Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Publication year range
1.
Mol Ecol ; 32(10): 2413-2427, 2023 05.
Article in English | MEDLINE | ID: mdl-35892285

ABSTRACT

Understanding microbial dispersal is critical to understand the dynamics and evolution of microbial communities. However, microbial dispersal is difficult to study because of uncertainty about their vectors of migration. This applies to both microbial communities in natural and human-associated environments. Here, we studied microbial dispersal along the sourdoughs bread-making chain using a participatory research approach. Sourdough is a naturally fermented mixture of flour and water. It hosts a community of bacteria and yeasts whose origins are only partially known. We analysed the potential of wheat grains and flour to serve as an inoculum for sourdough microbial communities using 16S rDNA and ITS1 metabarcoding. First, in an experiment involving farmers, a miller and bakers, we followed the microbiota from grains to newly initiated and propagated sourdoughs. Second, we compared the microbiota of 46 sourdough samples collected everywhere in France, and of the flour used for their back-slopping. The core microbiota detected on the seeds, in the flour and in the sourdough was composed mainly of microbes known to be associated with plants and not living in sourdoughs. No sourdough yeast species were detected on grains and flours. Sourdough lactic acid bacteria were rarely found in flour. When they were, they did not have the same amplicon sequence variant (ASV) as found in the corresponding sourdough. However, the low sequencing depth for bacteria in flour did not allow us to draw definitive conclusion. Thus, our results showed that sourdough yeasts did not come from flour, and suggest that neither do sourdough LAB.


Subject(s)
Microbiota , Triticum , Humans , Triticum/microbiology , Community-Based Participatory Research , Fermentation , Food Microbiology , Microbiota/genetics , Bacteria/genetics , Yeasts/genetics , Bread/analysis , Bread/microbiology
2.
J Dairy Sci ; 106(2): 868-883, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36543637

ABSTRACT

Labneh Ambaris is a traditional Lebanese dairy product typically made using goat milk in special earthenware jars. Its production is characterized by the regular additions of milk and coarse salt, all while draining the whey throughout a process that lasts for a minimum of 2 mo. In this study, 20 samples of labneh Ambaris, all produced by spontaneous fermentation, were studied. They were collected at the end of fermentation from different regions in Lebanon. Physicochemical and sensory properties were studied and microbial diversity was analyzed using culture-dependent and independent techniques. The V3-V4 region of the 16S rRNA gene and the ITS2 region were sequenced by DNA metabarcoding analyses for the identification of bacteria and yeast communities, respectively. Out of 160 bacterial and 36 fungal taxa, 117 different bacterial species and 24 fungal species were identified among all labneh Ambaris samples studied. The remaining ones were multi-affiliated and could not be identified at the species level. Lactobacillus was the dominant bacterial genus, followed by Lentilactobacillus, Lactiplantibacillus, Lacticaseibacillus, and Lactococcus genera, whereas Geotrichum and Pichia were the dominant fungal genera. The 20 samples tested had varying levels of salt, protein, and fat contents, but they were all highly acidic (mostly having a pH < 4). According to the sensory scores generated by classical descriptive analysis, all samples were described as having basic similar characteristics such as goat smell and flavor, but they could be differentiated based on various intensities within the same descriptors like salty and acidic. This work could be considered as a base toward obtaining a quality label for labneh Ambaris.


Subject(s)
Microbiota , Milk , Animals , Milk/chemistry , RNA, Ribosomal, 16S/genetics , Bacteria , Goats/genetics , Fermentation
3.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850434

ABSTRACT

The mechanical properties of biological tissues influence their function and can predict degenerative conditions before gross histological or physiological changes are detectable. This is especially true for structural tissues such as articular cartilage, which has a primarily mechanical function that declines after injury and in the early stages of osteoarthritis. While atomic force microscopy (AFM) has been used to test the elastic modulus of articular cartilage before, there is no agreement or consistency in methodologies reported. For murine articular cartilage, methods differ in two major ways: experimental parameter selection and sample preparation. Experimental parameters that affect AFM results include indentation force and cantilever stiffness; these are dependent on the tip, sample, and instrument used. The aim of this project was to optimize these experimental parameters to measure murine articular cartilage elastic modulus by AFM micro-indentation. We first investigated the effects of experimental parameters on a control material, polydimethylsiloxane gel (PDMS), which has an elastic modulus on the same order of magnitude as articular cartilage. Experimental parameters were narrowed on this control material, and then finalized on wildtype C57BL/6J murine articular cartilage samples that were prepared with a novel technique that allows for cryosectioning of epiphyseal segments of articular cartilage and long bones without decalcification. This technique facilitates precise localization of AFM measurements on the murine articular cartilage matrix and eliminates the need to separate cartilage from underlying bone tissues, which can be challenging in murine bones because of their small size. Together, the new sample preparation method and optimized experimental parameters provide a reliable standard operating procedure to measure microscale variations in the elastic modulus of murine articular cartilage.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Mice , Elastic Modulus , Microscopy, Atomic Force , Bone and Bones
4.
Am J Physiol Gastrointest Liver Physiol ; 322(2): G234-G246, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34941452

ABSTRACT

The fibrogenic wound-healing response in liver increases stiffness. Stiffness mechanotransduction, in turn, amplifies fibrogenesis. Here, we aimed to understand the distribution of stiffness in fibrotic liver, how it impacts hepatic stellate cell (HSC) heterogeneity, and identify mechanisms by which stiffness amplifies fibrogenic responses. Magnetic resonance elastography and atomic force microscopy demonstrated a heterogeneous distribution of liver stiffness at macroscopic and microscopic levels, respectively, in a carbon tetrachloride (CCl4) mouse model of liver fibrosis as compared with controls. High stiffness was mainly attributed to extracellular matrix dense areas. To identify a stiffness-sensitive HSC subpopulation, we performed single-cell RNA sequencing (scRNA-seq) on primary HSCs derived from healthy versus CCl4-treated mice. A subcluster of HSCs was matrix-associated with the most upregulated pathway in this subpopulation being focal adhesion signaling, including a specific protein termed four and a half LIM domains protein 2 (FHL2). In vitro, FHL2 expression was increased in primary human HSCs cultured on stiff matrix as compared with HSCs on soft matrix. Moreover, FHL2 knockdown inhibited fibronectin and collagen 1 expression, whereas its overexpression promoted matrix production. In summary, we demonstrate stiffness heterogeneity at the whole organ, lobular, and cellular level, which drives an amplification loop of fibrogenesis through specific focal adhesion molecular pathways.NEW & NOTEWORTHY The fibrogenic wound-healing response in liver increases stiffness. Here, macro and microheterogeneity of liver stiffness correlate with HSC heterogeneity in a hepatic fibrosis mouse model. Fibrogenic HSCs localized in stiff collagen-high areas upregulate the expression of focal adhesion molecule FHL2, which, in turn, promotes extracellular matrix protein expression. These results demonstrate that stiffness heterogeneity at the whole organ, lobular, and cellular level drives an amplification loop of fibrogenesis through specific focal adhesion molecular pathways.


Subject(s)
Hepatic Stellate Cells/metabolism , Kupffer Cells/metabolism , Liver Cirrhosis/metabolism , Liver/metabolism , Animals , Carbon Tetrachloride/metabolism , Cells, Cultured , Disease Models, Animal , Humans , Mechanotransduction, Cellular/physiology , Mice
5.
J Cell Sci ; 133(23)2020 12 11.
Article in English | MEDLINE | ID: mdl-33172983

ABSTRACT

Matrix resorption is essential to the clearance of the extracellular matrix (ECM) after normal wound healing. A disruption in these processes constitutes a main component of fibrotic diseases, characterized by excess deposition and diminished clearance of fibrillar ECM proteins, such as collagen type I. The mechanisms and stimuli regulating ECM resorption in the lung remain poorly understood. Recently, agonism of dopamine receptor D1 (DRD1), which is predominantly expressed on fibroblasts in the lung, has been shown to accelerate tissue repair and clearance of ECM following bleomycin injury in mice. Therefore, we investigated whether DRD1 receptor signaling promotes the degradation of collagen type I by lung fibroblasts. For cultured fibroblasts, we found that DRD1 agonism enhances extracellular cleavage, internalization and lysosomal degradation of collagen I mediated by cathepsin K, which results in reduced stiffness of cell-derived matrices, as measured by atomic force microscopy. In vivo agonism of DRD1 similarly enhanced fibrillar collagen degradation by fibroblasts, as assessed by tissue labeling with a collagen-hybridizing peptide. Together, these results implicate DRD1 agonism in fibroblast-mediated collagen clearance, suggesting an important role for this mechanism in fibrosis resolution.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Collagen Type I , Fibroblasts , Animals , Cathepsin K/genetics , Cells, Cultured , Collagen , Collagen Type I/genetics , Extracellular Matrix , Lung , Mice , Receptors, Dopamine D1/genetics
6.
Food Microbiol ; 94: 103666, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33279089

ABSTRACT

This work was performed to investigate on the yeast ecology of durum wheat to evaluate the interaction between kernel yeasts and the commercial baker's yeast Saccharomyces cerevisiae during dough leavening. Yeast populations were studied in 39 genotypes of durum wheat cultivated in Sicily. The highest level of kernel yeasts was 2.9 Log CFU/g. A total of 413 isolates was collected and subjected to phenotypic and genotypic characterization. Twenty-three yeast species belonging to 11 genera have been identified. Filobasidium oeirense, Sporobolomyces roseus and Aureobasidium pullulans were the species most commonly found in durum wheat kernels. Doughs were co-inoculated with yeasts isolated from wheat kernels and commercial Saccharomyces cerevisiae, in order to evaluate the interactions between yeasts and the leavening performance. Yeast populations of all doughs have been monitored as well as dough volume increase and weight loss (as CO2) measured after 2 h of fermentation. The doughs whose final volume was higher than control dough (inoculated exclusively with S. cerevisiae) were those inoculated with Naganishia albida, Vishniacozyma dimennae (118 mL each), and Candida parapsilosis (102 mL). The weight losses were variable, depending on the co-culture used with S. cerevisiae and the values were in the range of 0.08-1.00 g CO2/100 g. The kernel yeasts species C. parapsilosis, N. albida, P. terrestris, R. mucilaginosa and V. dimennae deserves future attention to be co-inoculated with the commercial starter S. cerevisiae in order to improve the sensory characteristics of bread.


Subject(s)
Bread/microbiology , Saccharomyces cerevisiae/metabolism , Triticum/microbiology , Yeasts/metabolism , Bread/analysis , Coculture Techniques , Fermentation , Flour/analysis , Flour/microbiology , Food Handling , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Seeds/microbiology , Taste , Triticum/genetics , Yeasts/classification , Yeasts/genetics , Yeasts/growth & development
7.
Food Microbiol ; 98: 103790, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33875218

ABSTRACT

The metabolism of ferulic acid (FA) was studied during fermentation with different species and strains of lactic acid bacteria (LAB) and yeasts, in synthetic sourdough medium. Yeast strains of Kazachstania humilis, Kazachstania bulderi, and Saccharomyces cerevisiae, as well as lactic acid bacteria strains of Fructilactobacillus sanfranciscensis, Lactiplantibacillus plantarum, Lactiplantibacillus xiangfangensis, Levilactobacillus hammesii, Latilactobacillus curvatus and Latilactobacillus sakei were selected from French natural sourdoughs. Fermentation in presence or absence of FA was carried out in LAB and yeasts monocultures, as well as in LAB/yeast co-cultures. Our results indicated that FA was mainly metabolized into 4-vinylguaiacol (4-VG) by S. cerevisiae strains, and into dihydroferulic acid (DHFA) and 4-VG in the case of LAB. Interactions of LAB and yeasts led to the modification of FA metabolism, with a major formation of DHFA, even by the strains that do not produce it in monoculture. Interestingly, FA was almost completely consumed by the F. sanfranciscensis bFs17 and K. humilis yKh17 pair and converted into DHFA in 89.5 ± 19.6% yield, while neither bFs17, nor yKh17 strains assimilated FA in monoculture.


Subject(s)
Bread/analysis , Coumaric Acids/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales/metabolism , Triticum/microbiology , Bread/microbiology , Coumaric Acids/analysis , Fermentation , Flour/analysis , Flour/microbiology , Food Microbiology , Saccharomycetales/chemistry , Triticum/metabolism
8.
Am J Respir Cell Mol Biol ; 61(5): 607-619, 2019 11.
Article in English | MEDLINE | ID: mdl-31050552

ABSTRACT

Reciprocal epithelial-mesenchymal interactions are pivotal in lung development, homeostasis, injury, and repair. Organoids have been used to investigate such interactions, but with a major focus on epithelial responses to mesenchyme and less attention to epithelial effects on mesenchyme. In the present study, we used nascent organoids composed of human and mouse lung epithelial and mesenchymal cells to demonstrate that healthy lung epithelium dramatically represses transcriptional, contractile, and matrix synthetic functions of lung fibroblasts. Repression of fibroblast activation requires signaling via the bone morphogenetic protein (BMP) pathway. BMP signaling is diminished after epithelial injury in vitro and in vivo, and exogenous BMP4 restores fibroblast repression in injured organoids. In contrast, inhibition of BMP signaling in healthy organoids is sufficient to derepress fibroblast matrix synthetic function. Our results reveal potent repression of fibroblast activation by healthy lung epithelium and a novel mechanism by which epithelial loss or injury is intrinsically coupled to mesenchymal activation via loss of repressive BMP signaling.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Epithelium/metabolism , Fibroblasts/metabolism , Lung/metabolism , Animals , Cell Proliferation/physiology , Epithelial Cells/metabolism , Gene Expression Regulation/physiology , Humans , Mesoderm/metabolism , Mice , Transcription Factors/metabolism
9.
Gastroenterology ; 154(8): 2209-2221.e14, 2018 06.
Article in English | MEDLINE | ID: mdl-29454793

ABSTRACT

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) contribute to desmoplasia and stiffness of liver metastases by differentiating into matrix-producing myofibroblasts. We investigated whether stiffness due to the presence of tumors increases activation of HSCs into myofibroblasts and their tumor-promoting effects, as well as the role of E1A binding protein p300, a histone acetyltransferase that regulates transcription, in these processes. METHODS: HSCs were isolated from liver tissues of patients, mice in which the p300 gene was flanked by 2 loxP sites (p300F/F mice), and p300+/+ mice (controls). The HSCs were placed on polyacrylamide gels with precisely defined stiffness, and their activation (differentiation into myofibroblasts) was assessed by immunofluorescence and immunoblot analyses for alpha-smooth muscle actin. In HSCs from mice, the p300 gene was disrupted by cre recombinase. In human HSCs, levels of p300 were knocked down with small hairpin RNAs or a mutant form of p300 that is not phosphorylated by AKT (p300S1834A) was overexpressed. Human HSCs were also cultured with inhibitors of p300 (C646), PI3K signaling to AKT (LY294002), or RHOA (C3 transferase) and effects on stiffness-induced activation were measured. RNA sequencing and chromatin immunoprecipitation-quantitative polymerase chain reaction were used to identify HSC genes that changed expression levels in response to stiffness. We measured effects of HSC-conditioned media on proliferation of HT29 colon cancer cells and growth of tumors following subcutaneous injection of these cells into mice. MC38 colon cancer cells were injected into portal veins of p300F/Fcre and control mice, and liver metastases were measured. p300F/Fcre and control mice were given intraperitoneal injections of CCl4 to induce liver fibrosis. Liver tissues were collected and analyzed by immunofluorescence, immunoblot, and histology. RESULTS: Substrate stiffness was sufficient to activate HSCs, leading to nuclear accumulation of p300. Disrupting p300 level or activity blocked stiffness-induced activation of HSCs. In HSCs, substrate stiffness activated AKT signaling via RHOA to induce phosphorylation of p300 at serine 1834; this caused p300 to translocate to the nucleus, where it up-regulated transcription of genes that increase activation of HSCs and metastasis, including CXCL12. MC38 cells, injected into portal veins, formed fewer metastases in livers of p300F/Fcre mice than control mice. Expression of p300 was increased in livers of mice following injection of CCl4; HSC activation and collagen deposition were reduced in livers of p300F/Fcre mice compared with control mice. CONCLUSIONS: In studies of mice, we found liver stiffness to activate HSC differentiation into myofibroblasts, which required nuclear accumulation of p300. p300 increases HSC expression of genes that promote metastasis.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/metabolism , E1A-Associated p300 Protein/metabolism , Hepatic Stellate Cells/pathology , Liver Neoplasms/pathology , Myofibroblasts/pathology , Animals , Benzoates/pharmacology , Carbon Tetrachloride/toxicity , Cell Nucleus/metabolism , Cell Transdifferentiation , E1A-Associated p300 Protein/genetics , Gene Expression Profiling , Gene Knockdown Techniques , HT29 Cells , Hepatic Stellate Cells/metabolism , Humans , Liver/cytology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Mice , Mice, Knockout , Mice, SCID , Myofibroblasts/metabolism , Nitrobenzenes , Phosphorylation , Primary Cell Culture , Pyrazoles/pharmacology , Pyrazolones , RNA, Small Interfering/antagonists & inhibitors , RNA, Small Interfering/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , rhoA GTP-Binding Protein/metabolism
10.
Soft Matter ; 15(36): 7211-7218, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31475271

ABSTRACT

Pseudomonas aeruginosa is a human opportunistic pathogen responsible for lung infections in cystic fibrosis patients. The emergence of resistant strains and its ability to form a biofilm seem to give a selective advantage to the bacterium and thus new therapeutic approaches are needed. To infect the lung, the bacterium uses several virulence factors, like LecA lectins. These proteins are involved in bacterial adhesion due to their specific interaction with carbohydrates of the host epithelial cells. The tetrameric LecA lectin specifically binds galactose residues. A new therapeutic approach is based on the development of highly affine synthetic glycoclusters able to selectively link with LecA to interfere with the natural carbohydrate-LecA interaction. In this study, we combined atomic force microscopy imaging and molecular dynamics simulations to visualize and understand the arrangements formed by LecA and five different glycoclusters. Our glycoclusters are small scaffolds characterized by a core and four branches, which terminate in a galactose residue. Depending on the nature of the core and the branches, the glycocluster-lectin interaction can be modulated and the affinity increased. We show that glycocluster-LecA arrangements highly depend on the glycocluster architecture: the core influences the rigidity of the geometry and the directionality of the branches, whereas the nature of the branch determines the compactness of the structure and the ease of binding.


Subject(s)
Carbohydrates/chemistry , Lectins/chemistry , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Bacterial Adhesion/drug effects , Computer Simulation , Epithelial Cells/drug effects , Humans , Models, Molecular , Monte Carlo Method , Protein Binding/drug effects , Protein Conformation , Protein Multimerization , Pseudomonas aeruginosa , Thermodynamics
11.
Am J Physiol Lung Cell Mol Physiol ; 314(6): L946-L955, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29469613

ABSTRACT

Lung function is inherently mechanical in nature and depends on the capacity to conduct air and blood to and from the gas exchange regions. Variations in the elastic properties of the human lung across anatomical compartments and with aging are likely important determinants of lung function but remain relatively poorly characterized. Here we applied atomic force microscopy microindentation to characterize human lung tissue from subjects ranging in age from 11 to 60 yr old. We observed striking anatomical variations in elastic modulus, with the airways (200- to 350-µm diameter) the stiffest and the parenchymal regions the most compliant. Vessels (diameter < 100 µm) represented an intermediate mechanical environment and displayed diameter-dependent trends in elastic modulus. Binning our samples into younger (11-30 yr old) and older (41-60 yr old) groups, we observed significant age-related increases in stiffness in parenchymal and vessel compartments, with the most pronounced changes in the vessels. To investigate cellular mechanisms that might contribute to vascular stiffening with aging, we studied primary human pulmonary artery smooth muscle cells from subjects ranging in age from 11 to 60 yr old. While we observed no change in the mechanical properties of the cells themselves, we did observe trends toward increases in traction forces and extracellular matrix deposition with aging. These results demonstrate age-related changes in tissue mechanical properties that likely contribute to impaired lung function with aging and underscore the potential to identify mechanisms that contribute to mechanical tissue remodeling through the study of human cells and tissues from across the aging spectrum.


Subject(s)
Aging/metabolism , Airway Remodeling , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Lung/metabolism , Lung/ultrastructure , Adolescent , Adult , Child , Elastic Modulus , Female , Humans , Male , Microscopy, Atomic Force , Middle Aged
12.
Proc Biol Sci ; 285(1876)2018 04 11.
Article in English | MEDLINE | ID: mdl-29643216

ABSTRACT

Batch cultures are frequently used in experimental evolution to study the dynamics of adaptation. Although they are generally considered to simply drive a growth rate increase, other fitness components can also be selected for. Indeed, recurrent batches form a seasonal environment where different phases repeat periodically and different traits can be under selection in the different seasons. Moreover, the system being closed, organisms may have a strong impact on the environment. Thus, the study of adaptation should take into account the environment and eco-evolutionary feedbacks. Using data from an experimental evolution on yeast Saccharomyces cerevisiae, we developed a mathematical model to understand which traits are under selection, and what is the impact of the environment for selection in a batch culture. We showed that two kinds of traits are under selection in seasonal environments: life-history traits, related to growth and mortality, but also transition traits, related to the ability to react to environmental changes. The impact of environmental conditions can be summarized by the length of the different seasons which weight selection on each trait: the longer a season is, the higher the selection on associated traits. Since phenotypes drive season length, eco-evolutionary feedbacks emerge. Our results show how evolution in successive batches can affect season lengths and strength of selection on different traits.


Subject(s)
Adaptation, Physiological , Biological Evolution , Ecosystem , Batch Cell Culture Techniques , Ethanol/metabolism , Ethanol/toxicity , Models, Theoretical , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Seasons , Selection, Genetic
13.
Yeast ; 35(11): 591-603, 2018 11.
Article in English | MEDLINE | ID: mdl-30070036

ABSTRACT

Yeasts have been involved in bread making since ancient times and have thus played an important role in the history and nutrition of humans. Bakery-associated yeasts have only recently attracted the attention of researchers outside of the bread industry. More than 30 yeast species are involved in bread making, and significant progress has been achieved in describing these species. Here, we present a review of bread-making processes and history, and we describe the diversity of yeast species and the genetic diversity of Saccharomyces cerevisiae isolated from bakeries. We then describe the metabolic functioning and diversity of these yeasts and their relevance to improvements in bread quality. Finally, we examine yeast and bacterial interactions in sourdoughs. The purpose of this review is to show that bakery yeast species are interesting models for studying domestication and other evolutionary and ecological processes. Studying these yeasts can contribute much to our fundamental understanding of speciation, evolutionary dynamics, and community assembly, and this knowledge could ultimately be used to adjust, modify, and improve the production of bread and the conservation of microbial diversity.


Subject(s)
Bread/microbiology , Genetic Variation , Saccharomyces cerevisiae/genetics , Biodiversity , Bread/history , Evolution, Molecular , Fermentation , History, 19th Century , History, Ancient , History, Medieval , Phylogeny
14.
Am J Physiol Cell Physiol ; 312(3): C277-C285, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27881410

ABSTRACT

Recent studies have implicated the Hippo pathway and its transcriptional effectors YAP and TAZ as necessary for fibroblast activation and tissue fibrosis. To test the specific and sufficient roles for TAZ in driving autonomous fibroblast activation, we cultured NIH3T3 fibroblasts expressing a doxycycline-inducible nuclear-localized mutant of TAZ (TAZ4SA) in scaffold-free 3D hanging drop spheroids, or on matrices of specified mechanical rigidity. Control NIH3T3 fibroblasts formed spheroids in hanging drop culture that remained stable and neither increased nor decreased in size significantly over 15 days. In contrast, TAZ4SA-transduced fibroblasts grew robustly in spheroid culture, and expressed enhanced levels of genes encoding profibrotic soluble factors connective tissue growth factor (CTGF), endothelin-1 (Et-1), and plasminogen activator inhibitor 1 (PAI-1). However, TAZ4SA expression was unable to enhance expression of extracellular matrix (ECM)-encoding genes Col1a1, Col1a2, Col3a1, or Fn1 in spheroid culture. Micromechanical testing indicated that spheroids composed of either control or TAZ4SA-expressing cells were highly compliant and indistinguishable in mechanical properties. In fibroblasts cultured on 2D matrices of compliance similar to spheroids, TAZ4SA expression was able to enhance contractile force generation, but was unable to enhance ECM gene expression. In contrast, culture on stiff hydrogels potentiated TAZ4SA enhancement of ECM expression. TAZ4SA enhancement of Col1a1 expression on soft matrices was potentiated by TGF-ß1, while on stiff matrices it was abrogated by inhibition of myocardin-related transcription factor, demonstrating context-dependent crosstalk of TAZ with these pathways. These findings demonstrate sufficiency of TAZ activation for driving fibroblast proliferation, contraction, and soluble profibrotic factor expression, and mechanical context-dependent crosstalk of TAZ with other pathways in regulating Col1a1 expression.


Subject(s)
Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Paracrine Communication , Spheroids, Cellular/metabolism , Transcription Factors/metabolism , Acyltransferases , Animals , Cell Proliferation , Cells, Cultured , Fibroblasts/pathology , Fibrosis , Mice , NIH 3T3 Cells , Spheroids, Cellular/pathology , Transcriptional Activation
15.
Mol Cell Proteomics ; 14(8): 2056-71, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25971257

ABSTRACT

Heterosis is a universal phenomenon that has major implications in evolution and is of tremendous agro-economic value. To study the molecular manifestations of heterosis and to find factors that maximize its strength, we implemented a large-scale proteomic experiment in yeast. We analyzed the inheritance of 1,396 proteins in 55 inter- and intraspecific hybrids obtained from Saccharomyces cerevisiae and S. uvarum that were grown in grape juice at two temperatures. We showed that the proportion of heterotic proteins was highly variable depending on the parental strain and on the temperature considered. For intraspecific hybrids, this proportion was higher at nonoptimal temperature. Unexpectedly, heterosis for protein abundance was strongly biased toward positive values in interspecific hybrids but not in intraspecific hybrids. Computer modeling showed that this observation could be accounted for by assuming concave relationships between protein abundances and their controlling factors, in line with the metabolic model of heterosis. These results point to nonlinear processes that could play a central role in heterosis.


Subject(s)
Hybrid Vigor , Proteomics/methods , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromatography, Liquid , Computer Simulation , Gene Expression Regulation, Plant , Hybridization, Genetic , Nonlinear Dynamics , Principal Component Analysis , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Species Specificity , Tandem Mass Spectrometry , Temperature , Transcription Factors/metabolism
16.
FEMS Yeast Res ; 16(2): fov112, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26684721

ABSTRACT

The Nakaseomyces clade consists of a group of six hemiascomyceteous yeasts (Candida glabrata, Nakaseomyces delphensis, C. nivarensis, C. bracarensis, C. castelli, N. bacillisporus), phylogenetically close to the yeast Saccharomyces cerevisiae, their representative being the well-known pathogenic yeast C. glabrata. Four species had been previously examined for their carbon assimilation properties and found to have similar properties to S. cerevisiae (repression of respiration in high glucose-i.e. Crabtree positivity-and being a facultative anaerobe). We examined here the complete set of the six species for their carbon metabolic gene content. We also measured different metabolic and life-history traits (glucose consumption rate, population growth rate, carrying capacity, cell size, cell and biomass yield). We observed deviations from the glycolytic gene redundancy observed in S. cerevisiae presumed to be an important property for the Crabtree positivity, especially for the two species C. castelli and N. bacillisporus which frequently have only one gene copy, but different life strategies. Therefore, we show that the decrease in carbon metabolic gene copy cannot be simply associated with a reduction of glucose consumption rate and can be counterbalanced by other beneficial genetic variations.


Subject(s)
Carbon/metabolism , Gene Dosage , Metabolic Networks and Pathways/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism , Aerobiosis , Anaerobiosis , Biomass , Fermentation , Glucose/metabolism , Glycolysis , Oxidative Phosphorylation , Saccharomycetales/growth & development
17.
Int J Syst Evol Microbiol ; 66(12): 5192-5200, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27902197

ABSTRACT

Five ascosporogenous yeast strains related to the genus Kazachstania were isolated. Two strains (CLIB 1764T and CLIB 1780) were isolated from French sourdoughs; three others (UFMG-CM-Y273T, UFMG-CM-Y451 and UFMG-CM-Y452) were from rotting wood in Brazil. The sequences of the French and Brazilian strains differed by one and three substitutions, respectively, in the D1/D2 large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS). The D1/D2 LSU rRNA sequence of these strains differed by 0.5 and 0.7 % from Kazachstania exigua, but their ITS sequences diverged by 8.1 and 8.3 %, respectively, from that of the closest described species Kazachstania barnettii. Analysis of protein coding sequences of RPB1, RPB2 and EF-1α distinguished the French from the Brazilian strains, with respectively 3.3, 6 and 11.7 % substitutions. Two novel species are described to accommodate these newly isolated strains: Kazachstania saulgeensis sp. nov. (type strain CLIB 1764T=CBS 14374T) and Kazachstania serrabonitensis sp. nov. (type strain UFMG-CM-Y273T=CLIB 1783T=CBS 14236T). Further analysis of culture collections revealed a strain previously assigned to the K. exigua species, but having 3.8 % difference (22 substitutions and 2 indels) in its ITS with respect to K. exigua. Hence, we describe a new taxon, Kazachstania australis sp. nov. (type strain CLIB 162T=CBS 2141T), to accommodate this strain. Finally, Candida humilis and Candida pseudohumilis are reassigned to the genus Kazachstania as new combinations. On the basis of sequence analysis, we also propose that Candida milleri and Kazachstania humilis comb. nov. are conspecific.


Subject(s)
Phylogeny , Saccharomycetales/classification , Brazil , Bread/microbiology , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , France , Genes, Fungal , Mycological Typing Techniques , Peptide Elongation Factor 1/genetics , RNA Polymerase II/genetics , RNA, Ribosomal/genetics , Saccharomycetales/genetics , Saccharomycetales/isolation & purification , Sequence Analysis, DNA , Wood/microbiology
18.
Food Microbiol ; 53(Pt A): 41-50, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26611168

ABSTRACT

Natural sourdoughs are commonly used in bread-making processes, especially for organic bread. Despite its role in bread flavor and dough rise, the stability of the sourdough microbial community during and between bread-making processes is debated. We investigated the dynamics of lactic acid bacteria (LAB) and yeast communities in traditional organic sourdoughs of five French bakeries during the bread-making process and several months apart using classical and molecular microbiology techniques. Sourdoughs were sampled at four steps of the bread-making process with repetition. The analysis of microbial density over 68 sourdough/dough samples revealed that both LAB and yeast counts changed along the bread-making process and between bread-making runs. The species composition was less variable. A total of six LAB and nine yeast species was identified from 520 and 1675 isolates, respectively. The dominant LAB species was Lactobacillus sanfranciscensis, found for all bakeries and each bread-making run. The dominant yeast species changed only once between bread-making processes but differed between bakeries. They mostly belonged to the Kazachstania clade. Overall, this study highlights the change of population density within the bread-making process and between bread-making runs and the relative stability of the sourdough species community during bread-making process.


Subject(s)
Bread/microbiology , Food Microbiology , Lactobacillus/metabolism , Microbial Consortia/physiology , Yeasts/metabolism , Colony Count, Microbial , Fermentation , Food, Organic/microbiology , Lactobacillus/classification , Lactobacillus/genetics , Lactobacillus/isolation & purification , RNA, Ribosomal, 16S/genetics , Triticum/microbiology , Yeasts/classification , Yeasts/genetics , Yeasts/isolation & purification
19.
Am J Physiol Lung Cell Mol Physiol ; 308(11): L1125-35, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25724668

ABSTRACT

Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-ß1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs.


Subject(s)
Cell Proliferation , Myocytes, Smooth Muscle/physiology , Actin Cytoskeleton/metabolism , Airway Resistance , Animals , Cell Adhesion , Cells, Cultured , Culture Media , Elastic Modulus , Humans , Integrin beta1/metabolism , Lung/physiology , Lung/ultrastructure , Mice, Inbred C57BL , Myocytes, Smooth Muscle/ultrastructure , Vascular Endothelial Growth Factor A/metabolism
20.
Mol Cell Proteomics ; 12(3): 720-35, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23271801

ABSTRACT

Enzymes can be post-translationally modified, leading to isoforms with different properties. The phenotypic consequences of the quantitative variability of isoforms have never been studied. We used quantitative proteomics to dissect the relationships between the abundances of the enzymes and isoforms of alcoholic fermentation, metabolic traits, and growth-related traits in Saccharomyces cerevisiae. Although the enzymatic pool allocated to the fermentation proteome was constant over the culture media and the strains considered, there was variation in abundance of individual enzymes and sometimes much more of their isoforms, which suggests the existence of selective constraints on total protein abundance and trade-offs between isoforms. Variations in abundance of some isoforms were significantly associated to metabolic traits and growth-related traits. In particular, cell size and maximum population size were highly correlated to the degree of N-terminal acetylation of the alcohol dehydrogenase. The fermentation proteome was found to be shaped by human selection, through the differential targeting of a few isoforms for each food-processing origin of strains. These results highlight the importance of post-translational modifications in the diversity of metabolic and life-history traits.


Subject(s)
Genetic Variation , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Fermentation , Food Microbiology/methods , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mass Spectrometry/methods , Metabolic Networks and Pathways , Molecular Sequence Data , Phenotype , Phylogeny , Proteome/classification , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL