ABSTRACT
Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-ß3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-ß3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell ß3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by ß3-integrin, providing a previously unrecognized mechanism of cancer growth control.
Subject(s)
Integrin beta3/metabolism , Neoplasms/metabolism , Tumor Burden/physiology , Animals , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Female , Humans , Male , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction/physiologyABSTRACT
BACKGROUND: The C5a receptor inhibitor avacopan is being studied for the treatment of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. METHODS: In this randomized, controlled trial, we assigned patients with ANCA-associated vasculitis in a 1:1 ratio to receive oral avacopan at a dose of 30 mg twice daily or oral prednisone on a tapering schedule. All the patients received either cyclophosphamide (followed by azathioprine) or rituximab. The first primary end point was remission, defined as a Birmingham Vasculitis Activity Score (BVAS) of 0 (on a scale from 0 to 63, with higher scores indicating greater disease activity) at week 26 and no glucocorticoid use in the previous 4 weeks. The second primary end point was sustained remission, defined as remission at both weeks 26 and 52. Both end points were tested for noninferiority (by a margin of 20 percentage points) and for superiority. RESULTS: A total of 331 patients underwent randomization; 166 were assigned to receive avacopan, and 165 were assigned to receive prednisone. The mean BVAS at baseline was 16 in both groups. Remission at week 26 (the first primary end point) was observed in 120 of 166 patients (72.3%) receiving avacopan and in 115 of 164 patients (70.1%) receiving prednisone (estimated common difference, 3.4 percentage points; 95% confidence interval [CI], -6.0 to 12.8; P<0.001 for noninferiority; P = 0.24 for superiority). Sustained remission at week 52 (the second primary end point) was observed in 109 of 166 patients (65.7%) receiving avacopan and in 90 of 164 patients (54.9%) receiving prednisone (estimated common difference, 12.5 percentage points; 95% CI, 2.6 to 22.3; P<0.001 for noninferiority; P = 0.007 for superiority). Serious adverse events (excluding worsening vasculitis) occurred in 37.3% of the patients receiving avacopan and in 39.0% of those receiving prednisone. CONCLUSIONS: In this trial involving patients with ANCA-associated vasculitis, avacopan was noninferior but not superior to prednisone taper with respect to remission at week 26 and was superior to prednisone taper with respect to sustained remission at week 52. All the patients received cyclophosphamide or rituximab. The safety and clinical effects of avacopan beyond 52 weeks were not addressed in the trial. (Funded by ChemoCentryx; ADVOCATE ClinicalTrials.gov number, NCT02994927.).
Subject(s)
Aniline Compounds/therapeutic use , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Glucocorticoids/administration & dosage , Nipecotic Acids/therapeutic use , Prednisone/administration & dosage , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Administration, Oral , Aniline Compounds/adverse effects , Azathioprine/administration & dosage , Cyclophosphamide/administration & dosage , Double-Blind Method , Drug Therapy, Combination , Female , Glucocorticoids/adverse effects , Humans , Immunosuppressive Agents/administration & dosage , Kaplan-Meier Estimate , Male , Middle Aged , Nipecotic Acids/adverse effects , Prednisone/adverse effects , Recurrence , Remission Induction , Rituximab/administration & dosageABSTRACT
Immunotherapy directed at the PD-L1/PD-1 axis has produced treatment advances in various human cancers. Unfortunately, progress has not extended to glioblastoma (GBM), with phase III clinical trials assessing anti-PD-1 monotherapy failing to show efficacy in newly diagnosed and recurrent tumors. Myeloid-derived suppressor cells (MDSCs), a subset of immunosuppressive myeloid derived cells, are known to infiltrate the tumor microenvironment of GBM. Growing evidence suggests the CCL2-CCR2 axis is important for this process. This study evaluated the combination of PD-1 blockade and CCR2 inhibition in anti-PD-1-resistant gliomas. CCR2 deficiency unmasked an anti-PD-1 survival benefit in KR158 glioma-bearing mice. CD11b+/Ly6Chi/PD-L1+ MDSCs within established gliomas decreased with a concomitant increase in overall CCR2+ cells and MDSCs within bone marrow of CCR2-deficient mice. The CCR2 antagonist CCX872 increased median survival as a monotherapy in KR158 glioma-bearing animals and further increased median and overall survival when combined with anti-PD-1. Additionally, combination of CCX872 and anti-PD-1 prolonged median survival time in 005 GSC GBM-bearing mice. In both models, CCX872 decreased tumor associated MDSCs and increased these cells within the bone marrow. Examination of tumor-infiltrating lymphocytes revealed an elevated population, increased IFNγ expression, indicating enhanced cytolytic activity, as well as decreased expression of exhaustion markers in CD4+ and CD8+ T cells following combination treatment. These data establish that combining CCR2 and PD-1 blockade extends survival in clinically relevant murine glioma models and provides the basis on which to advance this combinatorial treatment toward early-phase human trials.
Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Glioma/drug therapy , Myeloid Cells/metabolism , Receptors, CCR2/drug effects , Receptors, CCR2/metabolism , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Chemokine CCL2 , Disease Models, Animal , Gene Knock-In Techniques , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioma/pathology , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/drug effects , Myeloid-Derived Suppressor Cells/metabolism , Programmed Cell Death 1 Receptor , Receptors, CCR2/genetics , Survival Analysis , Tumor Microenvironment/drug effectsABSTRACT
Several types of psoriasiform dermatitis are associated with increased IL-36 cytokine activity in the skin. A rare, but severe, psoriasis-like disorder, generalized pustular psoriasis (GPP), is linked to loss-of-function mutations in the gene encoding IL-36RA, an important negative regulator of IL-36 signaling. To understand the effects of IL-36 dysregulation in a mouse model, we studied skin inflammation induced by intradermal injections of preactivated IL-36α. We found the immune cells infiltrating IL-36α-injected mouse skin to be of dramatically different composition than those infiltrating imiquimod-treated skin. The IL-36α-induced leukocyte population comprised nearly equal numbers of CD4+ αß T cells, neutrophils, and inflammatory dendritic cells, whereas the imiquimod-induced population comprised γδ T cells and neutrophils. Ligands for chemokine receptors CCR6 and CXCR2 are increased in both GPP and IL-36α-treated skin, which led us to test an optimized small-molecule antagonist (CCX624) targeting CCR6 and CXCR2 in the IL-36α model. CCX624 significantly reduced the T cell, neutrophil, and inflammatory dendritic cell infiltrates and was more effective than saturating levels of an anti-IL-17RA mAb at reducing inflammatory symptoms. These findings put CCR6 and CXCR2 forward as novel targets for a mechanistically distinct therapeutic approach for inflammatory skin diseases involving dysregulated IL-36 signaling, such as GPP.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Interleukin-1/toxicity , Psoriasis/immunology , Receptors, CCR6/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Interleukin-1/immunology , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Skin/drug effects , Skin/immunologyABSTRACT
C-C chemokine receptor 2 (CCR2) is a key driver of monocyte/macrophage trafficking to sites of inflammation and has long been considered a target for intervention in autoimmune disease. However, systemic administration of CCR2 antagonists is associated with marked increases in CCL2, a CCR2 ligand, in the blood. This heretofore unexplained phenomenon complicates interpretation of in vivo responses to CCR2 antagonism. We report that CCL2 elevation after pharmacological CCR2 blockade is due to interruption in a balance between CCL2 secretion by a variety of cells and its uptake by constitutive internalization and recycling of CCR2. We observed this phenomenon in response to structurally diverse CCR2 antagonists in wild-type mice, and also found substantially higher CCL2 plasma levels in mice lacking the CCR2 gene. Our findings suggest that CCL2 is cleared from blood in a CCR2-dependent but G protein (Gαi, Gαs or Gαq/11)-independent manner. This constitutive internalization is rapid: on a given monocyte, the entire cell surface CCR2 population is turned over in <30 minutes. We also found that constitutive receptor internalization/recycling and ligand uptake are not universal across monocyte-expressed chemokine receptors. For example, CXCR4 does not internalize constitutively. In summary, we describe a mechanism that explains the numerous preclinical and clinical reports of increased CCL2 plasma levels following in vivo administration of CCR2 antagonists. These findings suggest that constitutive CCL2 secretion by monocytes and other cell types is counteracted by constant uptake and internalization by CCR2-expressing cells. The effectiveness of CCR2 antagonists in disease settings may be dependent upon this critical equilibrium.
Subject(s)
Chemokine CCL2/biosynthesis , Receptors, CCR2/metabolism , Animals , Biomarkers , Cell Line , Chemokine CCL2/blood , Chemokine CCL2/genetics , Dose-Response Relationship, Drug , Female , Gene Expression , Humans , Mice , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Receptors, CCR2/antagonists & inhibitorsABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) cells (PCC) have an exceptional propensity to metastasize early into intratumoral, chemokine-secreting nerves. However, we hypothesized the opposite process, that precancerous pancreatic cells secrete chemokines that chemoattract Schwann cells (SC) of nerves and thus induce ready-to-use routes of dissemination in early carcinogenesis. Here we show a peculiar role for the chemokine CXCL12 secreted in early PDAC and for its receptors CXCR4/CXCR7 on SC in the initiation of neural invasion in the cancer precursor stage and the resulting delay in the onset of PDAC-associated pain. SC exhibited cancer- or hypoxia-induced CXCR4/CXCR7 expression in vivo and in vitro and migrated toward CXCL12-expressing PCC. Glia-specific depletion of CXCR4/CXCR7 in mice abrogated the chemoattraction of SC to PCC. PDAC mice with pancreas-specific CXCL12 depletion exhibited diminished SC chemoattraction to pancreatic intraepithelial neoplasia and increased abdominal hypersensitivity caused by augmented spinal astroglial and microglial activity. In PDAC patients, reduced CXCR4/CXCR7 expression in nerves correlated with increased pain. Mechanistically, upon CXCL12 exposure, SC down-regulated the expression of several pain-associated targets. Therefore, PDAC-derived CXCL12 seems to induce tumor infiltration by SC during early carcinogenesis and to attenuate pain, possibly resulting in delayed diagnosis in PDAC.
Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Chemokine CXCL12/metabolism , Chemotaxis/physiology , Pain/prevention & control , Pancreatic Neoplasms/pathology , Receptors, CXCR4/metabolism , Receptors, CXCR/metabolism , Schwann Cells/physiology , Animals , Cell Line, Tumor , Mice , Mice, TransgenicABSTRACT
mAbs that neutralize IL-17 or its receptor have proven efficacious in treating moderate-to-severe psoriasis, confirming IL-17 as an important driver of this disease. In mice, a rare population of T cells, γδT17 cells, appears to be a dominant source of IL-17 in experimental psoriasis. These cells traffic between lymph nodes and the skin, and are identified by their coexpression of the TCR variable regions γ4 and δ4. These cells are homologous to the Vγ9Vδ2 T cell population identified in human psoriatic plaques. In this study we report that a potent and specific small molecule antagonist of the CCR6 chemokine receptor, CCX2553, was efficacious in reducing multiple aspects of psoriasis in two different murine models of the disease. Administration of CCX2553 ameliorated skin inflammation in both the IL-23-induced ear swelling model and the topical imiquimod model, and significantly reduced the number of γδT17 cells in inflamed skin. γδT17 cells were greatly reduced in imiquimod-treated skin of CCR6-/- mice, but adoptively transferred wild-type (CCR6+/+) γδT17 cells homed normally to the skin of imiquimod-treated CCR6-/- mice. Our data suggest that γδT17 cells are completely dependent on CCR6 for homing to psoriasiform skin. Thus, CCR6 may constitute a novel target for a mechanistically distinct therapeutic approach to treating psoriasis.
Subject(s)
Cell Movement/immunology , Interleukin-17/immunology , Psoriasis/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, CCR6/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Cell Movement/drug effects , Cell Movement/genetics , Interleukin-17/genetics , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Psoriasis/genetics , Psoriasis/pathology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, CCR6/genetics , Skin/pathology , T-Lymphocytes/pathologyABSTRACT
Previous studies have shown that increased levels of chemokine receptor CXCR7 are associated with the increased invasiveness of prostate cancer cells. We now show that CXCR7 expression is upregulated in VCaP and C4-2B cells after enzalutamide (ENZ) treatment. ENZ treatment induced apoptosis (sub-G1) in VCaP and C4-2B cells, and this effect was further increased after combination treatment with ENZ and CCX771, a specific CXCR7 inhibitor. The levels of p-EGFR (Y1068), p-AKT (T308) and VEGFR2 were reduced after ENZ and CCX771 combination treatment compared to single agent treatment. In addition, significantly greater reductions in migration were shown after combination treatment compared to those of single agents or vehicle controls, and importantly, similar reductions in the levels of secreted VEGF were also demonstrated. Orthotopic VCaP xenograft growth and subcutaneous MDA133-4 patient-derived xenograft (PDX) tumor growth was reduced by single agent treatment, but significantly greater suppression was observed in the combination treatment group. Although overall microvessel densities in the tumor tissues were not different among the different treatment groups, a significant reduction in large blood vessels (>100 µm2 ) was observed in tumors following combination treatment. Apoptotic indices in tumor tissues were significantly increased following combination treatment compared with vehicle control-treated tumor tissues. Our results demonstrate that significant tumor suppression mediated by ENZ and CXCR7 combination treatment may be due, in part, to reductions in proangiogenic signaling and in the formation of large blood vessels in prostate cancer tumors.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, CXCR/antagonists & inhibitors , Animals , Benzamides , Cell Growth Processes/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Humans , Male , Mice , Mice, Nude , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Nitriles , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/blood supply , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, CXCR/biosynthesis , Up-Regulation , Xenograft Model Antitumor AssaysABSTRACT
Nonalcoholic fatty liver disease (NAFLD) is a common disease, closely associated with obesity and insulin resistance. We investigated the presence of a subset of myeloid cells associated with metabolic disturbance in the liver of patients with NAFLD and a murine model of obesity-induced liver disease. Gene and protein expression in liver and serum was investigated with RT-PCR or ELISA and correlated to clinical disease. Liver-infiltrating immune cells were isolated from normal or diseased human liver for flow cytometric analysis. In animal experiments, mice were fed a high-fat diet (60% of calories from fat) for 16 wk, or high-fat diet with 30% fructose for 32 wk to induce steatohepatitis and fibrosis. A small molecule inhibitor of CC chemokine receptor 2 (CCR2), CCX872, was administered to some mice. A subset of CD11c+CD206+ immune cells was enriched in human liver tissue, and greater infiltration was observed in NAFLD. The presence of CD11c+CD206+ myeloid cells correlated with systemic insulin resistance. CD11c+CD206+ cells expressed high levels of CCR2, and liver CC chemokine ligand 2 (CCL2) expression was increased in nonalcoholic steatohepatitis and correlated with disease activity. In mice, CCR2 inhibition reduced infiltration of liver CD11b+CD11c+F4/80+ monocytes, which are functional homologs of human CD11c+CD206+ cells, and improved liver injury and glycemic control. A role for CCR2/CCL2 in human NAFLD has long been postulated. These data confirm a role for this chemokine/receptor axis, through mediating adipose and hepatic infiltration of myeloid cells. Inhibition of CCR2 improved hepatic inflammation and fibrosis in murine models of NAFLD. These data confirm the rationale for targeting CCR2 to treat NAFLD. NEW & NOTEWORTHY These data show for the first time that CD11c+CD206+ myeloid cells, previously associated with human adipose tissue inflammation, infiltrate into liver tissue in nonalcoholic fatty liver disease. These cells express CCR2. Inhibition of CCR2 in mice inhibits hepatic inflammation caused by a murine homolog of these myeloid cells and improves experimental liver disease.
Subject(s)
Chemotaxis , Insulin Resistance , Liver/metabolism , Monocytes/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, CCR2/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Blood Glucose/metabolism , CD11b Antigen/metabolism , CD11c Antigen/metabolism , Chemokine CCL2/metabolism , Chemotaxis/drug effects , Disease Models, Animal , Female , Glycated Hemoglobin/metabolism , Humans , Lectins, C-Type/metabolism , Lipopolysaccharide Receptors/metabolism , Liver/drug effects , Liver/immunology , Liver/pathology , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice, Inbred C57BL , Middle Aged , Monocytes/drug effects , Monocytes/immunology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/prevention & control , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/genetics , Receptors, Cell Surface/metabolism , Signal TransductionABSTRACT
Alternative C activation is involved in the pathogenesis of ANCA-associated vasculitis. However, glucocorticoids used as treatment contribute to the morbidity and mortality of vasculitis. We determined whether avacopan (CCX168), an orally administered, selective C5a receptor inhibitor, could replace oral glucocorticoids without compromising efficacy. In this randomized, placebo-controlled trial, adults with newly diagnosed or relapsing vasculitis received placebo plus prednisone starting at 60 mg daily (control group), avacopan (30 mg, twice daily) plus reduced-dose prednisone (20 mg daily), or avacopan (30 mg, twice daily) without prednisone. All patients received cyclophosphamide or rituximab. The primary efficacy measure was the proportion of patients achieving a ≥50% reduction in Birmingham Vasculitis Activity Score by week 12 and no worsening in any body system. We enrolled 67 patients, 23 in the control and 22 in each of the avacopan groups. Clinical response at week 12 was achieved in 14 of 20 (70.0%) control patients, 19 of 22 (86.4%) patients in the avacopan plus reduced-dose prednisone group (difference from control 16.4%; two-sided 90% confidence limit, -4.3% to 37.1%; P=0.002 for noninferiority), and 17 of 21 (81.0%) patients in the avacopan without prednisone group (difference from control 11.0%; two-sided 90% confidence limit, -11.0% to 32.9%; P=0.01 for noninferiority). Adverse events occurred in 21 of 23 (91%) control patients, 19 of 22 (86%) patients in the avacopan plus reduced-dose prednisone group, and 21 of 22 (96%) patients in the avacopan without prednisone group. In conclusion, C5a receptor inhibition with avacopan was effective in replacing high-dose glucocorticoids in treating vasculitis.
Subject(s)
Aniline Compounds/therapeutic use , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Glucocorticoids/therapeutic use , Nipecotic Acids/therapeutic use , Prednisone/therapeutic use , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Adult , Aged , Aniline Compounds/adverse effects , Cyclophosphamide/therapeutic use , Double-Blind Method , Drug Therapy, Combination/adverse effects , Female , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Humans , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Nipecotic Acids/adverse effects , Prednisone/administration & dosage , Prednisone/adverse effects , Rituximab/therapeutic use , Severity of Illness IndexABSTRACT
BACKGROUND: The aim of this study was to determine the role of the chemokine receptor CXCR7 in atherosclerosis and vascular remodeling. CXCR7 is the alternative receptor of CXCL12, which regulates stem cell-mediated vascular repair and limits atherosclerosis via its receptor, CXCR4. METHODS AND RESULTS: Wire-induced injury of the carotid artery was performed in mice with a ubiquitous, conditional deletion of CXCR7 and in mice treated with the synthetic CXCR7 ligand CCX771. The effect of CCX771 treatment on atherosclerosis was studied in apolipoprotein E-deficient (Apoe(-/-)) mice fed a high-fat diet for 12 weeks. Lipoprotein fractions were quantified in the plasma of Apoe(-/-) mice by fast protein liquid chromatography. Uptake of DiI-labeled very low-density lipoprotein to adipose tissue was determined by 2-photon microscopy. We show that genetic deficiency of Cxcr7 increased neointima formation and lesional macrophage accumulation in hyperlipidemic mice after vascular injury. This was related to increased serum cholesterol levels and subsequent hyperlipidemia-induced monocytosis. Conversely, administration of the CXCR7 ligand CCX771 to Apoe(-/-) mice inhibited lesion formation and ameliorated hyperlipidemia after vascular injury and during atherosclerosis. Treatment with CCX771 reduced circulating very low-density lipoprotein levels but not low-density lipoprotein or high-density lipoprotein levels and increased uptake of very low-density lipoprotein into Cxcr7-expressing white adipose tissue. This effect of CCX771 was associated with an enhanced lipase activity and reduced expression of Angptl4 in adipose tissue. CONCLUSIONS: CXCR7 regulates blood cholesterol by promoting its uptake in adipose tissue. This unexpected cholesterol-lowering effect of CXCR7 is beneficial for atherosclerotic vascular diseases, presumably via amelioration of hyperlipidemia-induced monocytosis, and can be augmented with a synthetic CXCR7 ligand.
Subject(s)
Adipose Tissue/metabolism , Atherosclerosis/metabolism , Cholesterol/metabolism , Hyperlipidemias/metabolism , Receptors, CXCR/biosynthesis , Animals , Atherosclerosis/prevention & control , Hyperlipidemias/prevention & control , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR/agonistsABSTRACT
While it has long been established that the chemokine receptor CCR9 and its ligand CCL25 are essential for the movement of leukocytes into the small intestine and the development of small-intestinal inflammation, the role of this chemokine-receptor pair in colonic inflammation is not clear. Toward this end, we compared colonic CCL25 protein levels in healthy individuals to those in patients with ulcerative colitis. In addition, we determined the effect of CCR9 pharmacological inhibition in the mdr1a(-/-) mouse model of ulcerative colitis. Colon samples from patients with ulcerative colitis had significantly higher levels of CCL25 protein compared to healthy controls, a finding mirrored in the mdr1a(-/-) mice. In the mdr1a(-/-) mice, CCR9 antagonists significantly decreased the extent of wasting and colonic remodeling and reduced the levels of inflammatory cytokines in the colon. These findings indicate that the CCR9:CCL25 pair plays a causative role in ulcerative colitis and suggest that CCR9 antagonists will provide a therapeutic benefit in patients with colonic inflammation.
Subject(s)
Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Receptors, CCR/antagonists & inhibitors , Receptors, CCR/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Chemokines, CC/genetics , Chemokines, CC/metabolism , Colitis, Ulcerative/genetics , Female , Humans , In Vitro Techniques , Mice , Mice, Knockout , Sulfonamides/therapeutic useABSTRACT
Necrotizing and crescentic GN (NCGN) with a paucity of glomerular immunoglobulin deposits is associated with ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3. In a manner that requires activation of the alternative complement pathway, passive transfer of antibodies to mouse MPO (anti-MPO) induces a mouse model of ANCA NCGN that closely mimics human disease. Here, we confirm the importance of C5aR/CD88 in the mediation of anti-MPO-induced NCGN and report that C6 is not required. We further demonstrate that deficiency of C5a-like receptor (C5L2) has the reverse effect of C5aR/CD88 deficiency and results in more severe disease, indicating that C5aR/CD88 engagement enhances inflammation and C5L2 engagement suppresses inflammation. Oral administration of CCX168, a small molecule antagonist of human C5aR/CD88, ameliorated anti-MPO-induced NCGN in mice expressing human C5aR/CD88. These observations suggest that blockade of C5aR/CD88 might have therapeutic benefit in patients with ANCA-associated vasculitis and GN.
Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/prevention & control , Autoantigens/immunology , Glomerulonephritis/prevention & control , Peroxidase/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Administration, Oral , Animals , Complement C6/immunology , Complement Pathway, Alternative , Dose-Response Relationship, Drug , Gene Knock-In Techniques , Glomerulonephritis/complications , Glomerulonephritis/immunology , Hematuria/etiology , Hematuria/prevention & control , Humans , Immunization, Passive , Leukocytes , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/immunology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Peroxidase/deficiency , Proteinuria/etiology , Proteinuria/prevention & control , Receptor, Anaphylatoxin C5a/deficiency , Receptor, Anaphylatoxin C5a/genetics , Receptors, Chemokine/deficiency , Receptors, Chemokine/genetics , Receptors, Chemokine/physiology , Recombinant Fusion Proteins , Urine/cytologyABSTRACT
The concentration of CXCL12/SDF-1 in the bloodstream is tightly regulated, given its central role in leucocyte and stem/progenitor cell egress from bone marrow and recruitment to sites of inflammation or injury. The mechanism responsible for this regulation is unknown. Here we show that both genetic deletion and pharmacological inhibition of CXCR7, a high-affinity CXCL12 receptor, caused pronounced increases in plasma CXCL12 levels. The rise in plasma CXCL12 levels was associated with an impairment in the ability of leucocytes to migrate to a local source of CXCL12. Using a set of complementary and highly sensitive techniques, we found that CXCR7 protein is expressed at low levels in multiple organs in both humans and mice. In humans, CXCR7 was detected primarily on venule endothelium and arteriole smooth muscle cells. CXCR7 expression on venule endothelium was also documented in immunodeficient mice and CXCR7(+/lacZ) mice. The vascular expression of CXCR7 therefore gives it immediate access to circulating CXCL12. These studies suggest that endothelial CXCR7 regulates circulating CXCL12 levels and that CXCR7 inhibitors might be used to block CXCL12-mediated cell migration for therapeutic purposes.
Subject(s)
Chemokine CXCL12/immunology , Endothelium, Vascular/immunology , Gene Expression Regulation/immunology , Human Umbilical Vein Endothelial Cells/immunology , Receptors, CXCR/immunology , Animals , Cell Movement/immunology , Chemokine CXCL12/blood , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Leukocytes/cytology , Leukocytes/immunology , Leukocytes/metabolism , Mice , Organ Specificity/immunology , Receptors, CXCR/biosynthesisABSTRACT
The chemokine CCL3/MIP-1α is a risk factor in the outcome of multiple myeloma (MM), particularly in the development of osteolytic bone disease. This chemokine, highly overexpressed by MM cells, can signal mainly through 2 receptors, CCR1 and CCR5, only 1 of which (CCR1) is responsive to CCL3 in human and mouse osteoclast precursors. CCR1 activation leads to the formation of osteolytic lesions and facilitates tumor growth. Here we show that formation of mature osteoclasts is blocked by the highly potent and selective CCR1 antagonist CCX721, an analog of the clinical compound CCX354. We also show that doses of CCX721 selected to completely inhibit CCR1 produce a profound decrease in tumor burden and osteolytic damage in the murine 5TGM1 model of MM bone disease. Similar effects were observed when the antagonist was used prophylactically or therapeutically, with comparable efficacy to that of zoledronic acid. 5TGM1 cells were shown to express minimal levels of CCR1 while secreting high levels of CCL3, suggesting that the therapeutic effects of CCX721 result from CCR1 inhibition on non-MM cells, most likely osteoclasts and osteoclast precursors. These results provide a strong rationale for further development of CCR1 antagonists for the treatment of MM and associated osteolytic bone disease.
Subject(s)
Chemokines/pharmacology , Chemokines/therapeutic use , Multiple Myeloma/drug therapy , Osteolysis/drug therapy , Receptors, CCR1/antagonists & inhibitors , Tumor Burden/drug effects , Administration, Oral , Animals , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Chemokines/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Immunocompetence/drug effects , Inflammation/drug therapy , Inflammation/pathology , Mice , Mice, Inbred C57BL , Models, Biological , Monocytes/drug effects , Monocytes/metabolism , Multiple Myeloma/complications , Multiple Myeloma/pathology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Osteolysis/complications , Osteolysis/pathology , Rats , Receptors, CCR1/metabolismABSTRACT
Chemokine (C-C motif) receptor 2 (CCR2) is central for the migration of monocytes into inflamed tissues. The novel CCR2 antagonist CCX140-B, which is currently in two separate phase 2 clinical trials in diabetic nephropathy, has recently been shown to reduce hemoglobin A1c and fasting blood glucose levels in type 2 diabetics. In this report, we describe the effects of this compound on glycemic and renal function parameters in diabetic mice. Since CCX140-B has a low affinity for mouse CCR2, transgenic human CCR2 knockin mice were generated and rendered diabetic with either a high-fat diet (diet-induced obesity) or by deletion of the leptin receptor gene (db/db). CCX140-B treatment in both models resulted in decreased albuminuria, which was associated with decreased glomerular hypertrophy and increased podocyte density. Moreover, treatment of diet-induced obese mice with CCX140-B resulted in decreased levels of fasting blood glucose and insulin, normalization of homeostatic model assessment of insulin resistance values, and decreased numbers of adipose tissue inflammatory macrophages. Unlike other CCR2 antagonists, CCX140-B had no effect on plasma levels of the CCR2 ligand CCL2 or on the numbers of blood monocytes. These results support the ongoing evaluation of this molecule in diabetic subjects with impaired renal function.
Subject(s)
Diabetic Nephropathies/drug therapy , Hyperglycemia/drug therapy , Kidney/drug effects , Receptors, CCR2/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Diabetic Nephropathies/genetics , Gene Knock-In Techniques , HEK293 Cells , Humans , Insulin Resistance , Kidney Function Tests , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, CCR2/geneticsABSTRACT
OBJECTIVES: CCX354-C is a specific, orally administered antagonist of the C-C chemokine receptor 1, which regulates migration of monocytes and macrophages to synovial tissue. This clinical trial evaluated the safety and efficacy of CCX354-C in patients with rheumatoid arthritis (RA). METHODS: CARAT-2 is a 12-week double-blind, randomised, placebo controlled trial in 160 patients with RA, with 68 tender joint count and 66 swollen joint count ≥8 and C-reactive protein (CRP) >5 mg/l, despite being on methotrexate for at least 16 weeks. Subjects received placebo, CCX354-C 100 mg twice daily, or 200 mg once daily for 12 weeks. Endpoints included safety (primary) and RA disease activity assessments based on American College of Rheumatology (ACR) response, and changes in 28-joint disease activity score-CRP, individual ACR components, as well as soluble bone turnover markers. RESULTS: CCX354-C was generally well tolerated by study subjects. The ACR20 response at week 12 was 39% in the placebo group, 43% in the 100 mg twice daily group (difference and 95% CI compared with placebo, 4.5 (-14.1 to 23.1); p=0.62) and 52% in the 200 mg once daily group (13.0 (-5.8 to 31.8); p=0.17) in the intention-to-treat population, and 30% in the placebo group, 44% in the 100 mg twice daily group (14.4 (-5.9 to 34.8); p=0.17), and 56% in the 200 mg once daily group (25.8 (5.3 to 46.4); p=0.01) in the prespecified population of patients satisfying CRP and joint count eligibility criteria at the screening and day 1 (predose) visits. CONCLUSIONS: CCX354-C exhibited a good safety and tolerability profile and evidence of clinical activity in RA.
Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Double-Blind Method , Female , Humans , Male , Middle Aged , Receptors, CCR1/antagonists & inhibitors , Treatment OutcomeABSTRACT
Introduction: In the 330-patient ADVOCATE trial of avacopan for the treatment of antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis, in which 81% of patients had renal involvement, estimated glomerular filtration rate (eGFR) increased on average 7.3 ml/min per 1.73 m2 in the avacopan group and 4.1 ml/min per 1.73 m2 in the prednisone group (P = 0.029) at week 52. This new analysis examines the results in the patient subgroup with severe renal insufficiency at enrollment into the trial, i.e., eGFR ≤20 ml/min per 1.73 m2. Methods: eGFR was determined at baseline and over the course of the trial. Changes in eGFR were compared between the 2 treatment groups. Results: In ADVOCATE, 27 of 166 patients (16%) in the avacopan group and 23 of 164 patients (14%) in the prednisone group had a baseline eGFR ≤20 ml/min per 1.73 m2. At week 52, eGFR increased on average 16.1 and 7.7 ml/min per 1.73 m2 in the avacopan and prednisone groups, respectively (P = 0.003). The last eGFR value measured during the 52-week treatment period was ≥2-fold higher than baseline in 41% of patients in the avacopan group compared to 13% in the prednisone group (P = 0.030). More patients in the avacopan group versus prednisone group had increases in eGFR above 20, 30, and 45 ml/min per 1.73 m2, respectively. Serious adverse events occurred in 13 of 27 patients (48%) in the avacopan group and 16 of 23 patients (70%) in the prednisone group. Conclusion: Among patients with baseline eGFR ≤20 ml/min per 1.73 m2 in the ADVOCATE trial, eGFR improved more in the avacopan group than in the prednisone group.
ABSTRACT
The interaction of PD-L1 with PD-1 is a major immune checkpoint that limits effector T cell function against cancer cells; monoclonal antibodies that block this pathway have been approved in multiple tumor indications. As a next generation therapy, small molecule inhibitors of PD-L1 have inherent drug properties that may be advantageous for certain patient populations compared to antibody therapies. In this report we present the pharmacology of the orally-available, small molecule PD-L1 inhibitor CCX559 for cancer immunotherapy. CCX559 potently and selectively inhibited PD-L1 binding to PD-1 and CD80 in vitro, and increased activation of primary human T cells in a T cell receptor-dependent fashion. Oral administration of CCX559 demonstrated anti-tumor activity similar to an anti-human PD-L1 antibody in two murine tumor models. Treatment of cells with CCX559 induced PD-L1 dimer formation and internalization, which prevented interaction with PD-1. Cell surface PD-L1 expression recovered in MC38 tumors upon CCX559 clearance post dosing. In a cynomolgus monkey pharmacodynamic study, CCX559 increased plasma levels of soluble PD-L1. These results support the clinical development of CCX559 for solid tumors; CCX559 is currently in a Phase 1, first in patient, multicenter, open-label, dose-escalation study (ACTRN12621001342808).
Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Mice , Animals , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Macaca fascicularis , Antibodies, Monoclonal , Neoplasms/drug therapy , Immunotherapy/methodsABSTRACT
The chemokine stromal cell-derived factor (SDF-1; also known as chemokine ligand 12 [CXCL12]) regulates many essential biological processes, including cardiac and neuronal development, stem cell motility, neovascularization, angiogenesis, apoptosis, and tumorigenesis. It is generally believed that SDF-1 mediates these many disparate processes via a single cell surface receptor known as chemokine receptor 4 (CXCR4). This paper characterizes an alternate receptor, CXCR7, which binds with high affinity to SDF-1 and to a second chemokine, interferon-inducible T cell alpha chemoattractant (I-TAC; also known as CXCL11). Membrane-associated CXCR7 is expressed on many tumor cell lines, on activated endothelial cells, and on fetal liver cells, but on few other cell types. Unlike many other chemokine receptors, ligand activation of CXCR7 does not cause Ca2+ mobilization or cell migration. However, expression of CXCR7 provides cells with a growth and survival advantage and increased adhesion properties. Consistent with a role for CXCR7 in cell survival and adhesion, a specific, high affinity small molecule antagonist to CXCR7 impedes in vivo tumor growth in animal models, validating this new receptor as a target for development of novel cancer therapeutics.