Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nat Mater ; 23(6): 818-825, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429520

ABSTRACT

Oxygen redox cathodes, such as Li1.2Ni0.13Co0.13Mn0.54O2, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O2- ions forms O2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O2- on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O2-/O2 redox process and O2 loss. The closed voids that trap O2 grow on cycling, rendering more of the trapped O2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O2. Our findings implicate the thermodynamic driving force to form O2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.

2.
Angew Chem Int Ed Engl ; : e202408246, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819775

ABSTRACT

Improving composite cathode function is key to the success of the solid-state battery. Maximizing attainable cathode capacity and retention requires integrating suitable polymeric binders that retain a sufficiently high ionic conductivity and long-term chemo-mechanical stability of the cathode active material-solid-electrolyte-carbon mixture. Herein, we report block copolymer networks composed of lithium borate polycarbonates and poly(ethylene oxide) that improved the capacity (200 mA h g-1 at 1.75 mA cm-2) and capacity retention (94% over 300 cycles) of all-solid-state composite cathodes with nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode active material, Li6PS5Cl solid electrolyte, and carbon. Tetrahedral B(OR)2(OH)2- anions immobilized on the polycarbonate segments provide hydrogen-bonding chain crosslinking and selective Li-counterion conductivity, parameterized by Li-ion transference numbers close to unity (tLi+ ~ 0.94). With 90 wt% polycarbonate content and a flexible low glass transition temperature backbone, the single-ion conductors achieved high Li-ion conductivities of 0.2 mS cm-1 at 30°C. The work should inform future binder design for improving the processability of cathode composites towards commercialising solid-state batteries, and allow use in other cell configurations, such as lithium-sulphur cathode designs.

3.
Angew Chem Int Ed Engl ; 62(51): e202314444, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37902095

ABSTRACT

The sodium-rich antiperovskites (NaRAPs) with composition Na3 OB (B=Br, Cl, I, BH4 , etc.) are a family of materials that has recently attracted great interest for application as solid electrolytes in sodium metal batteries. Non-Arrhenius ionic conductivities have been reported for these materials, the origin of which is poorly understood. In this work, we combined temperature-resolved bulk and local characterisation methods to gain an insight into the origin of this unusual behaviour using Na3 OBr as a model system. We first excluded crystallographic disorder on the anion sites as the cause of the change in activation energy; then identified the presence of a poorly crystalline impurities, not detectable by XRD, and elucidated their effect on ionic conductivity. These findings improve understanding of the processing-structure-properties relationships pertaining to NaRAPs and highlight the need to determine these relationships in other materials systems, which will accelerate the development of high-performance solid electrolytes.

4.
J Am Chem Soc ; 144(38): 17477-17486, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36122375

ABSTRACT

Polymers designed with a specific combination of electrochemical, mechanical, and chemical properties could help overcome challenges limiting practical all-solid-state batteries for high-performance next-generation energy storage devices. In composite cathodes, comprising active cathode material, inorganic solid electrolyte, and carbon, battery longevity is limited by active particle volume changes occurring on charge/discharge. To overcome this, impractical high pressures are applied to maintain interfacial contact. Herein, block polymers designed to address these issues combine ionic conductivity, electrochemical stability, and suitable elastomeric mechanical properties, including adhesion. The block polymers have "hard-soft-hard", ABA, block structures, where the soft "B" block is poly(ethylene oxide) (PEO), known to promote ionic conductivity, and the hard "A" block is a CO2-derived polycarbonate, poly(4-vinyl cyclohexene oxide carbonate), which provides mechanical rigidity and enhances oxidative stability. ABA block polymers featuring controllable PEO and polycarbonate lengths are straightforwardly prepared using hydroxyl telechelic PEO as a macroinitiator for CO2/epoxide ring-opening copolymerization and a well-controlled Mg(II)Co(II) catalyst. The influence of block polymer composition upon electrochemical and mechanical properties is investigated, with phosphonic acid functionalities being installed in the polycarbonate domains for adhesive properties. Three lead polymer materials are identified; these materials show an ambient ionic conductivity of 10 -4 S cm-1, lithium-ion transport (tLi+ 0.3-0.62), oxidative stability (>4 V vs Li+/Li), and elastomeric or plastomer properties (G' 0.1-67 MPa). The best block polymers are used in composite cathodes with LiNi0.8Mn0.1Co0.1O2 active material and Li6PS5Cl solid electrolyte-the resulting solid-state batteries demonstrate greater capacity retention than equivalent cells featuring no polymer or commercial polyelectrolytes.

5.
Angew Chem Int Ed Engl ; 60(4): 2110-2115, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33022833

ABSTRACT

Two-dimensional, Knight-shifted, T2 -contrasted 23 Na magnetic resonance imaging (MRI) of an all-solid-state cell with a Na electrode and a ceramic electrolyte is employed to directly observe Na microstructural growth. A spalling dendritic morphology is observed and confirmed by more conventional post-mortem analysis; X-ray tomography and scanning electron microscopy. A significantly larger 23 Na T2 for the dendritic growth, compared with the bulk metal electrode, is attributed to increased sodium ion mobility in the dendrite. 23 Na T2 -contrast MRI of metallic sodium offers a clear, routine method for observing and isolating microstructural growths and can supplement the current suite of techniques utilised to analyse dendritic growth in all-solid-state cells.

6.
Angew Chem Int Ed Engl ; 60(44): 23878-23884, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34464506

ABSTRACT

A combination of charge density studies and solid state nuclear magnetic resonance (NMR) 1 JNC coupling measurements supported by periodic density functional theory (DFT) calculations is used to characterise the transition from an n-π* interaction to bond formation between a nucleophilic nitrogen atom and an electrophilic sp2 carbon atom in a series of crystalline peri-substituted naphthalenes. As the N⋅⋅⋅C distance reduces there is a sharp decrease in the Laplacian derived from increasing charge density between the two groups at ca. N⋅⋅⋅C = 1.8 Å, with the periodic DFT calculations predicting, and heteronuclear spin-echo NMR measurements confirming, the 1 JNC couplings of ≈3-6 Hz for long C-N bonds (1.60-1.65 Å), and 1 JNC couplings of <1 Hz for N⋅⋅⋅C >2.1 Å.

7.
Phys Chem Chem Phys ; 22(6): 3400-3413, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31984388

ABSTRACT

A combined multinuclear solid state NMR and gauge included projected augmented wave, density functional theory (GIPAW DFT) computational approach is evaluated to determine the four heteronuclear 1J(13C,17O) couplings in solid 17O enriched naphthalaldehydic acid. Direct multi-field 17O magic angle spinning (MAS), triple quantum MAS (3QMAS) and double rotation (DOR) experiments are initially utilised to evaluate the accuracy of the DFT approximations used in the calculation of the isotropic chemical shifts (δiso), quadrupole coupling constants (CQ) and asymmetry (ηQ) parameters. These combined approaches give δiso values of 313, 200 and 66 ppm for the carbonyl (C[double bond, length as m-dash]O), ether (-O-) and hydroxyl (-OH) environments, respectively, with the corresponding measured quadrupole products (PQ) being 8.2, 9.0 and 10.6 MHz. The geometry optimised DFT structure derived using the CASTEP code gives firm agreement with the shifts observed for the ether (δiso = 223, PQ = 9.4 MHz) and hydroxyl (δiso = 62, PQ = 10.5 MHz) environments but the unoptimised experimental XRD structure has better agreement for the carbonyl group (δiso = 320, PQ = 8.3 MHz). The determined δiso and ηQ values are shown to be consistent with bond lengths closer to 1.222 Å (experimental length) rather than the geometry optimised length of 1.238 Å. The geometry optimised DFT 1J(13C,17O) coupling to the hydroxyl is calculated as 20 Hz and the couplings to the ether were calculated to be 37 (O-C[double bond, length as m-dash]O) and 32 (O-C-OH) Hz. The scalar coupling parameters for the unoptimised experimental carbonyl group predict a 1J(13C,17O) value of 28 Hz, whilst optimisation gives a value of 27 Hz. These calculated 1J(13C,17O) couplings, together with estimations of the probability of each O environment being isotopically labelled (determined by electrospray ionisation mass spectrometry) and the measured refocussable transverse dephasing (T2') behaviour, are combined to simulate the experimental decay behaviour. Good agreement between the measured and calculated decay behaviour is observed.

8.
Chemphyschem ; 19(1): 40-44, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29105304

ABSTRACT

We demonstrate that non-equilibrium nuclear spin order survives precipitation from solution and redissolution. The effect is demonstrated on 13 C- and 2 H-labeled sodium fumarate, with precipitation and dissolution achieved by altering the pH. The lifetime of the spin magnetization in the precipitate suspension is found to be much longer than in solution. Our preliminary results show an extension of the effective relaxation time T1 for the metabolite fumarate by a factor of ≈6. We show that when the free radical agent TEMPO is present in the solution, it is not incorporated into the precipitate, suggesting that this procedure may provide a means to store and transport agents polarized by dynamic nuclear polarization. Although the relaxation time, T1 , of the precipitate suspension is longer than that of the same molecules in solution, it is significantly shorter than that observed in the immobilized solid state.

9.
Inorg Chem ; 57(15): 9122-9132, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30010324

ABSTRACT

Vanadate ellestadites Ca10(SiO4) x(VO4)6-2 x(SO4) xCl2, serving as prototype crystalline matrices for the fixation of pentavalent toxic metals (V, Cr, As), were synthesized and characterized by powder X-ray and neutron diffraction (PXRD and PND), electron probe microanalysis (EPMA), Fourier transform infrared spectroscopy (FTIR), and solid-state nuclear magnetic resonance (SS-NMR). The ellestadites 0.19 < x < 3 adopt the P63/ m structure, while the vanadate endmember Ca10(VO4)6Cl2 is triclinic with space group P1̅. A miscibility gap exists for 0.77 < x < 2.44. The deficiency of Cl in the structure leads to short-range disorder in the tunnel. Toxicity characteristic leaching testing (TCLP) showed the incorporation of vanadium increases ellestadite solubility, and defined a waste loading limit that should not exceed 25 atom % V to ensure small release levels.

10.
Phys Chem Chem Phys ; 20(41): 26734-26743, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30324213

ABSTRACT

The ability to clearly relate local structure to function is desirable for many catalytically relevant Pd-containing systems. This report represents the first direct 105Pd solid state NMR measurements of diamagnetic inorganic (K2Pd(iv)Cl6, (NH4)2Pd(iv)Cl6 and K2Pd(iv)Br6) complexes, and micron- and nano-sized Pd metal particles at room temperature, thereby introducing effective 105Pd chemical shift and Knight shift ranges in the solid state. The very large 105Pd quadrupole moment (Q) makes the quadrupole parameters (CQ, ηQ) extremely sensitive to small structural distortions. Despite the well-defined high symmetry octahedral positions describing the immediate Pd coordination environment, 105Pd NMR measurements can detect longer range disorder and anisotropic motion in the interstitial positions. The approach adopted here combines high resolution X-ray pair distribution function (PDF) analyses with 105Pd, 39K and 35Cl MAS NMR, and shows solid state NMR to be a very sensitive probe of short range structural perturbations. Solid state 105Pd NMR observations of ∼44-149 µm Pd sponge, ∼20-150 nm Pd black nanoparticles, highly monodisperse 16 ± 3 nm PVP-stabilised Pd nanoparticles, and highly polydisperse ∼2-1100 nm biomineralized Pd nanoparticles (bio-Pd) on pyrolysed amorphous carbon detect physical differences between these systems based on relative bulk:surface ratios and monodispersity/size homogeneity. This introduces the possibility of utilizing solid state NMR to help elucidate the structure-function properties of commercial Pd-based catalyst systems.

11.
Inorg Chem ; 56(16): 10078-10089, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28776991

ABSTRACT

This paper discusses the fluorination characteristics of phases related to FeSb2O4, by reporting the results of a detailed study of Mg0.50Fe0.50Sb2O4 and Co0.50Fe0.50Sb2O4. Reaction with fluorine gas at low temperatures (typically 230 °C) results in topotactic insertion of fluorine into the channels, which are an inherent feature of the structure. Neutron powder diffraction and solid state NMR studies show that the interstitial fluoride ions are bonded to antimony within the channel walls to form Sb-F-Sb bridges. To date, these reactions have been observed only when Fe2+ ions are present within the chains of edge-linked octahedra (FeO6 in FeSb2O4) that form the structural channels. Oxidation of Fe2+ to Fe3+ is primarily responsible for balancing the increased negative charge associated with the presence of the fluoride ions within the channels. For the two phases studied, the creation of Fe3+ ions within the chains of octahedra modify the magnetic exchange interactions to change the ground-state magnetic symmetry to C-type magnetic order in contrast to the A-type order observed for the unfluorinated oxide parents.

12.
Inorg Chem ; 56(1): 594-607, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27977159

ABSTRACT

The structure of the mineral schafarzikite, FeSb2O4, has one-dimensional channels with walls comprising Sb3+ cations; the channels are separated by edge-linked FeO6 octahedra that form infinite chains parallel to the channels. Although this structure provides interest with respect to the magnetic and electrical properties associated with the chains and the possibility of chemistry that could occur within the channels, materials in this structural class have received very little attention. Here we show, for the first time, that heating selected phases in oxygen-rich atmospheres can result in relatively large oxygen uptakes (up to ∼2% by mass) at low temperatures (ca. 350 °C) while retaining the parent structure. Using a variety of structural and spectroscopic techniques, it is shown that oxygen is inserted into the channels to provide a structure with the potential to show high one-dimensional oxide ion conductivity. This is the first report of oxygen-excess phases derived from this structure. The oxygen insertion is accompanied not only by oxidation of Fe2+ to Fe3+ within the octahedral chains but also Sb3+ to Sb5+ in the channel walls. The formation of a defect cluster comprising one 5-coordinate Sb5+ ion (which is very rare in an oxide environment), two interstitial O2- ions, and two 4-coordinate Sb3+ ions is suggested and is consistent with all experimental observations. To the best of our knowledge, this is the first example of an oxidation process where the local energetics of the product dictate that simultaneous oxidation of two different cations must occur. This reaction, together with a wide range of cation substitutions that are possible on the transition metal sites, presents opportunities to explore the schafarzikite structure more extensively for a range of catalytic and electrocatalytic applications.

13.
Inorg Chem ; 55(18): 9306-15, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27598036

ABSTRACT

Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5·nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (powder X-ray diffraction (PXRD), transmission electron microscopy, and elemental analysis) and atomic-level techniques ((1)H and (27)Al solid-state NMR, IR, and Raman spectroscopy) to gain a detailed insight into the structure of ZnAl4-LDHs and sample composition. Four structural models (one stoichiometric and three different defect models) were investigated by Rietveld refinement of the PXRD data. These were assessed using the information obtained from other characterization techniques, which favored the ideal (nondefect) structural model for ZnAl4-LDH, as, for example, (27)Al magic-angle spinning NMR showed that excess Al was present as amorphous bayerite (Al(OH)3) and pseudoboehmite (AlOOH). Moreover, no evidence of cation mixing, that is, partial substitution of Zn(II) onto any of four Al sites, was observed. Altogether this study highlights the challenges involved to synthesize pure ZnAl4-LDHs and the necessity to use complementary techniques such as PXRD, elemental analysis, and solid-state NMR for the characterization of the local and extended structure of ZnAl4-LDHs.

14.
ACS Energy Lett ; 9(1): 85-92, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38230375

ABSTRACT

Fluoride ion batteries (FIB) are a promising post lithium-ion technology thanks to their high theoretical energy densities and Earth-abundant materials. However, the flooded cells commonly used to test liquid electrolyte FIBs severely affect the overall performance and impede comparability across different studies, hindering FIB progress. Here, we report a reliable Pb-PbF2 counter electrode that enables the use of two-electrode coin cells. To test this setup, we first introduce a liquid electrolyte that combines the advantages of a highly concentrated electrolyte (tetramethylammonium fluoride in methanol) while addressing its transport and high-cost shortcomings by introducing a diluent (propionitrile). We then demonstrate the viability of this system by reporting a BiF3-Pb-PbF2 cell with the highest capacity retention to date.

15.
Chem Sci ; 15(7): 2371-2379, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362415

ABSTRACT

Optimising the composite cathode for next-generation, safe solid-state batteries with inorganic solid electrolytes remains a key challenge towards commercialisation and cell performance. Tackling this issue requires the design of suitable polymer binders for electrode processability and long-term solid-solid interfacial stability. Here, block-polyester/carbonates are systematically designed as Li-ion conducting, high-voltage stable binders for cathode composites comprising of single-crystal LiNi0.8Mn0.1Co0.1O2 cathodes, Li6PS5Cl solid electrolyte and carbon nanofibres. Compared to traditional fluorinated polymer binders, improved discharge capacities (186 mA h g-1) and capacity retention (96.7% over 200 cycles) are achieved. The nature of the new binder electrolytes also enables its separation and complete recycling after use. ABA- and AB-polymeric architectures are compared where the A-blocks are mechanical modifiers, and the B-block facilitates Li-ion transport. This reveals that the conductivity and mechanical properties of the ABA-type are more suited for binder application. Further, catalysed switching between CO2/epoxide A-polycarbonate (PC) synthesis and B-poly(carbonate-r-ester) formation employing caprolactone (CL) and trimethylene carbonate (TMC) identifies an optimal molar mass (50 kg mol-1) and composition (wPC 0.35). This polymer electrolyte binder shows impressive oxidative stability (5.2 V), suitable ionic conductivity (2.2 × 10-4 S cm-1 at 60 °C), and compliant viscoelastic properties for fabrication into high-performance solid composite cathodes. This work presents an attractive route to optimising polymer binder properties using controlled polymerisation strategies combining cyclic monomer (CL, TMC) ring-opening polymerisation and epoxide/CO2 ring-opening copolymerisation. It should also prompt further examination of polycarbonate/ester-based materials with today's most relevant yet demanding high-voltage cathodes and sensitive sulfide-based solid electrolytes.

16.
Chem Mater ; 36(7): 3334-3344, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617803

ABSTRACT

The cathode-electrolyte interphase (CEI) in Li-ion batteries plays a key role in suppressing undesired side reactions while facilitating Li-ion transport. Ni-rich layered cathode materials offer improved energy densities, but their high interfacial reactivities can negatively impact the cycle life and rate performance. Here we investigate the role of electrolyte salt concentration, specifically LiPF6 (0.5-5 m), in altering the interfacial reactivity of charged LiN0.8Mn0.1Co0.1O2 (NMC811) cathodes in standard carbonate-based electrolytes (EC/EMC vol %/vol % 3:7). Extended potential holds of NMC811/Li4Ti5O12 (LTO) cells reveal that the parasitic electrolyte oxidation currents observed are strongly dependent on the electrolyte salt concentration. X-ray photoelectron and absorption spectroscopy (XPS/XAS) reveal that a thicker LixPOyFz-/LiF-rich CEI is formed in the higher concentration electrolytes. This suppresses reactions with solvent molecules resulting in a thinner, or less-dense, reduced surface layer (RSL) with lower charge transfer resistance and lower oxidation currents at high potentials. The thicker CEI also limits access of acidic species to the RSL suppressing transition-metal dissolution into the electrolyte, as confirmed by nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). This provides insight into the main degradation processes occurring at Ni-rich cathode interfaces in contact with carbonate-based electrolytes and how electrolyte formulation can help to mitigate these.

17.
Phys Chem Chem Phys ; 15(40): 17195-207, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24013445

ABSTRACT

This study demonstrates the utility of the novel Field Sweep Fourier Transform (FSFT) method for acquiring wideline (195)Pt NMR data from various sized Pt nanoparticles, Pt-Sn intermetallics/bimetallics used to catalyse oxidative processes in fuel cell applications, and various other related Pt3X alloys (X = Al, Sc, Nb, Ti, Hf and Zr) which can facilitate oxygen reduction catalysis. The (195)Pt and (119)Sn NMR lineshapes measured from the PtSn intermetallic and Pt3Sn bimetallic systems suggest that these are more ordered than other closely related bimetallic alloys; this observation is supported by other characterisation techniques such as XRD. From these reconstructed spectra the mean number of atoms in a Pt nanoparticle can be accurately determined, along with detailed information regarding the number of atoms present effectively in each layer from the surface. This can be compared with theoretical predictions of the number of Pt atoms in these various layers for cubo-octahedral nanoparticles, thereby providing an estimate of the particle size. A comparison of the common NMR techniques used to acquire wideline data from the I = 1/2 (195)Pt nucleus illustrates the advantages of the automated FSFT technique over the Spin Echo Height Spectroscopy (SEHS) (or Spin Echo Integration Spectroscopy (SEIS)) approach that dominates the literature in this area of study. This work also presents the first (195)Pt NMR characterisation of novel small Pt13 nanoclusters which are diamagnetic and thus devoid of metallic character. This unique system provides a direct measure of an isotropic chemical shift for these Pt nanoparticles and affords a better basis for determining the actual Knight shift when compared to referencing against the primary IUPAC shift standard (1.2 M Na2PtCl6(aq)) which has a very different local chemical environment.

18.
ACS Energy Lett ; 8(6): 2668-2673, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37324537

ABSTRACT

The fluoride ion battery (FIB) is a promising post-lithium ion battery chemistry owing to its high theoretical energy density and the large elemental abundance of its active materials. Nevertheless, its utilization for room-temperature cycling has been impeded by the inability to find sufficiently stable and conductive electrolytes at room temperature. In this work, we report the use of solvent-in-salt electrolytes for FIBs, exploring multiple solvents to show that aqueous cesium fluoride exhibited sufficiently high solubility to achieve an enhanced (electro)chemical stability window (3.1 V) that could enable high operating voltage electrodes, in addition to a suppression of active material dissolution that allows for an improved cycling stability. The solvation structure and transport properties of the electrolyte are also investigated using spectroscopic and computational methods.

19.
Angew Chem Weinheim Bergstr Ger ; 135(51): e202314444, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38516325

ABSTRACT

The sodium-rich antiperovskites (NaRAPs) with composition Na3OB (B=Br, Cl, I, BH4, etc.) are a family of materials that has recently attracted great interest for application as solid electrolytes in sodium metal batteries. Non-Arrhenius ionic conductivities have been reported for these materials, the origin of which is poorly understood. In this work, we combined temperature-resolved bulk and local characterisation methods to gain an insight into the origin of this unusual behaviour using Na3OBr as a model system. We first excluded crystallographic disorder on the anion sites as the cause of the change in activation energy; then identified the presence of a poorly crystalline impurities, not detectable by XRD, and elucidated their effect on ionic conductivity. These findings improve understanding of the processing-structure-properties relationships pertaining to NaRAPs and highlight the need to determine these relationships in other materials systems, which will accelerate the development of high-performance solid electrolytes.

20.
Nat Chem ; 15(7): 1022-1029, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37264102

ABSTRACT

Although Li-air rechargeable batteries offer higher energy densities than lithium-ion batteries, the insulating Li2O2 formed during discharge hinders rapid, efficient re-charging. Redox mediators are used to facilitate Li2O2 oxidation; however, fast kinetics at a low charging voltage are necessary for practical applications and are yet to be achieved. We investigate the mechanism of Li2O2 oxidation by redox mediators. The rate-limiting step is the outer-sphere one-electron oxidation of Li2O2 to LiO2, which follows Marcus theory. The second step is dominated by LiO2 disproportionation, forming mostly triplet-state O2. The yield of singlet-state O2 depends on the redox potential of the mediator in a way that does not correlate with electrolyte degradation, in contrast to earlier views. Our mechanistic understanding explains why current low-voltage mediators (<+3.3 V) fail to deliver high rates (the maximum rate is at +3.74 V) and suggests important mediator design strategies to deliver sufficiently high rates for fast charging at potentials closer to the thermodynamic potential of Li2O2 oxidation (+2.96 V).

SELECTION OF CITATIONS
SEARCH DETAIL