotein system allows caspase-1 activation, which catalyzes the cleavage of the inactive IL-1ß proform toward the mature secretory form, with pro-implantatory effects. However, the sterile inflammatory response should be later controlled in favor of a tolerogenic microenvironment to sustain pregnancy. In accordance, alterations of the ER stress and UPR processes can be reflected in recurrent implantation failures (RIF), recurrent pregnancy loss (RPL), or complications associated with deficient placentation, such as preeclampsia (PE).


Subject(s)
Decidua/physiology , Endoplasmic Reticulum Stress , Unfolded Protein Response , Embryo Implantation , Female , Humans , Interleukin-1/physiology , Menstrual Cycle , MicroRNAs/metabolism
6.
Hum Reprod ; 32(1): 55-64, 2017 01.
Article in English | MEDLINE | ID: mdl-27932441

ABSTRACT

STUDY QUESTION: Do human trophoblast cells modulate neutrophil extracellular trap (NET) formation, reactive oxygen species (ROS) synthesis and neutrophil apoptosis through mechanisms involving vasoactive intestinal peptide (VIP)? SUMMARY ANSWER: Trophoblast cells inhibited NET formation and ROS synthesis and enhanced neutrophil apoptosis through VIP-mediated pathways in a model of maternal-placental interaction. WHAT IS KNOWN ALREADY: Immune homeostasis maintenance at the maternal-placental interface is mostly coordinated by trophoblast cells. Neutrophil activation and NET formation increases in pregnancies complicated by exacerbated pro-inflammatory responses. VIP has anti-inflammatory and immunosuppressant effects and is synthesized by trophoblast cells. STUDY DESIGN, SIZE, DURATION: This is a laboratory-based observational study that sampled circulating neutrophils from 50 healthy volunteers to explore their response in vitro to factors derived from human trophoblast cells. PARTICIPANTS/MATERIALS, SETTING, METHODS: Peripheral blood neutrophils were isolated from healthy volunteers and tested in vitro with first trimester trophoblast cell line (Swan-71 and HTR8) conditioned media (CM) or with VIP. The effect of VIP and trophoblast CM on NET formation was assessed by co-localization of elastase and DNA by confocal microscopy, DNA release and elastase activity measurement. Neutrophil apoptosis was determined by flow cytometry or fluorescence microscopy. ROS formation was assessed by flow cytometry with a fluorescent probe. VIP silencing was performed by siRNA transfection. For phagocytosis of apoptotic neutrophils, autologous monocytes were sampled, and engulfment and cytokines were assessed by flow cytometry and ELISA. MAIN RESULTS AND THE ROLE OF CHANCE: Trophoblast CM and 10 nM VIP promoted neutrophil deactivation by preventing phorbol myristate acetate-induced NET formation and ROS synthesis while they increased neutrophil spontaneous apoptosis and reversed the anti-apoptotic effect of lipopolysaccharide (all P < 0.05 versus control). The effects of trophoblast CM were prevented by a VIP antagonist or when VIP knocked-down trophoblast cells were used (P < 0.05 versus control). Neutrophils driven to apoptosis by trophoblast CM could be rapidly engulfed by monocytes without increasing IL-12 production. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: The mechanisms of neutrophil deactivation by trophoblast VIP are based on the results obtained with neutrophils drawn from peripheral blood of healthy individuals interacting with trophoblast cell lines in vitro. These studies were designed to investigate biological processes at the cellular and molecular level; therefore, they have the limitations of studies in vitro and it is not possible to ascertain if these mechanisms operate similarly in vivo. We tested 50 neutrophil samples from healthy volunteers that have a normal variability in their responses. Cell lines derived from human trophoblast were used, and we cannot rule out a differential behavior of trophoblast cells in contact with neutrophils in vivo. WIDER IMPLICATIONS OF THE FINDINGS: Results presented here are consistent with an active mechanism through which neutrophils in contact with trophoblast cells would be deactivated and silently cleared by decidual macrophages throughout pregnancy. They support a novel immunomodulatory role of trophoblast VIP on neutrophils at the placenta, providing new clues for pharmacological targeting of immune and trophoblast cells in pregnancy complications associated with exacerbated inflammation. STUDY FUNDING/COMPETING INTERESTS: This work was funded by the National Agency of Sciences and Technology (PICT 2011-0144, 2014-0657 and 2013-2177) and University of Buenos Aires (UBACyT 20020130100040BA, 20020150100161BA and 20020130100744BA). The authors declare no competing interests.


Subject(s)
Apoptosis/physiology , Extracellular Traps/metabolism , Signal Transduction/physiology , Trophoblasts/metabolism , Vasoactive Intestinal Peptide/pharmacology , Apoptosis/drug effects , Cell Line , Culture Media, Conditioned/pharmacology , Extracellular Traps/drug effects , Female , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Phagocytosis/drug effects , Phagocytosis/physiology , Pregnancy , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Trophoblasts/drug effects
7.
Neuroimmunomodulation ; 21(1): 21-30, 2014.
Article in English | MEDLINE | ID: mdl-24135863

ABSTRACT

BACKGROUND/AIMS: The maternal-fetal interface is a unique immunological site that generates an adequate microenvironment during pregnancy, recognizing and eliminating infections and tolerating the trophoblast/placenta unit. For that purpose, trophoblast cells display several tolerogenic mechanisms to allow fetal survival, such as production of the neuropeptide vasoactive intestinal peptide (VIP). Here we investigated the contribution of VIP to maintain homeostasis at the maternal-placental interface under lipopolysaccharide (LPS) stimulation. METHODS: We performed cocultures between trophoblast cells (Swan-71 cell line) and maternal leukocytes obtained from fertile women as an in vitro model of maternal-placental interaction, and we focused on the effects of LPS on the modulation of VIP and their receptors (VPAC1 and VPAC2). RESULTS: VIP could prevent the upregulation of IL-6, MCP-1, and nitrite production and maintain the production of IL-10 and TGF-ß under LPS (10 µg/ml) stimulation after 48 h of coculture. To gain deeper insight into the mechanisms of how VIP could contribute to a tolerogenic microenvironment even in the presence of LPS, we investigated VIP production by maternal leukocytes and observed a significant increase in the frequency of CD4+VIP+ cells after interaction with Swan-71 cells in the presence of LPS. LPS increased VIP and inducible receptor VPAC2 expression directly on trophoblast cells in a dose- and time-dependent manner. CONCLUSIONS: The present results suggest that VIP might act as an additional homeostatic mechanism during early stages at the maternal-placental interface to control exacerbated inflammatory responses such as the ones observed in intrauterine infections.


Subject(s)
Homeostasis/drug effects , Homeostasis/immunology , Leukocytes/drug effects , Lipopolysaccharides/pharmacology , Trophoblasts/physiology , Vasoactive Intestinal Peptide/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Coculture Techniques , Cytokines/metabolism , Dose-Response Relationship, Drug , Female , Flow Cytometry , Gene Expression Regulation/drug effects , Humans , Nitrites/metabolism , Pregnancy , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Time Factors , Transforming Growth Factor beta/metabolism , Vasoactive Intestinal Peptide/genetics
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166593, 2023 02.
Article in English | MEDLINE | ID: mdl-36328148

ABSTRACT

Pregnancy outcome relies on the maintenance of immune and metabolic homeostasis at the maternal fetal interface. Maternal and perinatal morbidity and mortality is associated with impaired placental development. Multiple regulatory effects of the endogenous-produced vasoactive intestinal peptide (VIP) on vascular, metabolic and immune functions at the maternal-fetal interface have been reported. Here we studied the involvement of the two primary high affinity receptors for VIP (VPAC1 and VPAC2) on maternal immune response, placental homeostasis and pregnancy outcome. Targeted disruption of each receptor gene led to altered placental structure, vascular and trophoblast functional markers and shaped the functional profiles of macrophages and neutrophils towards a proinflammatory state. Several changes in pregnant mice were receptor specific: ROS production elicited by VIP on neutrophils was selectively dependent on the presence of VPAC1 whereas apoptosis rate was associated with the VPAC2 deletion. In peritoneal macrophages from pregnant mice, levels of MHC-II, TLR2, and IL-10 were selectively altered in VPAC2 receptor-deficient mice, whereas IL-6 gene expression was reduced only in mice lacking VPAC1 receptors. Additionally, MMP9 mRNA in isolated TGCs was reduced in VPAC2 receptor deleted mice, while the percentage of IL-12 cells in post-phagocytosis macrophage cultures was selectively reduced in VPAC2 receptor deficient mice. The results indicate that manipulation of VPAC1 and VPAC2 receptor affects immune, vascular and metabolic environment at the maternal fetal interface. These mouse models offer new approaches to study pregnancy complications adding new perspectives to the development of VPAC receptor-selective drugs.


Subject(s)
Pregnancy Complications , Pregnancy Outcome , Receptors, Vasoactive Intestinal Peptide, Type II , Trophoblasts , Animals , Female , Mice , Pregnancy , Placenta/metabolism , Pregnancy Outcome/genetics , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Trophoblasts/metabolism , Vasoactive Intestinal Peptide/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Gene Deletion , Pregnancy Complications/genetics , Pregnancy Complications/immunology
9.
Life (Basel) ; 13(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37895353

ABSTRACT

Extracellular vesicles released by the primary pathogen of periodontal disease Porphyromonas gingivalis (Pg), referred to as outer membrane vesicles (OMVs), have been associated with the pathogenesis of systemic diseases like cardiovascular disease, rheumatoid arthritis, and Alzheimer's disease. A pathogenic role for Pg by disrupting placental homeostasis was proposed in the association between periodontal disease and adverse pregnancy outcomes. On the basis that trophoblast-derived factors modulate endothelial and immune cell profiles in normal pregnancy and the scarce presence of Pg in placenta, we hypothesized that OMVs from Pg affect trophoblast cell phenotype, impairing trophoblast-endothelium and trophoblast-neutrophil interactions. By means of in vitro designs with first-trimester human trophoblast cells, endothelial cells, and freshly isolated neutrophils, we showed that Pg OMVs are internalized by trophoblast cells and modulate the activity and expression of functional markers. Trophoblast cells primed with Pg OMVs enhanced neutrophil chemoattraction and lost their anti-inflammatory effect. In addition, reduced migration with enhanced adhesion of monocytes was found in endothelial cells upon incubation with the media from trophoblast cells pretreated with Pg OMVs. Taken together, the results support a pathogenic role of Pg OMVs at early stages of pregnancy and placentation through disruption of trophoblast contribution to vascular transformation and immune homeostasis maintenance.

10.
Hum Reprod ; 27(9): 2598-606, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22718280

ABSTRACT

BACKGROUND: Dendritic cells (DCs), which are biased toward a tolerogenic profile, play a pivotal role in tissue-remodeling processes and angiogenesis at the maternal-fetal interface. Here, we analyzed the effect of trophoblast cells on the functional profile of DCs to gain insight on the tolerogenic mechanisms underlying the human placental-maternal dialog at early stages of gestation. METHODS: DCs were differentiated from peripheral blood monocytes obtained from fertile women (n = 21), in the presence of interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor during 5 days in culture. Then, DCs were cultured with trophoblast cells (Swan-71 cell line obtained from normal cytotrophoblast, at 7 weeks) for 24 h and for an additional 24 h in the absence or presence of lipopolysaccharide (LPS) from Escherichia coli. DCs were recovered and used for flow cytometry, enzyme-linked immunosorbent assay, RT-PCR and suppression and migration assays. RESULTS: Trophoblast cells significantly prevented the increase in CD83 expression induced by LPS without affecting the expression of CD86, CD40 and human leukocyte antigen-DR (P < 0.05). Trophoblast cells significantly decreased the production of IL-12p70 and tumor necrosis factor-α, while it increased the production of IL-10 (P < 0.05). No changes were observed in the production of IL-6 and monocyte chemotactic protein-1. The culture of DCs with trophoblast cells, also suppressed the stimulation of the allogeneic response triggered by LPS (P < 0.05). Conditioned DCs were able to increase the frequency of CD4 + CD25 + Foxp3 cells and this effect was accompanied by an increase in indoleamine 2, 3-dioxygenase expression in DCs (P < 0.05). CONCLUSIONS: The interaction of DCs with trophoblast cells promotes the differentiation of DCs into cells with a predominantly tolerogenic profile that could contribute to a tolerogenic microenvironment at the maternal-fetal interface.


Subject(s)
Dendritic Cells/cytology , Gene Expression Regulation , Trophoblasts/metabolism , Antigens, CD/biosynthesis , B7-2 Antigen/biosynthesis , CD40 Antigens/biosynthesis , Cell Differentiation , Cell Line , Cells, Cultured , Female , Flow Cytometry/methods , Fluorescein-5-isothiocyanate , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunoglobulins/biosynthesis , Interleukin-4/metabolism , Lipopolysaccharides/metabolism , Membrane Glycoproteins/biosynthesis , Models, Biological , Neovascularization, Pathologic , CD83 Antigen
11.
Am J Reprod Immunol ; 88(4): e13601, 2022 10.
Article in English | MEDLINE | ID: mdl-35810353

ABSTRACT

BACKGROUND: A tight immune and metabolic regulation underlies the early maternal-placental interaction to assist the energetic dynamic demands of the fetus throughout pregnancy. The vasoactive intestinal peptide (VIP) holds biochemical, metabolic and immune properties consistent with a regulatory role during pregnancy. AIM: Here we overview critical aspects of embryo implantation and placental development with special focus on the immune and metabolic effects of VIP expressed by decidual and trophoblast cells. CONTENT: During decidualization, endometrial stromal cells undergo reticular stress and trigger unfolded protein response (UPR) that enable expansion of their endoplasmic reticulum and immunomodulatory factor synthesis. These processes appear differentially affected in recurrent abortion and in vitro fertilization failure suggesting their relevance in reproductive pathologies. Similarly, defective placentation associates with altered immune, vascular and trophoblast interaction resulting in complicated pregnancies that threaten maternal and neonatal health and underlie metabolic programming of adult life. We discuss the most recent research on decidual, trophoblast and immune cell interaction on the light of VIP regulation. Its role in decidualization and UPR associated with a sterile inflammatory response and angiogenesis is discussed. Evidence on VIP modulation of cytotrophoblast cell function, metabolism and immune profile is revised as well as the shaping of decidual leukocyte phenotype and function from decidualization to term. IMPLICATIONS: The broad spectrum of effects of VIP from implantation to term in normal and pathological conditions summarized here might contribute to the identification of novel biomarkers for diagnosis and pharmacological targeting.


Subject(s)
Placenta , Vasoactive Intestinal Peptide , Biomarkers/metabolism , Decidua/metabolism , Embryo Implantation , Female , Humans , Placenta/metabolism , Placentation , Pregnancy , Stromal Cells/metabolism , Trophoblasts , Vasoactive Intestinal Peptide/metabolism
12.
Am J Reprod Immunol ; 88(2): e13558, 2022 08.
Article in English | MEDLINE | ID: mdl-35511077

ABSTRACT

PROBLEM: A strong association between periodontitis and higher susceptibility to pregnancy complications like preeclampsia has been reported although the mechanisms remain elusive. Trophoblast cells modulate the recruitment and functional shaping of maternal leukocytes at early stages to sustain an antiinflammatory microenvironment and fetal growth. Neutrophil activation with reactive oxygen species (ROS) release is associated with preeclampsia. Our aim was to study the effect of the gingival crevicular fluid (GCF) from pregnant women on trophoblast cell function and trophoblast-neutrophil interaction. METHOD OF STUDY: Pregnant women at 16-20 weeks of gestation (n = 27) and non-pregnant women (n = 8) as the control group were studied for gingivoperiodontal clinical score evaluation and GCF collection. Total bacteria and common periodontal pathogens were analyzed in GCF samples. The effect of each GCF sample was tested on first trimester trophoblast-derived cells to assess cell migration, cytokine expression and glucose uptake. Also, the effect of GCF on human peripheral neutrophil chemoattraction by trophoblast cells and ROS formation was assessed. RESULTS: Gingival crevicular fluid from pregnant women reduced trophoblast cell migration, increased proinflammatory marker expression and glucose uptake. A significant correlation between gingivoperiodontal score and trophoblast dysfunction was observed. Upon conditioning of trophoblast cells with GCF, only the GCF from pregnant women stimulated neutrophil chemoattraction. Similarly, GCF from pregnant but not from non-pregnant controls stimulated ROS formation in neutrophils. CONCLUSIONS: Gingival crevicular fluid from pregnant women is deleterious for first trimester trophoblast cell function. These effects could lead to placental homeostasis disruption underlying a pathogenic mechanism of pregnancy complications associated to periodontal disease.


Subject(s)
Pre-Eclampsia , Pregnancy Complications , Female , Gingival Crevicular Fluid , Glucose , Humans , Neutrophils , Placenta , Pregnancy , Reactive Oxygen Species , Trophoblasts
13.
Am J Reprod Immunol ; 87(1): e13423, 2022 01.
Article in English | MEDLINE | ID: mdl-33764560

ABSTRACT

PROBLEM: Decidualized cells display an active role during embryo implantation sensing blastocyst quality, allowing the implantation of normal developed blastocysts and preventing the invasion of impaired developed ones. Here, we characterized the immune microenvironment generated by decidualized cells in response to soluble factors secreted by blastocysts that shape the receptive milieu. METHOD OF STUDY: We used an in vitro model of decidualization based on the Human Endometrial Stromal Cells line (HESC) differentiated with medroxiprogesterone and dibutyryl-cAMP, then treated with human blastocysts-conditioned media (BCM) classified according to their quality. RESULTS: Decidualized cells treated with BCM from impaired developed blastocysts increased IL-1ß production. Next, we evaluated the ability of decidualized cells to modulate other mediators associated with menstruation as chemokines. Decidualized cells responded to stimulation with BCM from impaired developed blastocysts increasing CXCL12 expression and CXCL8 secretion. The modulation of these markers was associated with the recruitment and activation of neutrophils, while regulatory T cells recruitment was restrained. These changes were not observed in the presence of BCM from normal developed blastocysts. CONCLUSION: Soluble factors released by impaired developed blastocysts induce an exacerbated inflammatory response associated with neutrophils recruitment and activation, providing new clues to understand the molecular basis of the embryo-endometrial dialogue.


Subject(s)
Blastocyst/physiology , Decidua/metabolism , Embryo Implantation/physiology , Inflammation/metabolism , Stromal Cells/metabolism , Blastocyst/drug effects , Cell Line , Decidua/drug effects , Embryo Implantation/drug effects , Female , Humans , Medroxyprogesterone/administration & dosage , Stromal Cells/drug effects
14.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166207, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34186168

ABSTRACT

Glucose uptake by the placenta and its transfer to the fetus is a finely regulated process required for placental and fetal development. Deficient placentation is associated with pregnancy complications such as fetal growth restriction (FGR). The vasoactive intestinal peptide (VIP) has embryotrophic effects in mice and regulates human cytotrophoblast metabolism and function. Here we compared glucose uptake and transplacental transport in vivo by VIP-deficient placentas from normal or VIP-deficient maternal background. The role of endogenous VIP in placental glucose and amino acid uptake was also investigated. Wild type C57BL/6 (WT) or VIP+/- (VIP HT) females were mated with WT, VIP knock-out (VIP KO) or VIP HT males. Glucose uptake and transplacental transport were evaluated by the injection of the fluorescent d-glucose analogue 2-NBDG in pregnant mice at gestational day (gd) 17.5. Glucose and amino acid uptake in vitro by placental explants were measured with 2-NBDG or 14C-MeAIB respectively. In normal VIP maternal background, fetal weight was reduced in association with placental VIP deficiency, whereas placental weight was unaltered. Paradoxically, VIP+/- placentas presented higher glucose uptake and higher gene expression of GLUT1 and mTOR than VIP+/+ placentas. However, in a maternal VIP-deficient environment placental uptake and transplacental transport of glucose increased while fetal weights were unaffected, regardless of feto-placental genotype. Results point to VIP-deficient pregnancy in a normal background as a suitable FGR model with increased placental glucose uptake and transplacental transport. The apparently compensatory actions are unable to sustain normal fetal growth and could result in complications later in life.


Subject(s)
Biological Transport/physiology , Fetal Growth Retardation/metabolism , Glucose/metabolism , Placenta/metabolism , Vasoactive Intestinal Peptide/metabolism , Animals , Female , Glucose Transporter Type 1/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Pregnancy Complications/metabolism , TOR Serine-Threonine Kinases/metabolism , Trophoblasts/metabolism
15.
Acta Physiol (Oxf) ; 232(1): e13579, 2021 05.
Article in English | MEDLINE | ID: mdl-33210807

ABSTRACT

AIM: To explore the functional profile of circulating monocytes and decidual macrophages at term human pregnancy and their contribution to tissue repair upon stimulation ex vivo with decidual factors and the vasoactive intestinal peptide (VIP). METHODS: Peripheral blood monocytes were isolated from pregnant and non-pregnant volunteers and tested in vitro with decidual explants from term placenta and VIP. The effect of VIP on decidual explants and the effect of its conditioned media on monocytes or decidual macrophages isolated by magnetic beads was carried out by RT-qPCR and ELISA for cytokines expression and release. Migration assays were performed in transwell systems. Efferocytosis was assessed in monocytes or decidual macrophages with CFSE-labelled autologous apoptotic neutrophils and quantified by flow cytometry. Monocyte and decidual macrophages wound healing capacity was evaluated using human endometrial stromal cell monolayers. Immunohistochemistry was performed in serial tissue sections of different placentas. RESULTS: VIP is expressed in the villi as well as in trophoblast giant cells distributed within the decidua of term placenta. VIP induced the expression of antiinflmammatory markers and monocyte chemoattractant CCL2 and CCL3 in decidual tissues. Monocytes presented higher migration towards decidual explants than CD4 and CD8 cells. VIP-conditioned monocytes displayed an enhanced efferocytosis and wound healing capacity comparable to that of decidual macrophages. Moreover limited efferocytosis of pregnant women monocytes was restored by VIP-induced decidual factors. CONCLUSION: Results show the conditioning of monocytes by decidual factors and VIP to sustain processes required for tissue repair and homeostasis maintenance in term placenta.


Subject(s)
Monocytes , Vasoactive Intestinal Peptide , Decidua , Female , Humans , Pregnancy , Trophoblasts , Wound Healing
16.
Front Immunol ; 11: 1571, 2020.
Article in English | MEDLINE | ID: mdl-32973738

ABSTRACT

Decidualization is a process that involves phenotypic and functional changes of endometrial stromal cells to sustain endometrial receptivity and the participation of immunoregulatory factors to maintain immune homeostasis. In this context, tolerogenic dendritic cells (DCs) can induce regulatory T cells, which are essential to manage the pro- to anti-inflammatory transition during embryo implantation. Recently, Myeloid Regulatory Cells (MRCs) were proposed as immunosuppressants and tolerance-inducer cells, including the DC-10 subset. This novel and distinctive subset has the ability to produce IL-10 and to induce type 1 regulatory T cells (Tr1) through an HLA-G pathway. Here we focus on the impact of the decidualization process in conditioning peripheral monocytes to MRCs and the DC-10 subset, and their ability to induce regulatory T cells. An in vitro model of decidualization with the human endometrial stromal cell line (HESC), decidualized by medroxyprogesterone and dibutyryl-cAMP was used. Monocytes isolated from peripheral blood mononuclear cells from healthy women were cultured with rhGM-CSF + rhIL-4 and then, the effect of conditioned media from decidualized (Dec-CM) and non-decidualized cells (Non-dec-CM) was tested on monocyte cultures. We found that Dec-CM inhibited the differentiation to the CD1a+CD14- immature DC profile in a concentration-dependent manner. Dec-CM also significantly increased the frequency of CD83+CD86low and HLA-DR+ cells in the monocyte-derived culture. These markers, associated with the increased production of IL-10, are consistent with a MRCs tolerogenic profile. Interestingly, Dec-CM treatment displayed a higher expression of the characteristic markers of the tolerogenic DC-10 subset, HLA-G and ILT2/CD85j; while this modulation was not observed in cultures treated with Non-dec-CM. Moreover, when monocyte cultures with Dec-CM were challenged with LPS, they sustained a higher IL-10 production and prevented the increase of CD83, CD86, IL-12p70, and TNF-α expression. Finally, the DC-10 subset was able to induce a CD4+HLA-G+ regulatory T cells subset. These results suggest that the decidualization process might induce different subsets of MRCs, like DC-10, able to induce regulatory T cells as a novel CD4+HLA-G+ subset which might play an immunoregulatory role in embryo implantation.


Subject(s)
Decidua/physiology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immune Tolerance , Interleukin-10/metabolism , Monocytes/immunology , Monocytes/metabolism , Biomarkers , Cell Differentiation , Cell Line , Dendritic Cells/cytology , Endocytosis/immunology , Endometrium/cytology , Endometrium/physiology , Female , Flow Cytometry , Humans , Immunophenotyping , Lipopolysaccharides/immunology , Lymphocyte Culture Test, Mixed , Myeloid Cells/immunology , Myeloid Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
17.
Sci Rep ; 9(1): 17152, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748639

ABSTRACT

The transport of nutrients across the placenta involves trophoblast cell specific transporters modulated through the mammalian target of rapamycin (mTOR). The vasoactive intestinal peptide (VIP) has embryotrophic effects in mice and regulates human cytotrophoblast cell migration and invasion. Here we explored the effect of VIP on glucose and System A amino acid uptake by human trophoblast-derived cells (Swan 71 and BeWo cell lines). VIP activated D-glucose specific uptake in single cytotrophoblast cells in a concentration-dependent manner through PKA, MAPK, PI3K and mTOR signalling pathways. Glucose uptake was reduced in VIP-knocked down cytotrophoblast cells. Also, VIP stimulated System A amino acid uptake and the expression of GLUT1 glucose transporter and SNAT1 neutral amino acid transporter. VIP increased mTOR expression and mTOR/S6 phosphorylation whereas VIP silencing reduced mTOR mRNA and protein expression. Inhibition of mTOR signalling with rapamycin reduced the expression of endogenous VIP and of VIP-induced S6 phosphorylation. Our findings support a role of VIP in the transport of glucose and neutral amino acids in cytotrophoblast cells through mTOR-regulated pathways and they are instrumental for understanding the physiological regulation of nutrient sensing by endogenous VIP at the maternal-foetal interface.


Subject(s)
Amino Acids, Neutral/metabolism , Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism , Trophoblasts/metabolism , Vasoactive Intestinal Peptide/metabolism , Biological Transport/physiology , Cell Line , Female , Humans , Placenta/metabolism , Pregnancy , RNA, Messenger/metabolism , Signal Transduction/physiology
18.
Front Immunol ; 10: 2907, 2019.
Article in English | MEDLINE | ID: mdl-31969877

ABSTRACT

Uterine receptivity and embryo implantation are two main processes that need a finely regulated balance between pro-inflammatory and tolerogenic mediators to allow a successful pregnancy. The neuroimmune peptide vasoactive intestinal peptide (VIP) is a key regulator, and it is involved in the induction of regulatory T cells (Tregs), which are crucial in both processes. Here, we analyzed the ability of endogenous and exogenous VIP to sustain a tolerogenic microenvironment during the peri-implantation period, particularly focusing on Treg recruitment. Wild-type (WT) and VIP-deficient mice [heterozygous (HT, +/-), knockout (KO, -/-)], and FOXP3-knock-in-GFP mice either pregnant or in estrus were used. During the day of estrus, we found significant histological differences between the uterus of WT mice vs. VIP-deficient mice, with the latter exhibiting undetectable levels of FOXP3 expression, decreased expression of interleukin (IL)-10, and vascular endothelial growth factor (VEGF)c, and increased gene expression of the Th17 proinflammatory transcription factor RORγt. To study the implantation window, we mated WT and VIP (+/-) females with WT males and observed altered FOXP3, VEGFc, IL-10, and transforming growth factor (TGF)ß gene expression at the implantation sites at day 5.5 (d5.5), demonstrating a more inflammatory environment in VIP (+/-) vs. VIP (+/+) females. A similar molecular profile was observed at implantation sites of WT × WT mice treated with VIP antagonist at d3.5. We then examined the ability GFP-sorted CD4+ cells from FOXP3-GFP females to migrate toward conditioned media (CM) obtained from d5.5 implantation sites cultured in the absence/presence of VIP or VIP antagonist. VIP treatment increased CD4+FOXP3+ and decreased CD4+ total cell migration towards implantation sites, and VIP antagonist prevented these effects. Finally, we performed adoptive cell transfer of Tregs (sorted from FOXP3-GFP females) in VIP-deficient-mice, and we observed that FOXP3-GFP cells were mainly recruited into the uterus/implantation sites compared to all other tested tissues. In addition, after Treg transfer, we found an increase in IL-10 expression and VEGFc in HT females and allowed embryo implantation in KO females. In conclusion, VIP contributes to a local tolerogenic response necessary for successful pregnancy, preventing the development of a hostile uterine microenvironment for implantation by the selective recruitment of Tregs during the peri-implantation period.


Subject(s)
Embryo Implantation/immunology , Placenta/immunology , T-Lymphocytes, Regulatory/immunology , Uterus/immunology , Vasoactive Intestinal Peptide/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cellular Microenvironment , Female , Forkhead Transcription Factors/immunology , Interleukin-10/immunology , Male , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Pregnancy , Vascular Endothelial Growth Factor A/immunology
19.
Br J Pharmacol ; 176(7): 964-980, 2019 04.
Article in English | MEDLINE | ID: mdl-30726565

ABSTRACT

BACKGROUND AND PURPOSE: Extravillous trophoblast (EVT) cells are responsible for decidual stromal invasion, vascular transformation, and the recruitment and functional modulation of maternal leukocytes in the first-trimester pregnant uterus. An early disruption of EVT function leads to placental insufficiency underlying pregnancy complications such as preeclampsia and fetal growth restriction. Vasoactive intestinal peptide (VIP) is a vasodilating and immune modulatory factor synthesized by trophoblast cells. However, its role in first-trimester placenta has not been explored. Here, we tested the hypothesis that VIP is involved in first-trimester EVT outgrowth, spiral artery remodelling, balancing angiogenesis, and maintenance of immune homeostasis. EXPERIMENTAL APPROACH: First-trimester placental tissue (five to nine weeks of gestation) was collected, and was used for EVT outgrowth experiments, immunofluorescence, isolation of decidual natural killer (dNK) cells and decidual macrophages (dMA), and functional assays. Peripheral blood monocytes were differentiated with GM-CSF and used for angiogenesis assays. KEY RESULTS: In decidua basalis, VIP+ EVT were observed sprouting from cell columns and lining spiral arterioles. EVT migrating from placental explants were also VIP+. VIP increased EVT outgrowth and IL-10 release, whereas it decreased pro-inflammatory cytokine production in EVT, dNK cells, and dMA. VIP disrupted endothelial cell networks, both directly and indirectly via an effect on macrophages. CONCLUSION AND IMPLICATIONS: The results suggest that VIP assists the progress of EVT invasion and vessel remodelling in first-trimester placental bed in an immunologically "silent" milieu. The effects of VIP in the present ex vivo human placental model endorse its potential as a therapeutic candidate for deep placentation disorders.


Subject(s)
Killer Cells, Natural/immunology , Macrophages/immunology , Pregnancy Trimester, First/immunology , Trophoblasts/immunology , Vasoactive Intestinal Peptide/immunology , Cell Line , Female , Humans , Pregnancy , Vasoactive Intestinal Peptide/genetics
20.
Neuroimmunomodulation ; 15(1): 84-90, 2008.
Article in English | MEDLINE | ID: mdl-18667804

ABSTRACT

Neuroimmune-endocrine interactions seem to be central to the dialogue between the mother and the growing embryo during normal pregnancy. A proinflammatory Th1 microenvironment appears to be associated with embryo implantation but an excess of these cytokines may be deleterious. When normal gestation is subjected to stressful stimuli as those provided by a chronic inflammatory milieu, the activation profile of T cells and macrophages may be temporarily changed. Although much evidence supports the protective role of pregnancy in Th1 autoimmune diseases, the comprehension of the maternofetal interaction in an inflammatory context may serve to get more insight into pregnancy failures. Macrophages integrate multiple inputs and signals of neuroimmune-endocrine systems and they appear as major participants in either embryo implantation or loss. Changes at the macrophage level during gestation might help to understand their regulatory role in embryo implantation as well as to disclose their local and systemic pathogenic potential.


Subject(s)
Autoimmune Diseases/immunology , Macrophage Activation/immunology , Macrophages/immunology , Neuroimmunomodulation/immunology , Neurosecretory Systems/immunology , Pregnancy Complications/immunology , Animals , Autoimmune Diseases/physiopathology , Embryo Implantation/immunology , Female , Humans , Immune Tolerance/immunology , Inflammation/immunology , Inflammation/physiopathology , Maternal-Fetal Exchange/immunology , Neurosecretory Systems/physiopathology , Pregnancy , Pregnancy Complications/physiopathology , Th1 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL