Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell ; 185(23): 4317-4332.e15, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36302380

ABSTRACT

Therapeutic cancer vaccines are designed to increase tumor-specific T cell immunity. However, suppressive mechanisms within the tumor microenvironment (TME) may limit T cell function. Here, we assessed how the route of vaccination alters intratumoral myeloid cells. Using a self-assembling nanoparticle vaccine that links tumor antigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we treated tumor-bearing mice subcutaneously (SNP-SC) or intravenously (SNP-IV). Both routes generated antigen-specific CD8+ T cells that infiltrated tumors. However, only SNP-IV mediated tumor regression, dependent on systemic type I interferon at the time of boost. Single-cell RNA-sequencing revealed that intratumoral monocytes expressing an immunoregulatory gene signature (Chil3, Anxa2, Wfdc17) were reduced after SNP-IV boost. In humans, the Chil3+ monocyte gene signature is enriched in CD16- monocytes and associated with worse outcomes. Our results show that the generation of tumor-specific CD8+ T cells combined with remodeling of the TME is a promising approach for tumor immunotherapy.


Subject(s)
Cancer Vaccines , Tumor Microenvironment , Humans , Mice , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Immunotherapy/methods , Antigens, Neoplasm , Vaccination/methods , Adjuvants, Immunologic
2.
Nat Immunol ; 22(1): 41-52, 2021 01.
Article in English | MEDLINE | ID: mdl-33139915

ABSTRACT

Personalized cancer vaccines are a promising approach for inducing T cell immunity to tumor neoantigens. Using a self-assembling nanoparticle vaccine that links neoantigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we show how the route and dose alter the magnitude and quality of neoantigen-specific CD8+ T cells. Intravenous vaccination (SNP-IV) induced a higher proportion of TCF1+PD-1+CD8+ T cells as compared to subcutaneous immunization (SNP-SC). Single-cell RNA sequencing showed that SNP-IV induced stem-like genes (Tcf7, Slamf6, Xcl1) whereas SNP-SC enriched for effector genes (Gzmb, Klrg1, Cx3cr1). Stem-like cells generated by SNP-IV proliferated and differentiated into effector cells upon checkpoint blockade, leading to superior antitumor response as compared to SNP-SC in a therapeutic model. The duration of antigen presentation by dendritic cells controlled the magnitude and quality of CD8+ T cells. These data demonstrate how to optimize antitumor immunity by modulating vaccine parameters for specific generation of effector or stem-like CD8+ T cells.


Subject(s)
Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Hepatocyte Nuclear Factor 1-alpha/analysis , Nanoparticles , Animals , Antigen Presentation , Cancer Vaccines/immunology , Dendritic Cells/immunology , Female , Immunity, Innate , Mice , Mice, Inbred C57BL , Vaccination
3.
Biomacromolecules ; 20(2): 854-870, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30608149

ABSTRACT

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity). Moreover, both lymph node cytokine production and the magnitude of CD8 T cells induced against protein antigen increased with increasing polymer-TLR-7/8a hydrodynamic radius, with the submicrometer particle inducing the highest magnitude responses. Notably, CD8 T cell responses induced by polymer-TLR-7/8a were dependent on CCR2+ monocytes and IL-12, whereas responses by a small molecule TLR-7/8a that unexpectedly persisted in vaccine-site draining lymph nodes (T1/2 = 15 h) had less dependence on monocytes and IL-12 but required Type I IFNs. This study shows how modular properties of synthetic adjuvants can be chemically programmed to alter immunity in vivo through distinct immunological mechanisms.


Subject(s)
Adjuvants, Immunologic/chemistry , CD8-Positive T-Lymphocytes/drug effects , Lymphocyte Activation , Micelles , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cells, Cultured , Cytokines/metabolism , Female , Hydrodynamics , Mice , Mice, Inbred C57BL , Protein Binding
4.
Cell Rep ; 42(6): 112599, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37279110

ABSTRACT

Therapeutic neoantigen cancer vaccines have limited clinical efficacy to date. Here, we identify a heterologous prime-boost vaccination strategy using a self-assembling peptide nanoparticle TLR-7/8 agonist (SNP) vaccine prime and a chimp adenovirus (ChAdOx1) vaccine boost that elicits potent CD8 T cells and tumor regression. ChAdOx1 administered intravenously (i.v.) had 4-fold higher antigen-specific CD8 T cell responses than mice boosted by the intramuscular (i.m.) route. In the therapeutic MC38 tumor model, i.v. heterologous prime-boost vaccination enhances regression compared with ChAdOx1 alone. Remarkably, i.v. boosting with a ChAdOx1 vector encoding an irrelevant antigen also mediates tumor regression, which is dependent on type I IFN signaling. Single-cell RNA sequencing of the tumor myeloid compartment shows that i.v. ChAdOx1 reduces the frequency of immunosuppressive Chil3 monocytes and activates cross-presenting type 1 conventional dendritic cells (cDC1s). The dual effect of i.v. ChAdOx1 vaccination enhancing CD8 T cells and modulating the TME represents a translatable paradigm for enhancing anti-tumor immunity in humans.


Subject(s)
CD8-Positive T-Lymphocytes , Vaccination , Humans , Mice , Animals , Adaptive Immunity , Genetic Vectors , Adjuvants, Immunologic
5.
Nat Biotechnol ; 38(3): 320-332, 2020 03.
Article in English | MEDLINE | ID: mdl-31932728

ABSTRACT

Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/administration & dosage , Melanoma, Experimental/drug therapy , Animals , Cancer Vaccines/immunology , Cell Line, Tumor , Melanoma, Experimental/immunology , Mice , Nanoparticles , Precision Medicine , Primates , Toll-Like Receptor 7/immunology , Toll-Like Receptor 8/immunology , Vaccination , Vaccines, Conjugate
SELECTION OF CITATIONS
SEARCH DETAIL