Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
Neurochem Res ; 47(3): 644-655, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34705188

ABSTRACT

Apigenin, as a natural flavonoid present in several plants is characterized with potential anticancer, antioxidant, and anti-inflammatory properties. Recent studies proposed that apigenin affects depression disorder through unknown mechanistic pathways. The effects of apigenin's anti-depressive properties on streptozocin-mediated depression have been investigated through the evaluation of behavioral tests, oxidative stress, cellular energy homeostasis and inflammatory responses. The results demonstrated anti-depressive properties of apigenin in behavioral test including forced swimming and splash tests and oxidative stress biomarkers such as reduced glutathione, lipid peroxidation, total antioxidant power and coenzyme Q10 levels. Apigenin, also, demonstrated its regulatory potency in cellular energy homeostasis and immune system gene expression through inhibiting Nlrp3 and Tlr4 overexpression. Furthermore, failure in energy production as the key factor in various psychiatric disorders was reversed by apigenin modulating effect on AMPK gene expression. Overall, 20 mg/kg of apigenin was recognized as the dose suitable for minimizing the undesirable adverse effects in the STZ-mediated depression model proposed in this study. Our data suggested that apigenin could be able to adjust behavioral dysfunction, biochemical biomarkers and recovered cellular antioxidant level in depressed animals. The surprising results were achieved by raise in COQ10 level, which could regulate the overexpression of the AMPK gene in stressful conditions. The regulatory effect of apigenin in inflammatory signaling pathways such as Nlrp3, and Tlr4 gene expression was studied at the surface part of the hippocampus.


Subject(s)
Apigenin , Neuroprotective Agents , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apigenin/pharmacology , Apigenin/therapeutic use , Depression/drug therapy , Depression/metabolism , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress
2.
Cell Biol Int ; 46(10): 1612-1624, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35819083

ABSTRACT

Biogenic synthesis of selenium nanoparticles (SeNPs) using plant extracts has emerged as a promising alternative approach to traditional chemical synthesis. The current study aims to introduce a safe, low-cost, and green synthesis of SeNPs using fresh fruit extract of Vaccinium arctostaphylos L. The biogenic synthesis of SeNPs was confirmed by different analyses including ultraviolet-visible spectrophotometry, Fourier transform infrared, and energy-dispersive X-ray. Also, the crystalline nature, size, and morphology of the obtained SeNPs were characterized by X-ray diffraction, dynamic light scattering, field emission scanning electron microscopy, and transmission electron microscopy techniques. The SeNPs were successfully synthesized with fruit extract of V. arctostaphylos L. in a regular spherical form and narrow size distribution with suitable zeta-potential values and exhibited appropriate biocompatibility. It revealed that the synthesized SeNPs can significantly inhibit the growth of 4T1 breast cancer cells with an IC50 of ∼84.19 ± 25.96 µg/ml after 72 h treatment. Overall, it can be concluded that the green synthesized SeNPs can be attractive, nontoxic, and eco-friendly candidates for drug delivery or medicinal applications.


Subject(s)
Arctostaphylos , Breast Neoplasms , Metal Nanoparticles , Nanoparticles , Selenium , Vaccinium , Breast Neoplasms/drug therapy , Female , Fruit , Humans , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Selenium/chemistry , Selenium/pharmacology
3.
Article in English | MEDLINE | ID: mdl-36166834

ABSTRACT

The comorbidity of depression and high risk of cardiovascular diseases (CVD) have been reported as major health problems. Our previous study confirmed that fluoxetine (FLX) therapy had a significant influence on brain function but not on the heart in depression. In the present study, suberoyanilide hydroxamic acid (SAHA) was proposed as another therapeutic candidate for treatment of depression comorbid CVD in maternal separation model, following behavioral analyses and gene expression level in the heart. Our data demonstrated that SAHA significantly attenuates the NOX-4 gene expression level in treated mice with SAHA and FLX without significant change in NOX-2 expression level. SAHA decreased the gene expression level of peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and nuclear respiratory factors (Nrf2) in heart tissues of maternally separated mice. It supposed that non-effectiveness of FLX on mitochondrial biogenesis and NOX gene expression level in the heart of depressed patient can be related to recurrence of depression. It revealed that SAHA not only reversed the depressive-like behavior similar to our previous data but also recovered the heart mitochondrial function via effect on NOX-2, NOX-4, and mitochondrial biogenesis genes' (PGC-1α, Nrf-2, and peroxisome proliferator-activated receptor-α (PPAR-α)) expression levels. We suggest performing more studies to confirm SAHA as a therapeutic candidate in depression comorbid CVD.

4.
Pharm Dev Technol ; 27(1): 19-24, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34895033

ABSTRACT

In this project, a biocompatible block copolymer including poly ethylene glycol and poly caprolactone was synthesized using ring-opening reaction. Then, the copolymer was conjugated to folic acid using lysine as a linker. Also, curcumin (CUR) was used as a therapeutic anticancer agent. Nanoprecipitation method was used to prepare CUR-loaded polymeric micelles. Different methods including Fourier-transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS) were used to characterize the prepared nanocarriers (NCs). MTT assay and hemolysis assay were used to evaluate in vitro anticancer efficiency and biocompatibility of the prepared NCs, respectively. The results proved efficiency of NCs as a drug delivery system (DDS) in various aspects such as physicochemical properties and biocompatibility. Also, in vivo results showed that NCs did not show any severe weight loss and side effects on mice, and the anti-cancer study results of the CUR-loaded NCs proved that the conjugation of folic acid on the surface of NCs as a targeting agent could increase the therapeutic efficacy of CUR.


Subject(s)
Curcumin , Neoplasms , Animals , Curcumin/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Folic Acid/chemistry , Mice , Micelles , Neoplasms/drug therapy , Polyethylene Glycols/chemistry , Polymers/chemistry
5.
Prep Biochem Biotechnol ; 51(3): 207-224, 2021.
Article in English | MEDLINE | ID: mdl-32845793

ABSTRACT

Hairy root induction in Plantago lanceolata was optimized to take advantage of transformed root cultures. The highest frequency of transformation was achieved using leaf explant, A4 strain, pre-cultivation of explant, 150 µM Acetosyringone, 5 min inoculation, half-strength Murashige and Skoog basal medium as co-cultivation, and half-strength Gamborg's basal medium as a selective medium with 3% sucrose. Among the studied compound encompassing gallic acid, catalpol and apigenin, only the production of gallic acid in hairy roots was affected by 20 mg L-1 AgNO3 and 100 mg L-1 chitosan at 24 hr which yielded 7.63, 4.76-fold increase in its content, respectively. The methanolic extracts of hairy roots elicited by 20 mg L-1 AgNO3 exhibited anti-bacterial activity (MIC and MBC = 25 mg mL-1) against Klebsiella pneumoniae, Proteus vulgaris and Salmonella typhi and anti-bacterial potential of non-elicited hairy roots of P. lanceolata (MIC = 25 mg mL-1 and MBC = 35 mg mL-1) were more active against Klebsiella pneumoniae and P. vulgaris than other bacteria. The methanolic extracts of the P. lanceolata hairy roots demonstrated significant cytotoxic activity on colorectal carcinoma cell line (SW-480) with IC50 = 250.65 ± 6.8 µg mL-1 in comparison to human embryonic kidney (HEK-293) with IC50 = 5263.65 ± 4.6 µg mL-1. Plantago lanceolata hairy roots showed important biological activity explaining its role in traditional medicine.


Subject(s)
Anti-Bacterial Agents/pharmacology , Culture Media , Microbial Sensitivity Tests , Plant Leaves/genetics , Plant Roots/genetics , Plantago/genetics , Plants, Genetically Modified , Apigenin/chemistry , Cell Line, Tumor , Chitosan/metabolism , Diffusion , Drug Screening Assays, Antitumor , Gallic Acid/chemistry , HEK293 Cells , Humans , Inhibitory Concentration 50 , Iridoid Glucosides/chemistry , Klebsiella pneumoniae/drug effects , Methanol/chemistry , Proteus vulgaris/drug effects , Salmonella typhi/drug effects
6.
Cell Biol Int ; 44(12): 2485-2498, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32841441

ABSTRACT

In the present study, we introduced cholesterol (CLO)-conjugated bovine serum albumin nanoparticles (BSA NPs) as a new system for indirect targeting drug delivery. Tamoxifen, as an anticancer drug, was loaded on BSA NPs (BSA-TAX NPs); CLO was then conjugated to the BSA-TAX NPs surface for the targeted delivery of NPs system, by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide carbodiimide chemistry (CLO-BSA-TAX NPs). The physicochemical properties, toxicity, in vitro, and in vivo biocompatibility of the BSA NPs system were characterized on cancer cell lines (4T1). The results revealed that the BSA NPs system has a regular spherical shape and negative zeta-potential values. The drug release of BSA NPs system has shown controlled and pH-dependent drug release behavior. BSA NPs system was biocompatible but it was potentially toxic on the cancer cell line. The CLO-BSA-TAX NPs exhibited higher toxicity against cancer cell lines than other NPs formulation (BSA NPs and BSA-TAX NPs). It can be concluded that the CLO, as an indirect targeting agent, enhances the toxicity and specificity of NPs system on cancer cell lines. It could potentially be suitable approaches to targeting the tumors in clinical cancer therapy.


Subject(s)
Cholesterol/chemistry , Drug Delivery Systems/methods , Serum Albumin, Bovine/chemistry , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Carriers/chemistry , Drug Liberation , Humans , MCF-7 Cells , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Particle Size , Tamoxifen/chemistry , Tamoxifen/metabolism , Tamoxifen/pharmacology
7.
Mol Biol Rep ; 47(9): 6517-6529, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32767222

ABSTRACT

The current study intends to investigate a novel drug delivery system (DDS) based on niosomes structure (NISM) and bovine serum albumin (BSA) which was formulated to BSA coated NISM (NISM-B). Also, selenium nanoparticles (SeNPs) have been prepared by BSA mediated biosynthesis. Finally, the NISM-B was hybridized with SeNPs and was formulated as NISM-B@SeNPs for drug delivery applications. Physicochemical properties of all samples were characterized by UV-Vis spectroscopy, FT-IR, DLS, FESEM, and EDX techniques. The cytotoxicity of all samples against A549 cell line was assessed by cell viability analysis and flow cytometry for apoptotic cells as well as RT-PCR for the expression of MDR-1, Bax, and Bcl-2 genes. Besides, in vivo biocompatibility was performed by LD50 assay to evaluate the acute toxicity. The proposed formulation has a regular spherical shape and approximately narrow size distribution with proper zeta-potential values; the proposed DDS revealed a good biocompatibility. The compound showed a significant cytotoxic effect against A549 cell line. Although the Bax/Bcl-2 expression ratio was significantly in NISM-B@SeNPs- treated cancer cells, the expression of MDR-1 was non-significantly lower in NISM-B@SeNPs-treated cancer cells. The obtained results suggest that the proposed DDS presents a promising approach for drug delivery, co-delivery and multifunctional biomedicine applications.


Subject(s)
Apoptosis/drug effects , Drug Carriers/chemistry , Drug Delivery Systems/methods , Liposomes/chemistry , Nanoparticles/chemistry , Selenium/chemistry , A549 Cells , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Apoptosis/genetics , Cell Survival/drug effects , Dynamic Light Scattering , Humans , Liposomes/toxicity , Materials Testing , Microscopy, Electron, Scanning , Nanoparticles/toxicity , Nanoparticles/ultrastructure , Particle Size , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Rheology , Serum Albumin, Bovine/chemistry , Spectrometry, X-Ray Emission , Spectrophotometry , Spectroscopy, Fourier Transform Infrared , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
8.
Drug Dev Ind Pharm ; 46(5): 846-851, 2020 May.
Article in English | MEDLINE | ID: mdl-32301636

ABSTRACT

In The present project, a variety of MnFe2O4 (Mn) and Cr2Fe6O12 (Cr)-based nanocarriers (NCs) were synthesized as photosensitizer and NCs for delivery of chemotherapeutic curcumin (CUR) and provide a new structure for Photodynamic Therapy (PDT). For determining efficiency of NCs release study, MTT assay, lethal dose test and hemolysis assay were carried out. The release study showed the release of CUR from NCs was pH-dependent, but, every NCs had its own behavior for releasing the drug. The data acquired from the release study showed the CUR release from Mn can reach to over 90% at acidic media instead of 41% at neutral media. However, the CUR released from Cr were approximately equal as Cr had equal zeta potential at both media. Hemolysis activity and lethal dose test displayed the cytotoxicity of NCs was neglectable at both in vitro and in vivo study. Also, the results of anti-cancer activity assay (MTT assay) showed that both of Cr and Mn NCs are suitable systems for PDT. Therefore, the results demonstrated that Mn is suitable NCs for PDT and anticancer drugs delivery of therapeutic drugs.


Subject(s)
Antineoplastic Agents/administration & dosage , Chromium/administration & dosage , Drug Delivery Systems/methods , Ferric Compounds/administration & dosage , Manganese Compounds/administration & dosage , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Animals , Antineoplastic Agents/metabolism , Biocompatible Materials/administration & dosage , Biocompatible Materials/metabolism , Cell Survival/drug effects , Cell Survival/physiology , Chromium/metabolism , Dose-Response Relationship, Drug , Female , Ferric Compounds/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Male , Manganese Compounds/metabolism , Mice , Photosensitizing Agents/metabolism
9.
Bioorg Chem ; 76: 501-509, 2018 02.
Article in English | MEDLINE | ID: mdl-29310081

ABSTRACT

The bovine serum albumin-coated magnetic nanoparticles (F@BSA NPs) were prepared as curcumin (CUR) carriers through desolvation and chemical co-precipitation process. The characteristics of CUR loaded F@BSA NPs (F@BSA@CUR NPs) were determined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrating-sampling magnetometry (VSM) techniques. It was found that the synthesized F@BSA@CUR NPs were spherical in shape with an average size of 56 ±â€¯11.43 nm (mean ± SD (n = 33)), ζ-potential of -10.1 mV, and good magnetic responsivity. Meanwhile, the drug content of the nanoparticles was 6.88%. These F@BSA@CUR NPs also demonstrated sustained release of CUR at 37 °C in different buffer solutions. Cellular toxicity of F@BSA@CUR NPs was studied on HFF2 cell line. Also, the cytotoxicity of F@BSA@CUR NPs towards MCF-7 breast cancer cells was investigated. The results revealed that F@BSA@CUR NPs have significant cytotoxicity activity on MCF-7 cell line.


Subject(s)
Antineoplastic Agents/pharmacology , Curcumin/pharmacology , Drug Carriers/chemistry , Magnetite Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Animals , Antineoplastic Agents/chemistry , Cattle , Curcumin/chemistry , Drug Carriers/chemical synthesis , Drug Carriers/toxicity , Drug Liberation , Humans , MCF-7 Cells , Magnetic Phenomena , Magnetite Nanoparticles/toxicity , Particle Size , Serum Albumin, Bovine/toxicity
10.
Drug Dev Ind Pharm ; 44(8): 1377-1384, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29560737

ABSTRACT

Denderimer-modified magnetic nanoparticles are a promising drug delivery nanosystem which can improve the therapeutic efficacy of chemotherapy drugs and can also be beneficial as magnetic resonance (MR) images contrast agent. The present study introduces the preparation and characterization of the potential therapeutic efficiency of curcumin (CUR)-loaded denderimer-modified citric acid coated Fe3O4 NPs. Polyamidoamine (PAMAM, generation G5) was used to encapsulate citric acid coated Fe3O4 nanoparticles. The successful preparation of CUR-loaded nanocarriers were confirmed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM) techniques. The loading capacity and encapsulation efficiency of CUR molecules were 12 ± 0.03% and 45.58 ± 0.41%, respectively. The anticancer effect of void CUR and CUR-loaded nanocarriers were compared to each other by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on treated MCF-7 cell line. It can be concluded that application of nanoparticles can be more effective strategy for controlled and slow release of CUR in human breast cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Curcumin/pharmacology , Drug Carriers/chemistry , Drug Compounding/methods , Antineoplastic Agents/therapeutic use , Breast Neoplasms/diagnostic imaging , Cell Survival , Citric Acid/chemistry , Contrast Media/administration & dosage , Curcumin/therapeutic use , Delayed-Action Preparations/chemistry , Dendrimers/chemistry , Drug Liberation , Drug Screening Assays, Antitumor , Female , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Magnetite Nanoparticles/chemistry , Polyethylene Glycols/chemistry
11.
Pharm Dev Technol ; 22(5): 642-651, 2017 Aug.
Article in English | MEDLINE | ID: mdl-26916923

ABSTRACT

PURPOSE: Among the potent anticancer agents, d,l-sulforaphane (SF) is very effective against many different types of cancer cells. Its clinical application is restricted because of its hydrophobicity, low gastrointestinal absorption and poor bioavailability. In the present study, a reliable micellar delivery system using monomethoxypoly (ethylene glycol)-poly (ɛ-caprolactone) (mPEG-PCL) was established. The encapsulation of SF inside mPEG-PCL as a nano-carrier was established and the cytotoxicity assay against human breast cancer cell line was evaluated. METHODS: In this study, SF was encapsulated within mPEG-PCL micelles through a single-step nano-precipitation method, leading to creation of SF-loaded mPEG-PCL (SF/mPEG-PCL) micelles. Di-block mPEG-PCL copolymers were synthesized and used to prepare micelles. MPEG-PCL copolymer was characterized by HNMR, FTIR, differential scanning calorimetry and gel permeation chromatography techniques. Characterization, stability of micelles, the particle size and morphology were determined. The release profile of the SF from the micelles which prepared by the drug-loaded copolymer, was evaluated. The cytotoxicity of free SF, mPEG-PCL and SF-loaded mPEG-PCL micelles was compared with each other by performing MTT assay of the treated MCF-7 cell line. Expression levels of BCL-2, MMP-9, BCL-XL, BAK, BAX and GAPDH (endogenous gene) as control were quantified by real time PCR. To evaluate the apoptotic effects of Free SF compared with SF-loaded mPEG-PCL micelles, flow cytometry analysis was done using the annexin V-FITC apoptosis detection kit. RESULTS: Our studies resulted in a successful establishment of uniformity and spherical SF-loaded mPEG-PCL micelles. The encapsulation efficiency of SF was 86 ± 1.58%. The results of atomic force microscopy revealed that the micelles have spherical shapes with size of 107 nm. In vitro release of SF from SF-entrapped micelles was remarkably sustained. The mPEG-PCL micelle showed little cytotoxicity in the case of MCF-7 cell line with concentration up to 1.5 mg/ml, whereas the SF-loaded mPEG-PCL micelles at all concentrations significantly was cytotoxic in the case of MCF-7 cell line. Finally, real-time PCR and flow cytometry were used to demonstrate that the SF-loaded mPEG-PCL could be efficiently inducing apoptosis in MCF-7 cell line. CONCLUSION: We achieved to a successful formulation of SF-loaded m-PEG/PCL micelles in this study. Based on the cytotoxicity results of mPEG-PCL micelles against human breast cancer cell line (MCF-7) in this study, it suggested that SF/mPEG-PCL micelles can be an effective breast cancer treatment strategy in the future.


Subject(s)
Breast Neoplasms/drug therapy , Drug Carriers , Isothiocyanates/administration & dosage , Polyesters , Polyethylene Glycols , Female , Humans , Nanoparticles , Sulfoxides
12.
Physiol Mol Biol Plants ; 22(1): 87-95, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27186022

ABSTRACT

Iran has a long history of acid lime cultivation and propagation. In this study, genetic variation in 28 acid lime accessions from five regions of south of Iran, and their relatedness with other 19 citrus cultivars were analyzed using Simple Sequence Repeat (SSR) and Inter-Simple Sequence Repeat (ISSR) molecular markers. Nine primers for SSR and nine ISSR primers were used for allele scoring. In total, 49 SSR and 131 ISSR polymorphic alleles were detected. Cluster analysis of SSR and ISSR data showed that most of the acid lime accessions (19 genotypes) have hybrid origin and genetically distance with nucellar of Mexican lime (9 genotypes). As nucellar of Mexican lime are susceptible to phytoplasma, these acid lime genotypes can be used to evaluate their tolerance against biotic constricts like lime "witches' broom disease".

13.
Physiol Mol Biol Plants ; 20(4): 487-94, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25320471

ABSTRACT

In the present study, we developed an efficient protocol for in vitro plant regeneration and genetically transformed root induction in medicinal plant Artemisia aucheri Boiss. Leaf explants were cultivated in MS medium supplemented by combination of plant growth regulators including α-naphthalene-acetic acid, 6-benzyl-aminopurine, indole-3-acetic acid and 2, 4-dichlorophenoxyaceticacid. The highest frequency of shoot organogenesis occurred on MS medium supplemented with 0.05 mg/l NAA plus 2 mg/l BA (96.3 %) and MS medium supplemented with 0.5 mg/l IAA plus 2 mg/l BA (88.3 %). Root induction was obtained on MS medium supplemented with 0.5 mg/l IBA. This is a simple, reliable, rapid and high efficient regeneration system for A. aucheri Boiss in short period via adventitious shoot induction approach. Also, an efficient genetically transformed root induction for A. aucheri was developed through Agrobacterium rhizogenes-mediated transformation by four bacterial strains, A4, ATCC15834, MSU440, and A13 (MAFF-02-10266). The maximum frequency of hairy root induction was obtained using MSU440 (93 %) and ATCC15834 (89 %) bacterial strains. Hairy root lines were confirmed by PCR using the rolB gene specific primers and Southern blot analysis.

14.
Physiol Mol Biol Plants ; 20(2): 257-62, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24757330

ABSTRACT

An efficient hairy root induction system for an important endangered medicinal plant, Dracocephalum kotschyi, was developed through Agrobacterium rhizogenes-mediated transformation by modifying the co-cultivation medium using five bacterial strains, A4, ATCC15834, LBA9402, MSU440, and A13 (MAFF-02-10266). A drastic increase in transformation frequency was observed when a Murashige and Skoog medium lacking NH4NO3 KH2PO4, KNO3 and CaCl2 was used, resulting in hairy root induction frequencies of 52.3 %, 69.6 %, 48.6 %, 89.0 %, and 80.0 % by A4, A13, LBA9402, MSU440, and ATCC15834 strains, respectively. For shoot induction, hairy roots and unorganized tumors induced by strain ATCC15834 were placed on an MS media supplemented with 0.1, 0.25, 0.5, and 1 mg/l BA plus 0.1 mg/l NAA. The high frequency of shoot regeneration and number of shoot were obtained in the medium containing 0.25 mg/l BA and 0.1 mg/l NAA. Root induction occurred from the base of regenerated shoots on the MS medium supplemented with 0.5 mg/l IBA after 10 days.

15.
Physiol Mol Biol Plants ; 20(3): 351-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25049462

ABSTRACT

Nepeta pogonosperma is an important medicinal plant with anti-inflammatory effects. An efficient and reliable transformation system for this plant was developed through optimization of several factors which affected the rate of Agrobacterium rhizogenes mediated transformation. Five bacterial strains, A4, ATCC15834, LBA9402, MSU440 and A13, two explant types, leaves and stems, and several co-cultivation media were examined. The maximum rate of hairy root induction was obtained from stem explants using MSU440 and ATCC15834 bacterial strains. A drastic increase in the frequency of transformation (91 %) was observed when MS medium lacking NH4NO3, KH2PO4, KNO3 and CaCl2. Hairy root lines were confirmed by polymerase chain reaction (PCR) using primers of the rolB gene. According to Southern blot analysis, one T-DNA copy was inserted into each of the hairy root lines. In the present study, transgenic hairy roots have been obtained trough genetic transformation by A. rhizogenes harbouring two plasmids, the Ri plasmid and pBI121 binary vector harbouring gus reporter gene. Expression of the gus gene in transgenic hairy root was confirmed by histochemical GUS assay.

16.
Nat Prod Res ; : 1-5, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470177

ABSTRACT

Plantago major root extracts were used for analysis by Gas Chromatography-Mass Spectrometry (GC-MS). The anticancer and antibacterial functions of extracts were also investigated. The dichloromethane extract of P. major had the highest inhibitory effect against Salmonella paratyphi (18.00 ± 1.4 mm) at 100 mg/mL concentration. The lowest MIC was also achieved for S. paratyphi treated with dichloromethane extract of P. major (1.5 mg/mL). The minimum MBC (2 mg/mL) was observed for dichloromethane extract of P. major root against S. paratyphi. IC50 values of dichloromethane extracts of P. major root (184.84 µg/mL) against HCT116 were lower than the ethyl acetate and butanol extracts (212.41 µg/mL and 223.93 µg/mL) at 72h. The butanol extract exhibited the most IC50 value on HEK293 (748.19 µg/mL). The biological properties of P. major extracts may be assigned to the presence of numerous compounds detected in GC/MS analysis including n-Hexadecanoic acid, Linolenic acid, Palmitic acid, methyl ester, Stearic acid.

17.
Sci Rep ; 14(1): 13299, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858410

ABSTRACT

Radiation therapy and phototherapy are commonly used cancer treatments that offer advantages such as a low risk of adverse effects and the ability to target cancer cells while sparing healthy tissue. A promising strategy for cancer treatment involves using nanoparticles (NPs) in combination with radiation and photothermal therapy to target cancer cells and improve treatment efficacy. The synthesis of gold NPs (AuNPs) for use in biomedical applications has traditionally involved toxic reducing agents. Here we harnessed dopamine (DA)-conjugated alginate (Alg) for the facile and green synthesis of Au NPs (Au@Alg-DA NPs). Alg-DA conjugate reduced Au ions, simultaneously stabilized the resulting AuNPs, and prevented aggregation, resulting in particles with a narrow size distribution and improved stability. Injectable Au@Alg-DA NPs significantly promoted ROS generation in 4T1 breast cancer cells when exposed to X-rays. In addition, their administration raised the temperature under a light excitation of 808 nm, thus helping to destroy cancer cells more effectively. Importantly, no substantial cytotoxicity was detected in our Au@Alg-DA NPs. Taken together, our work provides a promising route to obtain an injectable combined radio enhancer and photothermally active nanosystem for further potential clinic translation.


Subject(s)
Alginates , Breast Neoplasms , Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Alginates/chemistry , Breast Neoplasms/radiotherapy , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Animals , Mice , Photothermal Therapy/methods , Phototherapy/methods , Humans , Reactive Oxygen Species/metabolism , Dopamine/chemistry , Cell Survival/drug effects , Cell Survival/radiation effects
18.
Heliyon ; 10(7): e28964, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617928

ABSTRACT

Social isolation can cause serious problem in performance of individuals in community. As gender differences may cause variation results in the severity of depressive behavior and response of patients to therapy, the impact of gender and the interaction of the level of endocrine secretion in depression were investigated in this study. Wistar rats of both sexes were subjected to post-weaning social isolation (PWSI) conditions and, together with the control group, experienced several behavioral tests including open-field Test (OFT), elevated plus maze (EPM), force swimming test (FST), splash test and novel object recognition test (NOR). Hippocampal tissue was isolated to measure biochemical factors such as nitric oxide level, FRAP amount, MDA level. In addition, real-time-PCR test was used to quantify the genes expression level of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS). On the other hand, sexual hormone levels in blood were measured. Both cognitive and behavioral f unctions were declined as the result of PWSI induction in male and diestrus female rats. The consequent surge of estradiol during estrous phase seems to suppress the accumulation of reactive oxygen species (ROS), and modulate iNOS and nNOS expression. In conclusion, while the pattern of PWSI in surge cellular antioxidants, raising cellular ROS level is gender-specific, this alleviation was in relation with the drop of estradiol and unrelated with testosterone level.

19.
Biotechnol Lett ; 35(3): 445-53, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23160738

ABSTRACT

Papaver bracteatum has a high content of thebaine. It is used as an alternative to P. somniferum for the production of benzylisoquinoline alkaloid. Papaver bracteatum was genetically engineered to over-express codeinone reductase gene in hairy root cultures. Transcript level of the codeinone reductase gene in transgenic hairy root lines increased up to ten- and 24-fold in comparison with hairy roots without CodR over-expression and wild type roots, respectively. Codeine was produced at (0.04 % dry wt) and morphine was at (0.28 % dry wt) in the transgenic hairy root lines. Papaver bracteatum hairy roots expressing CodR gene thus have a high potential to produce morphinan alkaloids.


Subject(s)
Alcohol Oxidoreductases/metabolism , Gene Expression , Metabolic Engineering , Morphinans/metabolism , Papaver/metabolism , Alcohol Oxidoreductases/genetics , Codeine/metabolism , Gene Expression Profiling , Morphine/metabolism , NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases , Papaver/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified
20.
World J Microbiol Biotechnol ; 29(11): 2125-31, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23681746

ABSTRACT

Papaver bracteatum is an important medicinal plant valued for its high content of thebaine and an alternative to P. somniferum for benzylisoquinoline alkaloid production. Salutaridinol 7-o-acetyltransferase (SalAT) is a key gene in morphinan alkaloids biosynthesis pathway. Over expression of SalAT gene was used for metabolic engineering in P. bracteatum hairy root cultures. Transcript level of the salutaridinol 7-o-acetyltransferase gene in transgenic hairy root lines increased up to 154 and 128 % in comparison with hairy roots without SalAT over expression and wild type roots, respectively. High performance liquid chromatography analysis showed that the transgenic hairy roots relatively improved levels of thebaine (1.28 % dry weight), codeine (0.02 % dry weight) and morphine (0.03 % dry weight) compared to those hairy roots without SalAT over expression. This suggests that P. bracteatum hairy roots expressing the SalAT gene could be potentially used for the production of valuable morphinan alkaloids.


Subject(s)
Acetyltransferases/genetics , Acetyltransferases/metabolism , Agrobacterium/genetics , Morphinans/metabolism , Papaver/genetics , Plant Roots/metabolism , Gene Expression Regulation, Plant , Metabolic Engineering , Papaver/metabolism , Papaver/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/microbiology , Plants, Genetically Modified , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL