Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Mol Cell ; 82(17): 3270-3283.e9, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35973426

ABSTRACT

Proliferating cells exhibit a metabolic phenotype known as "aerobic glycolysis," which is characterized by an elevated rate of glucose fermentation to lactate irrespective of oxygen availability. Although several theories have been proposed, a rationalization for why proliferating cells seemingly waste glucose carbon by excreting it as lactate remains elusive. Using the NCI-60 cell lines, we determined that lactate excretion is strongly correlated with the activity of mitochondrial NADH shuttles, but not proliferation. Quantifying the fluxes of the malate-aspartate shuttle (MAS), the glycerol 3-phosphate shuttle (G3PS), and lactate dehydrogenase under various conditions demonstrated that proliferating cells primarily transform glucose to lactate when glycolysis outpaces the mitochondrial NADH shuttles. Increasing mitochondrial NADH shuttle fluxes decreased glucose fermentation but did not reduce the proliferation rate. Our results reveal that glucose fermentation, a hallmark of cancer, is a secondary consequence of MAS and G3PS saturation rather than a unique metabolic driver of cellular proliferation.


Subject(s)
Malates , NAD , Aspartic Acid/metabolism , Glucose/metabolism , Glycolysis , Lactic Acid , Malates/metabolism , NAD/metabolism
2.
Nature ; 618(7963): 151-158, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198494

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.


Subject(s)
Glucose , Pancreatic Neoplasms , Ribose , Tumor Microenvironment , Uridine , Animals , Mice , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Ribose/metabolism , Uridine/chemistry , Glucose/deficiency , Cell Division , Cell Line, Tumor , MAP Kinase Signaling System , Uridine Phosphorylase/deficiency , Uridine Phosphorylase/genetics , Uridine Phosphorylase/metabolism , Humans
3.
Nat Chem Biol ; 19(7): 837-845, 2023 07.
Article in English | MEDLINE | ID: mdl-36973440

ABSTRACT

Although nicotinamide adenine dinucleotide phosphate (NADPH) is produced and consumed in both the cytosol and mitochondria, the relationship between NADPH fluxes in each compartment has been difficult to assess due to technological limitations. Here we introduce an approach to resolve cytosolic and mitochondrial NADPH fluxes that relies on tracing deuterium from glucose to metabolites of proline biosynthesis localized to either the cytosol or mitochondria. We introduced NADPH challenges in either the cytosol or mitochondria of cells by using isocitrate dehydrogenase mutations, administering chemotherapeutics or with genetically encoded NADPH oxidase. We found that cytosolic challenges influenced NADPH fluxes in the cytosol but not NADPH fluxes in mitochondria, and vice versa. This work highlights the value of using proline labeling as a reporter system to study compartmentalized metabolism and reveals that NADPH homeostasis in the cytosolic and mitochondrial locations of a cell are independently regulated, with no evidence for NADPH shuttle activity.


Subject(s)
Mitochondria , Cytosol/metabolism , NADP/metabolism , Mitochondria/metabolism
4.
Genet Med ; : 101166, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38767059

ABSTRACT

PURPOSE: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in four siblings. METHODS: We identified five individuals from three unrelated families with biallelic variants in FAM177A1. The physiological function of FAM177A1 was studied in a zebrafish model organism and human cell lines with loss-of-function variants similar to the affected cohort. RESULTS: These individuals share a characteristic phenotype defined by macrocephaly, global developmental delay, intellectual disability, seizures, behavioral abnormalities, hypotonia, and gait disturbance. We show that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA-seq and metabolomic datasets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. CONCLUSION: Our data sheds light on the emerging function of FAM177A1 and defines FAM177A1-related neurodevelopmental disorder as a new clinical entity.

5.
J Lipid Res ; 64(12): 100469, 2023 12.
Article in English | MEDLINE | ID: mdl-37922990

ABSTRACT

Deletion of the nuclear hormone receptor small heterodimer partner (Shp) ameliorates the development of obesity and nonalcoholic steatohepatitis (NASH) in mice. Liver-specific SHP plays a significant role in this amelioration. The gut microbiota has been associated with these metabolic disorders, and the interplay between bile acids (BAs) and gut microbiota contributes to various metabolic disorders. Since hepatic SHP is recognized as a critical regulator in BA synthesis, we assessed the involvement of gut microbiota in the antiobesity and anti-NASH phenotype of Shp-/- mice. Shp deletion significantly altered the levels of a few conjugated BAs. Sequencing the 16S rRNA gene in fecal samples collected from separately housed mice revealed apparent dysbiosis in Shp-/- mice. Cohousing Shp-/- mice with WT mice during a Western diet regimen impaired their metabolic improvement and effectively disrupted their distinctive microbiome structure, which became indistinguishable from that of WT mice. While the Western diet challenge significantly increased lipopolysaccharide and phenylacetic acid (PAA) levels in the blood of WT mice, their levels were not increased in Shp-/- mice. PAA was strongly associated with hepatic peroxisome proliferator-activated receptor gamma isoform 2 (Pparg2) activation in mice, which may represent the basis of the molecular mechanism underlying the association of gut bacteria and hepatic steatosis. Shp deletion reshapes the gut microbiota possibly by altering BAs. While lipopolysaccharide and PAA are the major driving forces derived from gut microbiota for NASH development, Shp deletion decreases these signaling molecules via dysbiosis, thereby partially protecting mice from diet-induced metabolic disorders.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Mice , Bile Acids and Salts/metabolism , Dysbiosis/genetics , Dysbiosis/metabolism , Lipopolysaccharides/metabolism , Liver/metabolism , Metabolic Diseases/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , RNA, Ribosomal, 16S/metabolism
6.
Bioorg Med Chem ; 30: 115893, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33333447

ABSTRACT

A series of novel bis-imidazolium salts was synthesized, characterized, and evaluated in vitro against a panel of non-small cell lung cancer (NSCLC) cells. Two imidazolium cores were connected with alkyl chains of varying lengths to develop a structure activity relationship (SAR). Increasing the length of the connecting alkyl chain was shown to correlate to an increase in the anti-proliferative activity. The National Cancer Institute's NCI-60 human tumor cell line screen confirmed this trend. The compound containing a decyl linker chain, 10, was chosen for further in vivo toxicity studies with C578BL/6 mice. The compound was well tolerated by the mice and all of the animals survived and gained weight over the course of the study.


Subject(s)
Antineoplastic Agents/pharmacology , Imidazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Salts/chemical synthesis , Salts/chemistry , Salts/pharmacology , Structure-Activity Relationship
7.
Bioconjug Chem ; 31(9): 2125-2135, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32820900

ABSTRACT

Neural stem cells (NSCs) provide a strategy to replace damaged neurons following traumatic central nervous system injuries. A major hurdle to translation of this therapy is that direct application of NSCs to CNS injury does not support sufficient neurogenesis due to lack of proper cues. To provide prolonged spatial cues to NSCs IFN-γ was immobilized to biomimetic hydrogel substrate to supply physical and biochemical signals to instruct the encapsulated NSCs to be neurogenic. However, the immobilization of factors, including IFN-γ, versus soluble delivery of the same factor, has been incompletely characterized especially with respect to activation of signaling and metabolism in cells over longer time points. In this study, protein and metabolite changes in NSCs induced by immobilized versus soluble IFN-γ at 7 days were evaluated. Soluble IFN-γ, refreshed daily over 7 days, elicited stronger responses in NSCs compared to immobilized IFN-γ, indicating that immobilization may not sustain signaling or has altered ligand/receptor interaction and integrity. However, both IFN-γ delivery types supported increased ßIII tubulin expression in parallel with canonical and noncanonical receptor-signaling compared to no IFN-γ. Global metabolomics and pathway analysis revealed that soluble and immobilized IFN-γ altered metabolic pathway activities including energy, lipid, and amino acid synthesis, with soluble IFN-γ having the greatest metabolic impact overall. Finally, soluble and immobilized IFN-γ support mitochondrial voltage-dependent anion channel (VDAC) expression that correlates to differentiated NSCs. This work utilizes new methods to evaluate cell responses to protein delivery and provides insight into mode of action that can be harnessed to improve regenerative medicine-based strategies.


Subject(s)
Biocompatible Materials/pharmacology , Immobilized Proteins/pharmacology , Interferon-gamma/pharmacology , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Animals , Cells, Cultured , Female , Metabolomics , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Rats, Inbred F344 , Signal Transduction/drug effects
8.
Mol Pharm ; 17(6): 1816-1826, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32212701

ABSTRACT

Insult to the central nervous system (CNS) results in an early inflammatory response, which can be exploited as an initial indicator of neurological dysfunction. Nanoparticle drug delivery systems provide a mechanism to increase the uptake of drugs into specific cell types in the CNS such as microglia, the resident macrophage responsible for innate immune response. In this study, we developed two nanoparticle-based carriers as potential theranostic systems for drug delivery to microglial cells. Poly(lactic-co-glycolic) acid (PLGA)- and l-tyrosine polyphosphate (LTP)-based nanoparticles were synthesized to encapsulate the magnetic resonance imaging (MRI) contrast agent, gadolinium-diethylenetriaminepentaacetic acid (Gd[DTPA]), or the anti-inflammatory drug, rolipram. Robust uptake of both polymer formulations by microglial cells was observed with no evidence of toxicity. In mixed glial cultures, we observed a preferential internalization of nanoparticles by microglia compared to that of astrocytes. Moreover, exposure of our nanoparticles to microglial cells did not induce the release of the proinflammatory cytokines, tumor necrosis factor α (TNF-α), interleukin-1 ß (IL-1ß), or interleukin-6 (IL-6). These studies provide a foundation for the development of LTP nanoparticles as a platform for the delivery of imaging agents and drugs to the sites of neuroinflammation.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Microglia/metabolism , Nanoparticles/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Cell Line , Fluorescent Antibody Technique , Magnetic Resonance Imaging , Metabolomics , Mice , Microscopy, Confocal , Organophosphates/chemistry , Polymers/chemistry
9.
Bioorg Chem ; 96: 103585, 2020 03.
Article in English | MEDLINE | ID: mdl-31981912

ABSTRACT

Unassymetric bis[2-(2'-hydroxyphenylbenzoxole)] bis(HBO) derivatives with a DPA functionality for zinc binding have been developed with an efficient synthetic route, using the retrosynthetic analysis. Comparison of bis(HBO) derivatives with different substitution patterns allows us to verify and optimize their unique fluorescence properties. Upon binding zinc cation, bis(HBO) derivatives give a large fluorescence turn-on in both visible (λem ≈ 536 nm) and near-infrared (NIR) window (λem ≈ 746 nm). The probes are readily excitable by a 488 nm laser, making this series of compounds a suitable imaging tool for in vitro and in vivo study on a confocal microscope. The application of zinc binding-induced fluorescence turn-on is successfully demonstrated in cellular environments and thrombus imaging.


Subject(s)
Benzoxazoles/chemistry , Fluorescent Dyes/chemistry , Optical Imaging/methods , Chelating Agents/chemistry , Fluorescence , HEK293 Cells , HeLa Cells , Humans , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Thrombosis/diagnostic imaging , Zinc/chemistry
10.
J Fluoresc ; 29(3): 599-607, 2019 May.
Article in English | MEDLINE | ID: mdl-30955153

ABSTRACT

Lysosome selective bright orange-red emitting flavonoid (2) was synthesized by attaching a strong donor (NPh2) group into flavonoid skeleton. As a result of efficient intra molecular charge transfer due to the strong donor group, a significant bathochromic shift was observed from the emission of 2b (with a -NPh2 group, λem ≈ 590 nm), in comparison that of 1b (with a -NMe2 group, λem ≈ 519 nm). The role of the substituent effect towards ICT was further studied by low temperature spectral analysis. Fluorescence spectra at low temperature confirmed that large Stokes shift for probe 2 (Δλ ≈ 150 nm) was due to strong ICT. Probe 2b exhibited exceptional selectivity towards cellular lysosomes in live cells studies thus generating bright orange-red emission upon localization. Intra-cellular pH analysis results confirmed that probe 2b did not participate in the elevation of lysosomal pH upon staining with different probe concentrations (0.5 µM - 2.0 µM) which is a potential advantage compared to acidotropic commercial LysoTracker® probes. This study further illustrated that the substituents in probe 2 play a significant role towards probe's organelle selectivity since probe 2a (R = OH) did not show any lysosomal localization compared with 2b. In addition, the calculated cytotoxicity data further revealed that this new probe design is highly biocompatible (LC50 > 50 µM) and suitable for long term imaging. Graphical Abstract.


Subject(s)
Flavonoids/chemistry , Flavonoids/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Lysosomes/metabolism , Optical Imaging/methods , Optical Phenomena , Cell Line , Cell Survival , Humans , Temperature
11.
Org Biomol Chem ; 16(18): 3382-3388, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29670968

ABSTRACT

A series of benzothiazolium-based hemicyanines (3a-3f) have been synthesized. Evaluation of their photophysical properties shows that they exhibit improved photophysical characteristics. In comparison with the available commercial MitoTrackers, the new probes revealed an enhanced Stokes shift (Δλ ∼ 80 nm) and minimized aggregation for increased sensitivity. The synthesized probes are found to exhibit excellent selectivity for mitochondrial staining in an oligodendrocyte cell line. Probes show almost no fluorescence in aqueous environments, while the fluorescence is increased by ∼10-fold in organic solvents, making it possible for mitochondrial imaging without the need for post-staining washing. Since the absorption peaks of probes are close to the laser wavelengths of 561 and 640 nm on a commercial confocal microscope, e.g.3a exhibits λabs ∼ 620 nm and λem ∼ 702 nm, they could be useful probes for mitochondrial tracking in live cells.


Subject(s)
Benzothiazoles/chemistry , Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Mitochondria/ultrastructure , Oligodendroglia/ultrastructure , Optical Imaging/methods , Benzothiazoles/chemical synthesis , Carbocyanines/chemical synthesis , Cell Line , Fluorescence , Fluorescent Dyes/chemical synthesis , Humans , Infrared Rays , Microscopy, Confocal/methods
12.
Biochemistry ; 56(10): 1518-1528, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28186720

ABSTRACT

Cuprizone intoxication is a common animal model used to test myelin regenerative therapies for the treatment of diseases such as multiple sclerosis. Mice fed this copper chelator develop reversible, region-specific oligodendrocyte loss and demyelination. While the cellular changes influencing the demyelinating process have been explored in this model, there is no consensus about the biochemical mechanisms of toxicity in oligodendrocytes and about whether this damage arises from the chelation of copper in vivo. Here we have identified an oligodendroglial cell line that displays sensitivity to cuprizone toxicity and performed global metabolomic profiling to determine biochemical pathways altered by this treatment. We link these changes with alterations in brain metabolism in mice fed cuprizone for 2 and 6 weeks. We find that cuprizone induces widespread changes in one-carbon and amino acid metabolism as well as alterations in small molecules that are important for energy generation. We used mass spectrometry to examine chemical interactions that are important for copper chelation and toxicity. Our results indicate that cuprizone induces global perturbations in cellular metabolism that may be independent of its copper chelating ability and potentially related to its interactions with pyridoxal 5'-phosphate, a coenzyme essential for amino acid metabolism.


Subject(s)
Brain/drug effects , Chelating Agents/toxicity , Cuprizone/toxicity , Demyelinating Diseases/metabolism , Multiple Sclerosis/metabolism , Oligodendroglia/drug effects , Amino Acids/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Chemistry , Cell Line , Chelating Agents/metabolism , Copper/metabolism , Cuprizone/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Disease Models, Animal , Energy Metabolism , Male , Metabolome , Mice , Mice, Inbred C57BL , Multiple Sclerosis/chemically induced , Multiple Sclerosis/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Pyridoxal Phosphate/metabolism
13.
Bioorg Med Chem Lett ; 27(4): 764-775, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28126518

ABSTRACT

Alkyl- and N,N'-bisnaphthyl-substituted imidazolium salts were tested in vitro for their anti-cancer activity against four non-small cell lung cancer cell lines (NCI-H460, NCI-H1975, HCC827, A549). All compounds had potent anticancer activity with 2 having IC50 values in the nanomolar range for three of the four cell lines, a 17-fold increase in activity against NCI-H1975 cells when compared to cisplatin. Compounds 1-4 also showed high anti-cancer activity against nine NSCLC cell lines in the NCI-60 human tumor cell line screen. In vitro studies performed using the Annexin V and JC-1 assays suggested that NCI-H460 cells treated with 2 undergo an apoptotic cell death pathway and that mitochondria could be the cellular target of 2 with the mechanism of action possibly related to a disruption of the mitochondrial membrane potential. The water solubilities of 1-4 was over 4.4mg/mL using 2-hydroxypropyl-ß-cyclodextrin as a chemical excipient, thereby providing sufficient solubility for systemic administration.


Subject(s)
Antineoplastic Agents/chemistry , Imidazoles/chemistry , Naphthols/chemistry , A549 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Benzimidazoles/toxicity , Carbocyanines/chemistry , Carbocyanines/metabolism , Carbocyanines/toxicity , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemical synthesis , Imidazoles/toxicity , Kaplan-Meier Estimate , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Conformation , Salts/chemistry , Structure-Activity Relationship , Transplantation, Heterologous
14.
Bioorg Med Chem ; 25(1): 421-439, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27876249

ABSTRACT

A series of N,N'-bis(arylmethyl)benzimidazolium salts have been synthesized and evaluated for their in vitro anti-cancer activity against select non-small cell lung cancer cell lines to create a structure activity relationship profile. The results indicate that hydrophobic substituents on the salts increase the overall anti-proliferative activity. Our data confirms that naphthylmethyl substituents at the nitrogen atoms (N1(N3)) and highly lipophilic substituents at the carbon atoms (C2 and C5(C6)) can generate benzimidazolium salts with anti-proliferative activity that is comparable to that of cisplatin. The National Cancer Institute's Developmental Therapeutics Program tested 1, 3-5, 10, 11, 13-18, 20-25, and 28-30 in their 60 human tumor cell line screen. Results were supportive of data observed in our lab. Compounds with hydrophobic substituents have higher anti-cancer activity than compounds with hydrophilic substituents.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/toxicity , Cell Line, Tumor , Cisplatin/pharmacology , Drug Screening Assays, Antitumor , Humans , Male , Mice, Inbred C57BL , Solubility , Structure-Activity Relationship
15.
Neurochem Res ; 41(7): 1713-22, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27084769

ABSTRACT

Idiopathic normal pressure hydrocephalus is a neurological disease caused by abnormal cerebrospinal fluid flow and presents with symptoms such as dementia. Current therapy involves the removal of excess cerebrospinal fluid by shunting. Not all patients respond to this therapy and biomarkers are needed that could facilitate the characterization of patients likely to benefit from this treatment. Here, we measure brain metabolism in normal pressure hydrocephalus patients by performing a novel longitudinal metabolomic profiling study of cerebrospinal fluid. We find that the levels of brain metabolites correlate with clinical parameters, the amount of vascular endothelial growth factor in the cerebrospinal fluid, and environmental stimuli such as exercise. Metabolomic analysis of normal pressure hydrocephalus patients provides insight into changes in brain metabolism that accompany cerebrospinal fluid disorders and may facilitate the development of new biomarkers for this condition.


Subject(s)
Exercise/physiology , Hydrocephalus, Normal Pressure/cerebrospinal fluid , Metabolomics/methods , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/cerebrospinal fluid , Aged , Biomarkers/cerebrospinal fluid , Female , Humans , Hydrocephalus, Normal Pressure/metabolism , Longitudinal Studies , Male , Metabolomics/trends , Treatment Outcome
16.
Nat Chem Biol ; 8(3): 232-4, 2012 Jan 22.
Article in English | MEDLINE | ID: mdl-22267119

ABSTRACT

Neuropathic pain is a debilitating condition for which the development of effective treatments has been limited by an incomplete understanding of its chemical basis. We show by using untargeted metabolomics that sphingomyelin-ceramide metabolism is altered in the dorsal horn of rats with neuropathic pain and that the upregulated, endogenous metabolite N,N-dimethylsphingosine induces mechanical hypersensitivity in vivo. These results demonstrate the utility of metabolomics to implicate unexplored biochemical pathways in disease.


Subject(s)
Chronic Pain/metabolism , Metabolomics , Neuralgia/metabolism , Sphingolipids/metabolism , Animals , Ceramides/metabolism , Chronic Disease , Rats , Rats, Sprague-Dawley
17.
Nat Med ; 13(4): 492-7, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17401376

ABSTRACT

The cannabinoid system is immunomodulatory and has been targeted as a treatment for the central nervous system (CNS) autoimmune disease multiple sclerosis. Using an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we investigated the role of the CB(1) and CB(2) cannabinoid receptors in regulating CNS autoimmunity. We found that CB(1) receptor expression by neurons, but not T cells, was required for cannabinoid-mediated EAE suppression. In contrast, CB(2) receptor expression by encephalitogenic T cells was critical for controlling inflammation associated with EAE. CB(2)-deficient T cells in the CNS during EAE exhibited reduced levels of apoptosis, a higher rate of proliferation and increased production of inflammatory cytokines, resulting in severe clinical disease. Together, our results demonstrate that the cannabinoid system within the CNS plays a critical role in regulating autoimmune inflammation, with the CNS directly suppressing T-cell effector function via the CB(2) receptor.


Subject(s)
Central Nervous System/metabolism , Encephalitis/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Neurons/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , T-Lymphocytes/metabolism , Animals , Apoptosis/immunology , Cell Proliferation , DNA Primers , Encephalitis/etiology , Encephalomyelitis, Autoimmune, Experimental/complications , Encephalomyelitis, Autoimmune, Experimental/metabolism , Immunohistochemistry , Mice , Mice, Transgenic
18.
Oncogene ; 43(3): 189-201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37996700

ABSTRACT

Ovarian cancer has poor survival outcomes particularly for advanced stage, metastatic disease. Metastasis is promoted by interactions of stromal cells, such as cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), with tumor cells. CAFs play a key role in tumor progression by remodeling the TME and extracellular matrix (ECM) to result in a more permissive environment for tumor progression. It has been shown that fibroblasts, in particular myofibroblasts, utilize metabolism to support ECM remodeling. However, the intricate mechanisms by which CAFs support collagen production and tumor progression are poorly understood. In this study, we show that the fibrillar collagen receptor, Discoidin Domain Receptor 2 (DDR2), promotes collagen production in human and mouse omental CAFs through arginase activity. CAFs with high DDR2 or arginase promote tumor colonization in the omentum. In addition, DDR2-depleted CAFs had decreased ornithine levels leading to decreased collagen production and polyamine levels compared to WT control CAFs. Tumor cell invasion was decreased in the presence CAF conditioned media (CM) depleted of DDR2 or arginase-1, and this invasion defect was rescued in the presence of CM from DDR2-depleted CAFs that constitutively overexpressed arginase-1. Similarly, the addition of exogenous polyamines to CM from DDR2-depleted CAFs led to increased tumor cell invasion. We detected SNAI1 protein at the promoter region of the arginase-1 gene, and DDR2-depleted CAFs had decreased levels of SNAI1 protein at the arginase-1 promoter region. Furthermore, high stromal arginase-1 expression correlated with poor survival in ovarian cancer patients. These findings highlight how DDR2 regulates collagen production by CAFs in the tumor microenvironment by controlling the transcription of arginase-1, and CAFs are a major source of arginase activity and L-arginine metabolites in ovarian cancer models.


Subject(s)
Cancer-Associated Fibroblasts , Discoidin Domain Receptor 2 , Ovarian Neoplasms , Animals , Female , Humans , Mice , Arginase/genetics , Cancer-Associated Fibroblasts/metabolism , Collagen/metabolism , Discoidin Domain Receptor 2/genetics , Fibroblasts/metabolism , Ovarian Neoplasms/pathology , Tumor Microenvironment
19.
Fluids Barriers CNS ; 21(1): 19, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409031

ABSTRACT

BACKGROUND: Syringomyelia (SM) is characterized by the development of fluid-filled cavities, referred to as syrinxes, within the spinal cord tissue. The molecular etiology of SM post-spinal cord injury (SCI) is not well understood and only invasive surgical based treatments are available to treat SM clinically. This study builds upon our previous omics studies and in vitro cellular investigations to further understand local fluid osmoregulation in post-traumatic SM (PTSM) to highlight important pathways for future molecular interventions. METHODS: A rat PTSM model consisting of a laminectomy at the C7 to T1 level followed by a parenchymal injection of 2 µL quisqualic acid (QA) and an injection of 5 µL kaolin in the subarachnoid space was utilized 6 weeks after initial surgery, parenchymal fluid and cerebrospinal fluid (CSF) were collected, and the osmolality of fluids were analyzed. Immunohistochemistry (IHC), metabolomics analysis using LC-MS, and mass spectrometry-based imaging (MSI) were performed on injured and laminectomy-only control spinal cords. RESULTS: We demonstrated that the osmolality of the local parenchymal fluid encompassing syrinxes was higher compared to control spinal cords after laminectomy, indicating a local osmotic imbalance due to SM injury. Moreover, we also found that parenchymal fluid is more hypertonic than CSF, indicating establishment of a local osmotic gradient in the PTSM injured spinal cord (syrinx site) forcing fluid into the spinal cord parenchyma to form and/or expand syrinxes. IHC results demonstrated upregulation of betaine, ions, water channels/transporters, and enzymes (BGT1, AQP1, AQP4, CHDH) at the syrinx site as compared to caudal and rostral sites to the injury, implying extensive local osmoregulation activities at the syrinx site. Further, metabolomics analysis corroborated alterations in osmolality at the syrinx site by upregulation of small molecule osmolytes including betaine, carnitine, glycerophosphocholine, arginine, creatine, guanidinoacetate, and spermidine. CONCLUSIONS: In summary, PTSM results in local osmotic disturbance that propagates at 6 weeks following initial injury. This coincides with and may contribute to syrinx formation/expansion.


Subject(s)
Spinal Cord Injuries , Syringomyelia , Rats , Animals , Syringomyelia/etiology , Osmoregulation , Betaine , Rats, Sprague-Dawley , Spinal Cord Injuries/complications , Spinal Cord Injuries/metabolism , Magnetic Resonance Imaging
20.
Biomater Sci ; 12(13): 3458-3470, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38836321

ABSTRACT

Current treatment strategies for infection of chronic wounds often result in compromised healing and necrosis due to antibiotic toxicity, and underlying biomarkers affected by treatments are not fully known. Here, a multifunctional dressing was developed leveraging the unique wound-healing properties of chitosan, a natural polysaccharide known for its numerous benefits in wound care. The dressing consists of an oxygenating perfluorocarbon functionalized methacrylic chitosan (MACF) hydrogel incorporated with antibacterial polyhexamethylene biguanide (PHMB). A non-healing diabetic infected wound model with emerging metabolomics tools was used to explore the anti-infective and wound healing properties of the resultant multifunctional dressing. Direct bacterial bioburden assessment demonstrated superior antibacterial properties of hydrogels over a commercial dressing. However, wound tissue quality analyses confirmed that sustained PHMB for 21 days resulted in tissue necrosis and disturbed healing. Therefore, a follow-up comparative study investigated the best treatment course for antiseptic application ranging from 7 to 21 days, followed by the oxygenating chitosan-based MACF treatment for the remainder of the 21 days. Bacterial counts, tissue assessments, and lipidomics studies showed that 14 days of application of MACF-PHMB dressings followed by 7 days of MACF dressings provides a promising treatment for managing infected non-healing diabetic skin ulcers.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Hydrogels , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/administration & dosage , Wound Healing/drug effects , Animals , Biguanides/chemistry , Biguanides/pharmacology , Biguanides/administration & dosage , Wound Infection/drug therapy , Wound Infection/microbiology , Male , Oxygen/chemistry , Chronic Disease , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Fluorocarbons/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL