Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Publication year range
1.
Alzheimers Dement ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946666

ABSTRACT

INTRODUCTION: Vervets are non-human primates that share high genetic homology with humans and develop amyloid beta (Aß) pathology with aging. We expand current knowledge by examining Aß pathology, aging, cognition, and biomarker proteomics. METHODS: Amyloid immunoreactivity in the frontal cortex and temporal cortex/hippocampal regions from archived vervet brain samples ranging from young adulthood to old age was quantified. We also obtained cognitive scores, plasma samples, and cerebrospinal fluid (CSF) samples in additional animals. Plasma and CSF proteins were quantified with platforms utilizing human antibodies. RESULTS: We found age-related increases in Aß deposition in both brain regions. Bioinformatic analyses assessed associations between biomarkers and age, sex, cognition, and CSF Aß levels, revealing changes in proteins related to immune-related inflammation, metabolism, and cellular processes. DISCUSSION: Vervets are an effective model of aging and early-stage Alzheimer's disease, and we provide translational biomarker data that both align with previous results in humans and provide a basis for future investigations. HIGHLIGHTS: We found changes in immune and metabolic plasma biomarkers associated with age and cognition. Cerebrospinal fluid (CSF) biomarkers revealed changes in cell signaling indicative of adaptative processes. TNFRSF19 (TROY) and Artemin co-localize with Alzheimer's disease pathology. Vervets are a relevant model for translational studies of early-stage Alzheimer's disease.

3.
Mol Pharmacol ; 98(6): 658-668, 2020 12.
Article in English | MEDLINE | ID: mdl-33055223

ABSTRACT

CYP2A enzymes metabolically inactivate nicotine and activate tobacco-derived procarcinogens [e.g., 4-[methylnitrosamino]-1-(3-pyridyl)-1-butanone]. Smoking decreases nicotine clearance, and chronic nicotine reduces hepatic CYP2A activity. However, little is known about the impact of smoking or nicotine on the expression of CYP2A in the lung. We investigated 1) the levels of human lung CYP2A mRNA in smokers versus nonsmokers and 2) the impact of daily nicotine treatment on lung CYP2A protein levels in African green monkeys (AGMs). Lung CYP2A13, CYP2A6, and CYP2A7 (and CYP1A2) mRNA levels in smokers and nonsmokers were assessed in Gene Expression Omnibus data sets (GSE30063, GSE108134, and GSE11784). The impact of chronic, twice-daily, subcutaneous nicotine at two doses (0.3 and 0.5 mg/kg) versus vehicle on lung CYP2A protein levels was assessed. The impact of ethanol self-administration was also investigated, with and without nicotine treatment. Smokers versus nonsmokers (from GSE30063 and GSE108134) had lower (1.04- to 1.12-fold) levels of lung CYP2A13, CYP2A6, and CYP2A7 (and higher CYP1A2) mRNA. Both doses of nicotine tested decreased AGM lung CYP2A protein (3- to 7-fold). Ethanol self-administration had no effect on AGM lung CYP2A protein, and there was no interaction between ethanol and nicotine. Our results suggest that smoking was associated with a reduction in human lung CYP2A13, CYP2A6, and CYP2A7 mRNA, consistent with the role of nicotine treatment in reducing AGM lung CYP2A protein. This regulation by smoking/nicotine will increase interindividual variation in lung CYP2A levels, which may impact the localized metabolism of inhaled drugs and tobacco smoke procarcinogens. SIGNIFICANCE STATEMENT: CYP2A13 and CYP2A6 are expressed in the lung and may contribute to local procarcinogen activation. Smokers had lower lung CYP2A mRNA levels compared with nonsmokers. Lung CYP2A protein expression was decreased by systemic treatment with nicotine. Decreased lung CYP2A expression may alter smoking-related lung cancer risk and tissue damage from other inhaled toxins. This novel regulatory impact of nicotine, including nicotine found in smoking-cessation nicotine-replacement therapies, may have potential benefits on smoking-related lung cancer risk.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Lung/pathology , Smoking/pathology , Steroid Hydroxylases/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , Aryl Hydrocarbon Hydroxylases/analysis , Aryl Hydrocarbon Hydroxylases/genetics , Chlorocebus aethiops , Datasets as Topic , Disease Models, Animal , Gene Expression Profiling , Humans , Lung/drug effects , Lung Neoplasms/etiology , Lung Neoplasms/pathology , Lung Neoplasms/prevention & control , Male , Microsomes, Liver , Nicotine/toxicity , Non-Smokers , RNA, Messenger/analysis , Sequence Analysis, RNA , Smoke/adverse effects , Smokers , Smoking/adverse effects , Steroid Hydroxylases/analysis , Steroid Hydroxylases/genetics , Nicotiana/chemistry , Nicotiana/toxicity
4.
Mol Cell Neurosci ; 86: 1-15, 2018 01.
Article in English | MEDLINE | ID: mdl-29113959

ABSTRACT

Both aging and Alzheimer's disease (AD) are associated with widespread epigenetic changes, with most evidence suggesting global hypomethylation in AD. It is, however, unclear how these age-related epigenetic changes are linked to molecular aberrations as expressed in animal models of AD. Here, we investigated age-related changes of epigenetic markers of DNA methylation and hydroxymethylation in a range of animal models of AD, and their correlations with amyloid plaque load. Three transgenic mouse models, including the J20, APP/PS1dE9 and 3xTg-AD models, as well as Caribbean vervets (a non-transgenic non-human primate model of AD) were investigated. In the J20 mouse model, an age-related decrease in DNA methylation was found in the dentate gyrus (DG) and a decrease in the ratio between DNA methylation and hydroxymethylation was found in the DG and cornu ammonis (CA) 3. In the 3xTg-AD mice, an age-related increase in DNA methylation was found in the DG and CA1-2. No significant age-related alterations were found in the APP/PS1dE9 mice and non-human primate model. In the J20 model, hippocampal plaque load showed a significant negative correlation with DNA methylation in the DG, and with the ratio a negative correlation in the DG and CA3. For the APP/PS1dE9 model a negative correlation between the ratio and plaque load was observed in the CA3, as well as a negative correlation between DNA methyltransferase 3A (DNMT3A) levels and plaque load in the DG and CA3. Thus, only the J20 model showed an age-related reduction in global DNA methylation, while DNA hypermethylation was observed in the 3xTg-AD model. Given these differences between animal models, future studies are needed to further elucidate the contribution of different AD-related genetic variation to age-related epigenetic changes.


Subject(s)
Aging/pathology , Alzheimer Disease/pathology , Disease Models, Animal , Epigenesis, Genetic/physiology , Hippocampus/pathology , Aging/genetics , Aging/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Chlorocebus aethiops , DNA Methylation/physiology , DNA Methyltransferase 3A , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Species Specificity
5.
Exp Eye Res ; 177: 55-64, 2018 12.
Article in English | MEDLINE | ID: mdl-30071214

ABSTRACT

Exposure to ethanol in utero leads to several brain development disorders including retinal abnormalities whose underlying cellular pathogenesis remains elusive. We recently reported that fetal alcohol exposure (FAE) in vervet monkeys induces anomalies of full-field electroretinogram (ERG) waveforms that suggest premature aging of the retina. The goal of this study is to characterize the anatomo-functional mechanisms underlying the retinal changes observed in fetal alcohol exposed (FAE) monkeys, and age- and sex-matched normals. First, we examined in vivo the fundus of the eyes, measured intraocular pressure (IOP) and assessed cone activity using flicker ERG. Second, we investigated ex vivo, protein expression and anatomical organization of the retina using Western blotting, classical histology and immunohistochemistry. Our results indicated that the fundus of the eyes showed both, increased vascularization (tessellated fundus) and IOP in FAE monkeys. Furthermore, light-adapted flicker responses above 15 Hz were also significantly higher in FAE monkeys. Although there were no obvious changes in the overall anatomy in the FAE retina, Glial Fibrillary Acidic Protein (GFAP, a potent marker of astrocytes) immunoreactivity was increased in the FAE retinal ganglion cell layer indicating a strong astrogliosis. These alterations were present in juvenile (2 years old) monkeys and persist in adults (8 years old). Moreover, using specific cell type markers, no significant modifications in the morphology of the photoreceptors, horizontal cells, bipolar cells, and amacrine cells were observed. Our data indicate that FAE does indeed induce anatomical changes within the retinal ganglion cell layer that are reflected in the increased photosensitivity of the cone photoreceptors.


Subject(s)
Fetal Alcohol Spectrum Disorders/physiopathology , Monkey Diseases/physiopathology , Retina/physiopathology , Animals , Chlorocebus aethiops , Electroretinography , Glial Fibrillary Acidic Protein/metabolism , Intraocular Pressure/physiology , Retinal Ganglion Cells/pathology , Retinal Vessels/pathology
6.
Microb Pathog ; 107: 198-201, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28366827

ABSTRACT

In recent years, an emergent Klebsiella pneumoniae hypermucoviscous (HMV) phenotype has been associated with increased invasiveness and pathogenicity in primates. The HMV phenotype is characterized by different capsular serotypes, associated with several genes including the rmpA (regulator of mucoid phenotype) and magA (mucoviscosity-associated) genes. In African green monkeys (AGM) (Chlorocebus aethiops sabaeus) serotypes K1 and K5 have been implicated in fatal multisystemic abscesses. In order to better understand the epizootiology of this pathogen, the capacity of biofilm production of K. pneumoniae isolates presenting the HMV was compared to non-HMV isolates at three different temperatures (25, 30 and 37 °C). The results indicate that HMV and non-HMV isolates display similar capacity to form biofilms at the three different evaluated temperatures. Temperature appears to play a role in the formation of biofilms by K. pneumoniae presenting the HMV phenotype, where larger biofilms were formed at 37 °C than at 25 °C. Knowledge regarding local environmental sources of K. pneumoniae and the possible role of wildlife in the maintenance of this agent in the area is necessary to develop effective recommendations for the prevention and management of this disease in captive AGM populations.


Subject(s)
Biofilms/growth & development , Chlorocebus aethiops/microbiology , Klebsiella Infections/microbiology , Klebsiella Infections/veterinary , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/genetics , Animals , Bacterial Proteins/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/pathogenicity , Lung Abscess/microbiology , Lung Abscess/pathology , Monkey Diseases/microbiology , Neutrophils/microbiology , Phenotype , Temperature , Viscosity
7.
Vet Res ; 47: 40, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26951091

ABSTRACT

Emergent hypermucoviscosity (HMV) phenotypes of Klebsiella pneumoniae have been associated with increased invasiveness and pathogenicity in primates. In this study, we investigated the interaction of African green monkeys (AGM) (Chlorocebus aethiops sabaeus) complement and antibody with HMV and non-HMV isolates as in vitro models of primate infection. Significantly greater survival of HMV isolates was evident after incubation in normal serum or whole blood (p < 0.05) of AGM donors when compared to non-HMV strains. Greater survival of HMV strains (p < 0.05) was found after incubation in whole blood and serum from seropositive donors when compared to seronegative donor samples. Additionally, significantly greater amounts of K. pneumoniae were phagocytozed by AGM leukocytes when complement was active (p < 0.05), but no difference in uptake was observed when serum from seropositive or seronegative animals was used in challenged cells utilizing flow cytometry. Results demonstrate that interaction of cellular and humoral immune elements play a role in the in vitro killing of K. pneumoniae, particularly HMV isolates. Neither AGM serum, nor washed whole blood effectively killed HMV isolates; however, assays using heparinized whole blood of seronegative donors significantly reduced viability of HMV and non-HMV strains. The lack of bacterial killing observed in seropositive donors treatments could be at least partially associated with low IgG2 present in these animals. A better understanding of the pathogenesis of klebsiellosis in primates and host immune response is necessary to identify surface molecules that can induce both opsonizing and bactericidal antibody facilitating killing of Klebsiella, and the development of vaccines in human and animals.


Subject(s)
Adaptive Immunity , Chlorocebus aethiops , Immunity, Innate , Klebsiella Infections/veterinary , Klebsiella pneumoniae/physiology , Monkey Diseases/immunology , Animals , Antibodies, Bacterial/blood , Female , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Monkey Diseases/microbiology
8.
Neural Plast ; 2016: 1253245, 2016.
Article in English | MEDLINE | ID: mdl-27069692

ABSTRACT

The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp.) in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.


Subject(s)
Membrane Potentials/physiology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Retina/metabolism , Retinal Neurons/metabolism , Animals , Chlorocebus aethiops , Electroretinography , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Indoles/pharmacology , Membrane Potentials/drug effects , Photic Stimulation , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Retina/drug effects , Retinal Neurons/drug effects
9.
Dev Psychobiol ; 57(4): 470-85, 2015 May.
Article in English | MEDLINE | ID: mdl-25913787

ABSTRACT

Prenatal exposure to beverage alcohol is a major cause of mild mental retardation and developmental delay. In nonendangered alcohol-preferring vervet monkeys, we modeled the most common nondysmorphic form of fetal alcohol syndrome disorder with voluntary drinking during the third trimester of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally and persist through infancy (5 months) and juvenile (2 years) stages. Although the volumes of hippocampal subdivisions in FAE animals are not atypical at birth, by age 2, they are only 65-70% of those estimated in age-matched controls. These data suggest that moderate, naturalistic alcohol consumption during late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume.


Subject(s)
Ethanol/pharmacology , Hippocampus/drug effects , Hippocampus/pathology , Neurons/drug effects , Neurons/pathology , Prenatal Exposure Delayed Effects/pathology , Analysis of Variance , Animals , Chlorocebus aethiops , Disease Models, Animal , Female , Fetal Alcohol Spectrum Disorders , Hippocampus/ultrastructure , Male , Neurons/ultrastructure , Pregnancy
10.
Am J Pathol ; 183(2): 369-81, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23747948

ABSTRACT

Amyloid-ß (Aß) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aß), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aß peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aß deposition in humans and animal models. PyroGlu-3 Aß immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aß IR. PyroGlu-3 Aß is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aß deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aß deposition preceding pyroGlu-3 Aß deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aß is a major species of ß-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aß peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Age of Onset , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor , Animals , Brain/pathology , Cerebral Amyloid Angiopathy/metabolism , Chlorocebus aethiops , Disease Models, Animal , Dogs , Down Syndrome/metabolism , Female , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic , Middle Aged , Plaque, Amyloid/metabolism
11.
Article in English | MEDLINE | ID: mdl-38884652

ABSTRACT

RATIONALE: Glucagon-like peptide-1 (GLP-1) receptor agonists reduce alcohol consumption in rodents and non-human primates. Semaglutide is a new long-acting GLP-1 receptor agonist, widely used in the clinic against type 2 diabetes and obesity. It is also reported to reduce alcohol intake in rodents. OBJECTIVES: This study investigates the possible inhibitory effect of semaglutide on alcohol intake in alcohol-preferring African green monkeys. METHODS: We performed a vehicle-controlled study on male monkeys that had demonstrated a preference for alcohol. In the monkeys selected for voluntary alcohol drinking, alcohol consumption was measured for ten days at baseline (Monday to Friday for two weeks). During this period, the monkeys had access to alcohol 4 h per day and free access to water 24 h per day. After two weeks of baseline measurements, the monkeys were randomized to semaglutide or vehicle. Each group consisted of ten monkeys, and the two groups were balanced with respect to baseline alcohol intake. Following the baseline period, the monkeys were treated with escalating doses of semaglutide (up to 0.05 mg/kg) or vehicle subcutaneously twice weekly for two weeks during which period alcohol was not available. After uptitration, the monkeys had access to alcohol 4 h daily for 20 days (Monday to Friday for 4 weeks), and alcohol consumption was measured. During this alcohol exposure period, treatment with semaglutide (0.05 mg/kg twice weekly) or vehicle continued for three weeks followed by a one-week washout period. RESULTS: Compared to the vehicle, semaglutide significantly reduced alcohol intake. There were no signs of emetic events or changes in water intake. CONCLUSIONS: These data demonstrate for the first time the potent effect of semaglutide in reducing voluntary alcohol intake in non-human primates and further substantiate the need for clinical trials investigating the effect of semaglutide in patients with alcohol-use disorder.

12.
Brain Sci ; 13(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37371413

ABSTRACT

MicroRNAs (miRNAs) are short-length non-protein-coding RNA sequences that post-transcriptionally regulate gene expression in a broad range of cellular processes including neuro- development and have previously been implicated in fetal alcohol spectrum disorders (FASD). In this study, we use our vervet monkey model of FASD to follow up on a prior multivariate (developmental age × ethanol exposure) mRNA analysis (GSE173516) to explore the possibility that the global mRNA downregulation we observed in that study could be related to miRNA expression and function. We report here a predominance of upregulated and differentially expressed miRNAs. Further, the 24 most upregulated miRNAs were significantly correlated with their predicted targets (Target Scan 7.2). We then explored the relationship between these 24 miRNAs and the fold changes observed in their paired mRNA targets using two prediction platforms (Target Scan 7.2 and miRwalk 3.0). Compared to a list of non-differentially expressed miRNAs from our dataset, the 24 upregulated and differentially expressed miRNAs had a greater impact on the fold changes of their corresponding mRNA targets across both platforms. Taken together, this evidence raises the possibility that ethanol-induced upregulation of specific miRNAs might contribute functionally to the general downregulation of mRNAs observed by multiple investigators in response to prenatal alcohol exposure.

13.
J Neurodev Disord ; 14(1): 21, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35305552

ABSTRACT

BACKGROUND: Fetal alcohol spectrum disorders (FASD) are common, yet preventable developmental disorders that stem from prenatal exposure to alcohol. This exposure leads to a wide array of behavioural and physical problems with a complex and poorly defined biological basis. Molecular investigations to date predominantly use rodent animal models, but because of genetic, developmental and social behavioral similarity, primate models are more relevant. We previously reported reduced cortical and hippocampal neuron levels in an Old World monkey (Chlorocebus sabaeus) model with ethanol exposure targeted to the period of rapid synaptogenesis and report here an initial molecular study of this model. The goal of this study was to evaluate mRNA expression of the hippocampus at two different behavioural stages (5 months, 2 years) corresponding to human infancy and early childhood. METHODS: Offspring of alcohol-preferring or control dams drank a maximum of 3.5 g ethanol per kg body weight or calorically matched sucrose solution 4 days per week during the last 2 months of gestation. Total mRNA expression was measured with the Affymetrix GeneChip Rhesus Macaque Genome Array in a 2 × 2 study design that interrogated two independent variables, age at sacrifice, and alcohol consumption during gestation. RESULTS AND DISCUSSION: Statistical analysis identified a preferential downregulation of expression when interrogating the factor 'alcohol' with a balanced effect of upregulation vs. downregulation for the independent variable 'age'. Functional exploration of both independent variables shows that the alcohol consumption factor generates broad functional annotation clusters that likely implicate a role for epigenetics in the observed differential expression, while the variable age reliably produced functional annotation clusters predominantly related to development. Furthermore, our data reveals a novel connection between EFNB1 and the FASDs; this is highly plausible both due to the role of EFNB1 in neuronal development as well as its central role in craniofrontal nasal syndrome (CFNS). Fold changes for key genes were subsequently confirmed via qRT-PCR. CONCLUSION: Prenatal alcohol exposure leads to global downregulation in mRNA expression. The cellular interference model of EFNB1 provides a potential clue regarding how genetically susceptible individuals may develop the phenotypic triad generally associated with classic fetal alcohol syndrome.


Subject(s)
Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Animals , Child, Preschool , Chlorocebus aethiops , Disease Models, Animal , Ephrin-B1/metabolism , Ephrin-B1/pharmacology , Ethanol/metabolism , Female , Fetal Alcohol Spectrum Disorders/genetics , Fetal Alcohol Spectrum Disorders/metabolism , Hippocampus/metabolism , Humans , Macaca mulatta/genetics , Macaca mulatta/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/genetics , RNA, Messenger/metabolism , RNA, Messenger/pharmacology
14.
Cells ; 11(17)2022 09 03.
Article in English | MEDLINE | ID: mdl-36078159

ABSTRACT

Among the deficits in visual processing that accompany healthy aging, the earliest originate in the retina. Moreover, sex-related differences in retinal function have been increasingly recognized. To better understand the dynamics of the retinal aging trajectory, we used the light-adapted flicker electroretinogram (ERG) to functionally assess the state of the neuroretina in a large cohort of age- and sex-matched vervet monkeys (N = 35), aged 9 to 28 years old, with no signs of obvious ocular pathology. We primarily isolated the cone-bipolar axis by stimulating the retina with a standard intensity light flash (2.57 cd/s/m2) at eight different frequencies, ranging from 5 to 40 Hz. Sex-specific changes in the voltage and temporal characteristics of the flicker waveform were found in older individuals (21-28 years-old, N = 16), when compared to younger monkeys (9-20 years-old, N = 19), across all stimulus frequencies tested. Specifically, significantly prolonged implicit times were observed in older monkeys (p < 0.05), but a significant reduction of the amplitude of the response was only found in old male monkeys (p < 0.05). These changes might reflect ongoing degenerative processes targeting the retinal circuitry and the cone subsystem in particular. Altogether, our findings corroborate the existing literature in humans and other species, where aging detrimentally affects photopic retinal responses, and draw attention to the potential contribution of different hormonal environments.


Subject(s)
Electroretinography , Retina , Adolescent , Adult , Aged , Animals , Child , Chlorocebus aethiops , Female , Humans , Male , Photic Stimulation , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Young Adult
15.
Brain Sci ; 12(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36138853

ABSTRACT

Fetal alcohol spectrum disorder (FASD) is a chronic debilitating condition resulting in behavioral and intellectual impairments and is considered the most prevalent form of preventable mental retardation in the industrialized world. We previously reported that 2-year-old offspring of vervet monkey (Chlorocebus sabeus) dams drinking, on average, 2.3 ± 0.49 g ethanol per Kg maternal body weight 4 days per week during the last third of pregnancy had significantly lower numbers of CA1 (-51.6%), CA2 (-51.2%) and CA3 (-42.8%) hippocampal neurons, as compared to age-matched sucrose controls. Fetal alcohol-exposed (FAE) offspring also showed significantly lower volumes for these structures at 2 years of age. In the present study, we examined these same parameters in 12 FAE offspring with a similar average but a larger range of ethanol exposures (1.01-2.98 g/Kg/day; total ethanol exposure 24-158 g/Kg). Design-based stereology was performed on cresyl violet-stained and doublecortin (DCX)-immunostained sections of the hippocampus. We report here significant neuronal deficits in the hippocampus with a significant negative correlation between daily dose and neuronal population in CA1 (r2 = 0.486), CA2 (r2 = 0.492), and CA3 (r2 = 0.469). There were also significant correlations between DCX population in the dentate gyrus and daily dose (r2 = 0.560). Both correlations were consistent with linear dose-response models. This study illustrates that neuroanatomical sequelae of fetal ethanol exposure are dose-responsive and suggests that there may be a threshold for this effect.

16.
Cell Metab ; 34(2): 317-328.e6, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108517

ABSTRACT

Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.


Subject(s)
Fibroblast Growth Factors , Genome-Wide Association Study , Alcohol Drinking , Animals , Endocrine System/metabolism , Fibroblast Growth Factors/metabolism
17.
Alcohol Clin Exp Res ; 35(6): 1134-41, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21410481

ABSTRACT

BACKGROUND: Few pharmacological treatments for alcohol dependence are available. Moreover, the best supported treatment, naltrexone hydrochloride, appears to work for only some. METHODS: To investigate potential predictors of these differential responses, 40 social drinkers (20 women) were administered 6 days of treatment with naltrexone vs. placebo in a double-blind, counterbalanced, crossover design. At the end of each treatment period, participants received a single dose of their preferred alcoholic beverage followed by the opportunity to work for additional alcohol units using a progressive ratio (PR) breakpoint paradigm. All subjects but one were genotyped for the A118G polymorphism of the mu opioid receptor gene (OPRM1). RESULTS: Naltrexone decreased the ethanol-induced 'euphoria' to a priming dose of alcohol in two subgroups: (i) in women, and (ii) in subjects with the A118G polymorphism of the mu opioid receptor gene (OPRM1). Naltrexone did not decrease motivation to work for additional alcoholic beverages on the PR task regardless of gender or genotype. CONCLUSIONS: The results add to the evidence that naltrexone decreases positive subjective effects of alcohol, with preferential effects in distinct subgroups. Similar effects in heavier drinkers might decrease alcohol use.


Subject(s)
Alcohol Drinking/drug therapy , Alcohol Drinking/genetics , Naltrexone/therapeutic use , Sex Characteristics , Adolescent , Adult , Alcohol Drinking/psychology , Cross-Over Studies , Double-Blind Method , Female , Genotype , Humans , Male , Middle Aged , Naltrexone/pharmacology , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Self Administration , Young Adult
18.
Pathogens ; 9(6)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560055

ABSTRACT

This study was performed to investigate the potential asymptomatic Leptospira reservoir status among African green monkeys (AGMs) in the Caribbean island of Saint Kitts, and whether there is any renal pathology associated with Leptospira exposure. Forty-eight percent of AGMs tested were positive for Leptospira antibodies by the microscopic agglutination test. Leptospira DNA was detected in 4% of kidney samples tested using a lipl32 gene based PCR. We observed minimal to severe microscopic renal lesions in 85% of the AGM kidneys evaluated. The majority of the AGMs (n = 26) had only minimal to mild interstitial nephritis and a few (n = 3) had moderate to severe lesions. The presence of interstitial nephritis was not significantly associated with Leptospira exposure. The presence of infected AGMs in a small surface limited geographic region may pose zoonotic threat to humans and animals. The impact of Leptospira infection in renal pathology in AGMs warrants further investigation. AGMs residing in a natural setting in an insular, surface limited Leptospira endemic geographic region may offer opportunities for comparative studies to advance the field of leptospirosis. Due to their similarity to humans, such studies in AGMs may also provide translational opportunities to advance Leptospira research.

19.
Sci Rep ; 10(1): 12116, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694518

ABSTRACT

The ubiquitous distribution of the classic endocannabinoid system (cannabinoid receptors CB1 and CB2) has been demonstrated within the monkey nervous system, including the retina. Transient receptor potential vanilloid type 1 (TRPV1) is a cannabinoid-like non-selective cation channel receptor that is present in the retina and binds to endovannilloids and endocannabinoids, like anandamide, 2-arachidonoylglycerol and N-arachidonoyl dopamine. Retinal expression patterns of TRPV1 are available for rodents and data in higher mammals like humans and monkeys are scarce. We therefore thoroughly examined the expression and localization of TRPV1 in the retina, at various eccentricities, of the vervet (Chlorocebus sabeus) monkey, using Western blots and immunohistochemistry. Our results demonstrate that TRPV1 is found mainly in the outer and inner plexiform layers, and in the retinal ganglion cell (RGC) layer with a higher density in the periphery. Co-immunolabeling of TRPV1 with parvalbumin, a primate horizontal cell marker, revealed a clear overlap of expression throughout the entire cell structure with most prominent staining in the cell body membrane and synaptic terminals. Furthermore, double labeling of TRPV1 and syntaxin was found throughout amacrine cells in the inner plexiform layer. Finally, double staining of TRPV1 and Brn3a allowed us to confirm its previously reported expression in the cell bodies and dendrites of RGCs. The presence of TRPV1 in the horizontal pathway suggests a function of this receptor in lateral inhibition between photoreceptors through the horizontal cells, and between bipolar cells through amacrine cells.


Subject(s)
Parvalbumins/metabolism , Qa-SNARE Proteins/metabolism , Retina/metabolism , TRPV Cation Channels/metabolism , Amacrine Cells/metabolism , Animals , Chlorocebus aethiops , Photoreceptor Cells/metabolism , Retinal Ganglion Cells/metabolism , Synapses/metabolism , Tissue Distribution , Transcription Factor Brn-3A/metabolism
20.
J Neuropathol Exp Neurol ; 79(4): 393-406, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32077471

ABSTRACT

The early neuropathological features of amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) are protein aggregates in motor neurons and microglial activation. Similar pathology characterizes Guamanian ALS/Parkinsonism dementia complex, which may be triggered by the cyanotoxin ß-N-methylamino-l-alanine (BMAA). We report here the occurrence of ALS/MND-type pathological changes in vervets (Chlorocebus sabaeus; n = 8) fed oral doses of a dry powder of BMAA HCl salt (210 mg/kg/day) for 140 days. Spinal cords and brains from toxin-exposed vervets were compared to controls fed rice flour (210 mg/kg/day) and to vervets coadministered equal amounts of BMAA and l-serine (210 mg/kg/day). Immunohistochemistry and quantitative image analysis were used to examine markers of ALS/MND and glial activation. UHPLC-MS/MS was used to confirm BMAA exposures in dosed vervets. Motor neuron degeneration was demonstrated in BMAA-dosed vervets by TDP-43+ proteinopathy in anterior horn cells, by reactive astrogliosis, by activated microglia, and by damage to myelinated axons in the lateral corticospinal tracts. Vervets dosed with BMAA + l-serine displayed reduced neuropathological changes. This study demonstrates that chronic dietary exposure to BMAA causes ALS/MND-type pathological changes in the vervet and coadministration of l-serine reduces the amount of reactive gliosis and the number of protein inclusions in motor neurons.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Motor Neuron Disease/pathology , Motor Neurons/drug effects , Motor Neurons/pathology , Serine/administration & dosage , Spinal Cord/drug effects , Spinal Cord/pathology , Amino Acids, Diamino/toxicity , Amyotrophic Lateral Sclerosis/chemically induced , Animals , Chlorocebus aethiops , Cyanobacteria Toxins , Disease Models, Animal , Male , Microglia/drug effects , Microglia/pathology , Motor Neuron Disease/chemically induced , Pyramidal Tracts/drug effects , Pyramidal Tracts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL