Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004147

ABSTRACT

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Protein Phosphatase 2/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred NOD , Phosphorylation , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Substrate Specificity
2.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34019788

ABSTRACT

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Subject(s)
Biocatalysis , Histones/metabolism , Oncogenes , Transcription, Genetic , p300-CBP Transcription Factors/metabolism , Acetylation , Cell Line , Chromatin/metabolism , Co-Repressor Proteins/metabolism , Conserved Sequence , Evolution, Molecular , Gene Regulatory Networks , Genome , Histone Deacetylases/metabolism , Humans , Kinetics , Methylation , Models, Biological , RNA Polymerase II/metabolism
3.
EMBO J ; 40(20): e107237, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34523147

ABSTRACT

BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.


Subject(s)
Liposomes/chemistry , Membrane Lipids/chemistry , Proto-Oncogene Proteins c-bcl-2/chemistry , bcl-2 Homologous Antagonist-Killer Protein/chemistry , Animals , Binding Sites , Cloning, Molecular , Deuterium Exchange Measurement , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Liposomes/metabolism , Membrane Lipids/metabolism , Mice , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Multimerization , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism
4.
Nature ; 565(7737): 118-121, 2019 01.
Article in English | MEDLINE | ID: mdl-30542156

ABSTRACT

Plasmodium falciparum causes the severe form of malaria that has high levels of mortality in humans. Blood-stage merozoites of P. falciparum invade erythrocytes, and this requires interactions between multiple ligands from the parasite and receptors in hosts. These interactions include the binding of the Rh5-CyRPA-Ripr complex with the erythrocyte receptor basigin1,2, which is an essential step for entry into human erythrocytes. Here we show that the Rh5-CyRPA-Ripr complex binds the erythrocyte cell line JK-1 significantly better than does Rh5 alone, and that this binding occurs through the insertion of Rh5 and Ripr into host membranes as a complex with high molecular weight. We report a cryo-electron microscopy structure of the Rh5-CyRPA-Ripr complex at subnanometre resolution, which reveals the organization of this essential invasion complex and the mode of interactions between members of the complex, and shows that CyRPA is a critical mediator of complex assembly. Our structure identifies blades 4-6 of the ß-propeller of CyRPA as contact sites for Rh5 and Ripr. The limited contacts between Rh5-CyRPA and CyRPA-Ripr are consistent with the dissociation of Rh5 and Ripr from CyRPA for membrane insertion. A comparision of the crystal structure of Rh5-basigin with the cryo-electron microscopy structure of Rh5-CyRPA-Ripr suggests that Rh5 and Ripr are positioned parallel to the erythrocyte membrane before membrane insertion. This provides information on the function of this complex, and thereby provides insights into invasion by P. falciparum.


Subject(s)
Antigens, Protozoan/ultrastructure , Carrier Proteins/ultrastructure , Cryoelectron Microscopy , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , Plasmodium falciparum , Protozoan Proteins/ultrastructure , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Line, Tumor , Drosophila , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/parasitology , Humans , Models, Molecular , Multiprotein Complexes/metabolism , Plasmodium falciparum/chemistry , Plasmodium falciparum/pathogenicity , Plasmodium falciparum/ultrastructure , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
5.
J Biol Chem ; 298(12): 102645, 2022 12.
Article in English | MEDLINE | ID: mdl-36309085

ABSTRACT

The inflammasome sensor NLRP1 (nucleotide-binding oligomerization domain-like receptor containing a pyrin domain 1) detects a variety of pathogen-derived molecular patterns to induce an inflammatory immune response by triggering pyroptosis and cytokine release. A number of mutations and polymorphisms of NLRP1 are known to cause autoinflammatory diseases, the functional characterization of which contributes to a better understanding of NLRP1 regulation. Here, we assessed the effect of the common NLRP1 variant M1184V, associated with asthma, inflammatory bowel disease, and diabetes, on the protein level. Our size-exclusion chromatography experiments show that M1184V stabilizes the "function-to-find" domain (FIIND) in a monomeric conformation. This effect is independent of autoproteolysis. In addition, molecular dynamics simulations reveal that the methionine residue increases flexibility within the ZU5 domain, whereas valine decreases flexibility, potentially indirectly stabilizing the catalytic triad responsible for autocleavage. By keeping the FIIND domain monomeric, formation of a multimer of full-length NLRP1 is promoted. We found that the stabilizing effect of the valine further leads to improved dipeptidyl peptidase 9 (DPP9)-binding capacities for the FIIND domain as well as the full-length protein as determined by surface plasmon resonance. Moreover, our immunoprecipitation experiments confirmed increased DPP9 binding for the M1184V protein in cells, consistent with improved formation of an autoinhibited complex with DPP9 in activity assays. Collectively, our study establishes a molecular rationale for the dichotomous involvement of the NLRP1 variant M1184V in autoimmune syndromes.


Subject(s)
Autoimmune Diseases , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inflammasomes , NLR Proteins , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Inflammasomes/metabolism , NLR Proteins/metabolism , Humans , Autoimmune Diseases/metabolism
6.
EMBO J ; 38(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30573668

ABSTRACT

The E3 ubiquitin ligase Parkin is a key effector of the removal of damaged mitochondria by mitophagy. Parkin determines cell fate in response to mitochondrial damage, with its loss promoting early onset Parkinson's disease and potentially also cancer progression. Controlling a cell's apoptotic response is essential to co-ordinate the removal of damaged mitochondria. We report that following mitochondrial damage-induced mitophagy, Parkin directly ubiquitinates the apoptotic effector protein BAK at a conserved lysine in its hydrophobic groove, a region that is crucial for BAK activation by BH3-only proteins and its homo-dimerisation during apoptosis. Ubiquitination inhibited BAK activity by impairing its activation and the formation of lethal BAK oligomers. Parkin also suppresses BAX-mediated apoptosis, but in the absence of BAX ubiquitination suggesting an indirect mechanism. In addition, we find that BAK-dependent mitochondrial outer membrane permeabilisation during apoptosis promotes PINK1-dependent Parkin activation. Hence, we propose that Parkin directly inhibits BAK to suppress errant apoptosis, thereby allowing the effective clearance of damaged mitochondria, but also promotes clearance of apoptotic mitochondria to limit their potential pro-inflammatory effect.


Subject(s)
Mitochondria/physiology , Ubiquitin-Protein Ligases/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Apoptosis , Cell Line , HEK293 Cells , HeLa Cells , Humans , Lysine/metabolism , Mice , Mitophagy , Ubiquitination , bcl-2 Homologous Antagonist-Killer Protein/chemistry
7.
Proc Natl Acad Sci U S A ; 117(15): 8468-8475, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32234780

ABSTRACT

The necroptosis cell death pathway has been implicated in host defense and in the pathology of inflammatory diseases. While phosphorylation of the necroptotic effector pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) by the upstream protein kinase RIPK3 is a hallmark of pathway activation, the precise checkpoints in necroptosis signaling are still unclear. Here we have developed monobodies, synthetic binding proteins, that bind the N-terminal four-helix bundle (4HB) "killer" domain and neighboring first brace helix of human MLKL with nanomolar affinity. When expressed as genetically encoded reagents in cells, these monobodies potently block necroptotic cell death. However, they did not prevent MLKL recruitment to the "necrosome" and phosphorylation by RIPK3, nor the assembly of MLKL into oligomers, but did block MLKL translocation to membranes where activated MLKL normally disrupts membranes to kill cells. An X-ray crystal structure revealed a monobody-binding site centered on the α4 helix of the MLKL 4HB domain, which mutational analyses showed was crucial for reconstitution of necroptosis signaling. These data implicate the α4 helix of its 4HB domain as a crucial site for recruitment of adaptor proteins that mediate membrane translocation, distinct from known phospholipid binding sites.


Subject(s)
Biomimetic Materials/pharmacology , Cell Membrane/metabolism , Fibronectin Type III Domain , Necrosis , Oligopeptides/pharmacology , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Crystallography, X-Ray , Humans , Phosphorylation , Protein Conformation , Protein Kinases/chemistry , Protein Multimerization , Protein Transport
8.
Biochem J ; 478(17): 3351-3371, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34431498

ABSTRACT

EphB6 and EphA10 are two poorly characterised pseudokinase members of the Eph receptor family, which collectively serves as mediators of contact-dependent cell-cell communication to transmit extracellular cues into intracellular signals. As per their active counterparts, EphB6 and EphA10 deregulation is strongly linked to proliferative diseases. However, unlike active Eph receptors, whose catalytic activities are thought to initiate an intracellular signalling cascade, EphB6 and EphA10 are classified as catalytically dead, raising the question of how non-catalytic functions contribute to Eph receptor signalling homeostasis. In this study, we have characterised the biochemical properties and topology of the EphB6 and EphA10 intracellular regions comprising the juxtamembrane (JM) region, pseudokinase and SAM domains. Using small-angle X-ray scattering and cross-linking-mass spectrometry, we observed high flexibility within their intracellular regions in solution and a propensity for interaction between the component domains. We identified tyrosine residues in the JM region of EphB6 as EphB4 substrates, which can bind the SH2 domains of signalling effectors, including Abl, Src and Vav3, consistent with cellular roles in recruiting these proteins for downstream signalling. Furthermore, our finding that EphB6 and EphA10 can bind ATP and ATP-competitive small molecules raises the prospect that these pseudokinase domains could be pharmacologically targeted to counter oncogenic signalling.


Subject(s)
Receptors, Eph Family/chemistry , Receptors, Eph Family/metabolism , Signal Transduction/genetics , Sterile Alpha Motif/genetics , src Homology Domains/genetics , Adenosine Triphosphate/metabolism , Animals , Humans , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Kinase Inhibitors/metabolism , Receptors, Eph Family/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera/cytology , Tyrosine/metabolism
9.
Proteomics ; 21(11-12): e2000244, 2021 06.
Article in English | MEDLINE | ID: mdl-33945654

ABSTRACT

MARCH proteins are membrane-associated Ring-CH E3 ubiquitin ligases that dampen immune responses by downregulating cell surface expression of major histocompatibility complexes I and II as well as immune co-stimulatory receptors. We recently showed that MARCH2,3,4 and 9 also downregulate cell surface expression of the inflammatory cytokine receptor for interleukin-6 (IL6Rα). Here we use over-expression of these MARCH proteins in the M1 myeloid leukaemia cell line and cell surface proteomic analyses to globally analyse other potential targets of these proteins. A large range of cell surface proteins regulated by more than one MARCH protein in addition to several MARCH protein-specific cell surface targets were identified most of which were downregulated by MARCH expression. Prominent among these were several integrin complexes associated with immune cell homing, adhesion and migration. Integrin α4ß1 (VLA4 or VCAM-1 receptor) was downregulated only by MARCH2 and we showed that in MARCH2 knockout mice, Integrin α4 was upregulated specifically in mature B-lymphocytes and this was accompanied by decreased numbers of B-cells in the spleen.


Subject(s)
Integrins , Membrane Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Mice , Mice, Knockout , Proteomics
10.
Biochem Soc Trans ; 49(1): 393-403, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33492363

ABSTRACT

RNA-binding proteins are customarily regarded as important facilitators of gene expression. In recent years, RNA-protein interactions have also emerged as a pervasive force in the regulation of homeostasis. The compendium of proteins with provable RNA-binding function has swelled from the hundreds to the thousands astride the partnership of mass spectrometry-based proteomics and RNA sequencing. At the foundation of these advances is the adaptation of RNA-centric capture methods that can extract bound protein that has been cross-linked in its native environment. These methods reveal snapshots in time displaying an extensive network of regulation and a wealth of data that can be used for both the discovery of RNA-binding function and the molecular interfaces at which these interactions occur. This review will focus on the impact of these developments on our broader perception of post-transcriptional regulation, and how the technical features of current capture methods, as applied in mammalian systems, create a challenging medium for interpretation by systems biologists and target validation by experimental researchers.


Subject(s)
Biochemistry/methods , Chemistry Techniques, Analytical/methods , RNA-Binding Proteins/isolation & purification , Animals , Gene Expression Profiling , Humans , Interdisciplinary Communication , Mammals , Mass Spectrometry , Proteomics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
Nat Chem Biol ; 15(11): 1057-1066, 2019 11.
Article in English | MEDLINE | ID: mdl-31591564

ABSTRACT

Activating the intrinsic apoptosis pathway with small molecules is now a clinically validated approach to cancer therapy. In contrast, blocking apoptosis to prevent the death of healthy cells in disease settings has not been achieved. Caspases have been favored, but they act too late in apoptosis to provide long-term protection. The critical step in committing a cell to death is activation of BAK or BAX, pro-death BCL-2 proteins mediating mitochondrial damage. Apoptosis cannot proceed in their absence. Here we show that WEHI-9625, a novel tricyclic sulfone small molecule, binds to VDAC2 and promotes its ability to inhibit apoptosis driven by mouse BAK. In contrast to caspase inhibitors, WEHI-9625 blocks apoptosis before mitochondrial damage, preserving cellular function and long-term clonogenic potential. Our findings expand on the key role of VDAC2 in regulating apoptosis and demonstrate that blocking apoptosis at an early stage is both advantageous and pharmacologically tractable.


Subject(s)
Apoptosis/physiology , Small Molecule Libraries/metabolism , Voltage-Dependent Anion Channel 2/physiology , bcl-2 Homologous Antagonist-Killer Protein/physiology , Animals , Mice , Protein Binding , Voltage-Dependent Anion Channel 2/metabolism
12.
J Proteome Res ; 18(7): 2915-2924, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31137935

ABSTRACT

Selecting a sample preparation strategy for mass spectrometry-based proteomics is critical to the success of quantitative workflows. Here we present a universal, solid-phase protein preparation (USP3) method which is rapid, robust, and scalable, facilitating high-throughput protein sample preparation for bottom-up and top-down mass spectrometry (MS) analysis. This technique builds upon the single-pot solid-phase-enhanced sample preparation (SP3) where we now demonstrate its scalability (low to high micrograms of protein) and the influence of variables such as bead and enzyme amounts on the efficiency of protein digestion. We also incorporate acid hydrolysis of DNA and RNA during complete proteome extraction resulting in a more reliable method that is simple and easy to implement for routine and high-throughput analysis of proteins. We benchmarked the performance of this technique against filter-aided sample preparation (FASP) using 30 µg of total HeLa protein lysate. We also show that the USP3 method is compatible with top-down MS where we reproducibly detect over 1800 proteoforms from 50 µg of HeLa protein lysate. The USP3 protocol allows for efficient and reproducible data to be generated in a cost-effective and robust manner with minimal down time between sample collection and analysis by MS.


Subject(s)
Proteomics/methods , Specimen Handling/methods , Data Collection , HeLa Cells , Humans , Mass Spectrometry/methods , Proteolysis
13.
J Biol Chem ; 293(1): 89-99, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29109150

ABSTRACT

The 14-3-3 family of intracellular proteins are dimeric, multifunctional adaptor proteins that bind to and regulate the activities of many important signaling proteins. The subunits within 14-3-3 dimers are predicted to be stabilized by salt bridges that are largely conserved across the 14-3-3 protein family and allow the different isoforms to form heterodimers. Here, we have examined the contributions of conserved salt-bridging residues in stabilizing the dimeric state of 14-3-3ζ. Using analytical ultracentrifugation, our results revealed that Asp21 and Glu89 both play key roles in dimer dynamics and contribute to dimer stability. Furthermore, hydrogen-deuterium exchange coupled with mass spectrometry showed that mutation of Asp21 promoted disorder in the N-terminal helices of 14-3-3ζ, suggesting that this residue plays an important role in maintaining structure across the dimer interface. Intriguingly, a D21N 14-3-3ζ mutant exhibited enhanced molecular chaperone ability that prevented amorphous protein aggregation, suggesting a potential role for N-terminal disorder in 14-3-3ζ's poorly understood chaperone action. Taken together, these results imply that disorder in the N-terminal helices of 14-3-3ζ is a consequence of the dimer-monomer dynamics and may play a role in conferring chaperone function to 14-3-3ζ protein.


Subject(s)
14-3-3 Proteins/chemistry , Molecular Chaperones/chemistry , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Amino Acid Sequence , Amino Acid Substitution , Humans , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Point Mutation , Protein Aggregates , Protein Conformation, alpha-Helical , Protein Multimerization , Protein Stability , Salts/chemistry , Salts/metabolism , Sequence Alignment
14.
Semin Cell Dev Biol ; 39: 63-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25736836

ABSTRACT

Cells are constantly subjected to a vast range of potentially lethal insults, which may activate specific molecular pathways that have evolved to kill the cell. Cell death pathways are defined partly by their morphology, and more specifically by the molecules that regulate and enact them. As these pathways become more thoroughly characterized, interesting molecular links between them have emerged, some still controversial and others hinting at the physiological and pathophysiological roles these death pathways play. We describe specific molecular programs controlling cell death, with a focus on some of the distinct features of the pathways and the molecular links between them.


Subject(s)
Apoptosis , Autophagy , Cell Death , Signal Transduction , Animals , Humans
15.
Commun Biol ; 7(1): 183, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360932

ABSTRACT

Autophagy, the process of elimination of cellular components by lysosomal degradation, is essential for animal development and homeostasis. Using the autophagy-dependent Drosophila larval midgut degradation model we identified an autophagy regulator, the RING domain ubiquitin ligase CG14435 (detour). Depletion of detour resulted in increased early-stage autophagic vesicles, premature tissue contraction, and overexpression of detour or mammalian homologues, ZNRF1 and ZNRF2, increased autophagic vesicle size. The ablation of ZNRF1 or ZNRF2 in mammalian cells increased basal autophagy. We identified detour interacting proteins including HOPS subunits, deep orange (dor/VPS18), Vacuolar protein sorting 16A (VPS16A), and light (lt/VPS41) and found that detour promotes their ubiquitination. The detour mutant accumulated autophagy-related proteins in young adults, displayed premature ageing, impaired motor function, and activation of innate immunity. Collectively, our findings suggest a role for detour in autophagy, likely through regulation of HOPS complex, with implications for healthy aging.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Protein Transport , Ubiquitination , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Autophagy , Mammals
16.
Autophagy ; : 1-20, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938196

ABSTRACT

Retromer prevents the destruction of numerous receptors by recycling them from endosomes to the trans-Golgi network or plasma membrane. This enables retromer to fine-tune the activity of many signaling pathways in parallel. However, the mechanism(s) by which retromer function adapts to environmental fluctuations such as nutrient withdrawal and how this affects the fate of its cargoes remains incompletely understood. Here, we reveal that macroautophagy/autophagy inhibition by MTORC1 controls the abundance of retromer+ endosomes under nutrient-replete conditions. Autophagy activation by chemical inhibition of MTOR or nutrient withdrawal does not affect retromer assembly or its interaction with the RAB7 GAP protein TBC1D5, but rather targets these endosomes for bulk destruction following their capture by phagophores. This process appears to be distinct from amphisome formation. TBC1D5 and its ability to bind to retromer, but not its C-terminal LC3-interacting region (LIR) or nutrient-regulated dephosphorylation, is critical for retromer to be captured by autophagosomes following MTOR inhibition. Consequently, endosomal recycling of its cargoes to the plasma membrane and trans-Golgi network is impaired, leading to their lysosomal turnover. These findings demonstrate a mechanistic link connecting nutrient abundance to receptor homeostasis.Abbreviations: AMPK, 5'-AMP-activated protein kinase; APP, amyloid beta precursor protein; ATG, autophagy related; BafA, bafilomycin A1; CQ, chloroquine; DMEM, Dulbecco's minimum essential medium; DPBS, Dulbecco's phosphate-buffered saline; EBSS, Earle's balanced salt solution; FBS, fetal bovine serum; GAP, GTPase-activating protein; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; LIR, LC3-interacting region; LANDO, LC3-associated endocytosis; LP, leupeptin and pepstatin; MTOR, mechanistic target of rapamycin kinase; MTORC1, MTOR complex 1; nutrient stress, withdrawal of amino acids and serum; PDZ, DLG4/PSD95, DLG1, and TJP1/zo-1; RPS6, ribosomal protein S6; RPS6KB1/S6K1, ribosomal protein S6 kinase B1; SLC2A1/GLUT1, solute carrier family 2 member 1; SORL1, sortillin related receptor 1; SORT1, sortillin 1; SNX, sorting nexin; TBC1D5, TBC1 domain family member 5; ULK1, unc-51 like autophagy activating kinase 1; WASH, WASH complex subunit.

17.
Front Oncol ; 13: 1192448, 2023.
Article in English | MEDLINE | ID: mdl-37637064

ABSTRACT

Introduction: Diffuse intrinsic pontine glioma (DIPG), recently reclassified as a subtype of diffuse midline glioma, is a highly aggressive brainstem tumor affecting children and young adults, with no cure and a median survival of only 9 months. Conventional treatments are ineffective, highlighting the need for alternative therapeutic strategies such as cellular immunotherapy. However, identifying unique and tumor-specific cell surface antigens to target with chimeric antigen receptor (CAR) or T-cell receptor (TCR) therapies is challenging. Methods: In this study, a multi-omics approach was used to interrogate patient-derived DIPG cell lines and to identify potential targets for immunotherapy. Results: Through immunopeptidomics, a range of targetable peptide antigens from cancer testis and tumor-associated antigens as well as peptides derived from human endogenous retroviral elements were identified. Proteomics analysis also revealed upregulation of potential drug targets and cell surface proteins such as Cluster of differentiation 27 (CD276) B7 homolog 3 protein (B7H3), Interleukin 13 alpha receptor 2 (IL-13Rα2), Human Epidermal Growth Factor Receptor 3 (HER2), Ephrin Type-A Receptor 2 (EphA2), and Ephrin Type-A Receptor 3 (EphA3). Discussion: The results of this study provide a valuable resource for the scientific community to accelerate immunotherapeutic approaches for DIPG. Identifying potential targets for CAR and TCR therapies could open up new avenues for treating this devastating disease.

18.
Clin Transl Med ; 13(1): e1150, 2023 01.
Article in English | MEDLINE | ID: mdl-36653319

ABSTRACT

BACKGROUND: Low-density neutrophils (LDN) are a distinct subset of neutrophils rarely detected in healthy people but appear in the blood of patients with autoimmune diseases, including systemic lupus erythematosus (SLE), and are mobilised in response to granulocyte colony-stimulating factor (G-CSF). The aim of this study was to identify novel mechanisms responsible for the pathogenic capacity of LDN in SLE. METHODS: Neutrophils were isolated from donors treated with G-CSF, and whole-cell proteomic analysis was performed on LDN and normal-density neutrophils. RESULTS: CD98 is significantly upregulated in LDN from G-CSF donors and defines a subset of LDN within the blood of SLE patients. CD98 is a transmembrane protein that dimerises with L-type amino acid transporters. We show that CD98 is responsible for the increased bioenergetic capacity of LDN. CD98 on LDN mediates the uptake of essential amino acids that are used by mitochondria to produce adenosine triphosphate, especially in the absence of glucose. Inhibition of CD98 reduces the metabolic flexibility of this population, which may limit their pathogenic capacity. CD98+ LDN produce more proinflammatory cytokines and chemokines than their normal density counterparts and are resistant to apoptosis, which may also contribute to tissue inflammation and end organ damage in SLE. CONCLUSIONS: CD98 provides a phenotypic marker for LDN that facilitates identification of this population without density-gradient separation and represents a novel therapeutic target to limit its pathogenic capacity.


Subject(s)
Fusion Regulatory Protein-1 , Lupus Erythematosus, Systemic , Neutrophils , Humans , Cytokines/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Neutrophils/metabolism , Proteomics , Fusion Regulatory Protein-1/metabolism
19.
Cell Death Dis ; 13(6): 565, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739084

ABSTRACT

Necroptosis is a caspase-independent, pro-inflammatory mode of programmed cell death which relies on the activation of the terminal effector, MLKL, by the upstream protein kinase RIPK3. To mediate necroptosis, RIPK3 must stably interact with, and phosphorylate the pseudokinase domain of MLKL, although the precise molecular cues that provoke RIPK3 necroptotic signaling are incompletely understood. The recent finding that RIPK3 S227 phosphorylation and the occurrence of a stable RIPK3:MLKL complex in human cells prior to exposure to a necroptosis stimulus raises the possibility that additional, as-yet-unidentified phosphorylation events activate RIPK3 upon initiation of necroptosis signaling. Here, we sought to identify phosphorylation sites of RIPK3 and dissect their regulatory functions. Phosphoproteomics identified 21 phosphorylation sites in HT29 cells overexpressing human RIPK3. By comparing cells expressing wild-type and kinase-inactive D142N RIPK3, autophosphorylation sites and substrates of other cellular kinases were distinguished. Of these 21 phosphosites, mutational analyses identified only pT224 and pS227 as crucial, synergistic sites for stable interaction with MLKL to promote necroptosis, while the recently reported activation loop phosphorylation at S164/T165 negatively regulate the kinase activity of RIPK3. Despite being able to phosphorylate MLKL to a similar or higher extent than wild-type RIPK3, mutation of T224, S227, or the RHIM in RIPK3 attenuated necroptosis. This finding highlights the stable recruitment of human MLKL by RIPK3 to the necrosome as an essential checkpoint in necroptosis signaling, which is independent from and precedes the phosphorylation of MLKL.


Subject(s)
Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Apoptosis , Humans , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
20.
J Extracell Vesicles ; 11(2): e12188, 2022 02.
Article in English | MEDLINE | ID: mdl-35106941

ABSTRACT

Extracellular vesicles (EVs) are important mediators of intercellular communication. However, EV biogenesis remains poorly understood. We previously defined a role for Arrdc4 (Arrestin domain containing protein 4), an adaptor for Nedd4 family ubiquitin ligases, in the biogenesis of EVs. Here we report that ubiquitination of Arrdc4 is critical for its role in EV secretion. We identified five potential ubiquitinated lysine residues in Arrdc4 using mass spectrometry. By analysing Arrdc4 lysine mutants we discovered that lysine 270 (K270) is critical for Arrdc4 function in EV biogenesis. Arrdc4K270R mutation caused a decrease in the number of EVs released by cells compared to Arrdc4WT , and a reduction in trafficking of divalent metal transporter (DMT1) into EVs. Furthermore, we also observed a decrease in DMT1 activity and an increase in its intracellular degradation in the presence of Arrdc4K270R . K270 was found to be ubiquitinated with K-29 polyubiquitin chains by the ubiquitin ligase Nedd4-2. Thus, our results uncover a novel role of K-29 polyubiquitin chains in Arrdc4-mediated EV biogenesis and protein trafficking.


Subject(s)
Extracellular Vesicles , Ubiquitin-Protein Ligases , Extracellular Vesicles/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Polyubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL