Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Mol Biol Rep ; 49(1): 761-772, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34773178

ABSTRACT

Cereals are important crops and are exposed to various types of environmental stresses that affect the overall growth and yield. Among the various abiotic stresses, salt stress is a major environmental factor that influences the genetic, physiological, and biochemical responses of cereal crops. Epigenetic regulation which includes DNA methylation, histone modification, and chromatin remodelling plays an important role in salt stress tolerance. Recent studies in rice genomics have highlighted that the epigenetic changes are heritable and therefore can be considered as molecular signatures. An epigenetic mechanism under salinity induces phenotypic responses involving modulations in gene expression. Association between histone modification and altered DNA methylation patterns and differential gene expression has been evidenced for salt sensitivity in rice and other cereal crops. In addition, epigenetics also creates stress memory that helps the plant to better combat future stress exposure. In the present review, we have discussed epigenetic influences in stress tolerance, adaptation, and evolution processes. Understanding the epigenetic regulation of salinity could help for designing salt-tolerant varieties leading to improved crop productivity.


Subject(s)
Edible Grain/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , Oryza/genetics , Salinity , Salt Tolerance/genetics , Chromatin Assembly and Disassembly/genetics , DNA Methylation/genetics , Histone Code/genetics , Phenotype
2.
J Exp Bot ; 72(4): 1411-1431, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33130892

ABSTRACT

Abscisic acid (ABA) is a key regulator of plant development and stress tolerance. Here we report functional validation of the ABA receptor OsPYL6 by constitutive and stress-inducible overexpression and RNAi silencing, in an indica rice cultivar 'Pusa Sugandh 2'. Overexpression of OsPYL6 conferred ABA hypersensitivity during germination and promoted total root length. Overexpression and RNAi silencing of OsPYL6 resulted in enhanced accumulation of ABA in seedlings under non-stress conditions, at least, in part through up-regulation of different 9-cis epoxycarotenoid dioxygenase (NCED )genes. This suggests that PYL6 expression is crucial for ABA homeostasis. Analysis of drought tolerance of OsPYL6 transgenic and wild type plants showed that OsPYL6 overexpression enhanced the expression of stress-responsive genes and dehydration tolerance. Transgenic rice plants overexpressing OsPYL6 with AtRD29A (Arabidopsis thaliana Responsive to Dehydration 29A) promoter also exhibited about 25% less whole plant transpiration, compared with wild type plants under drought, confirming its role in activation of dehydration avoidance mechanisms. However, overexpression of PYL6 reduced grain yield under non-stress conditions due to reduction in height, biomass, panicle branching and spikelet fertility. RNAi silencing of OsPYL6 also reduced grain yield under drought. These results showed that rice OsPYL6 is a key regulator of plant development and drought tolerance, and fine-tuning of its expression is critical for improving yield and stress tolerance.


Subject(s)
Abscisic Acid , Oryza , Dehydration , Droughts , Gene Expression Regulation, Plant , Germination , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological
3.
BMC Genomics ; 21(1): 676, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32998689

ABSTRACT

BACKGROUND: Abscisic acid (ABA), a key phytohormone that controls plant growth and stress responses, is sensed by the pyrabactin resistance 1(PYR1)/PYR1-like (PYL)/regulatory components of the ABA receptor (RCAR) family of proteins. Comprehensive information on evolution and function of PYL gene family in rice (Oryza sativa) needs further investigation. This study made detailed analysis on evolutionary relationship between PYL family members, collinearity, synteny, gene structure, protein motifs, cis-regulatory elements (CREs), SNP variations, miRNAs targeting PYLs and expression profiles in different tissues and stress responses. RESULTS: Based on sequence homology with Arabidopsis PYL proteins, we identified a total of 13 PYLs in rice (BOP clade) and maize (PACCMAD clade), while other members of BOP (wheat - each diploid genome, barley and Brachypodium) and PACCMAD (sorghum and foxtail millet) have 8-9 PYLs. The phylogenetic analysis divided PYLs into three subfamilies that are structurally and functionally conserved across species. Gene structure and motif analysis of OsPYLs revealed that members of each subfamily have similar gene and motif structure. Segmental duplication appears be the driving force for the expansion of PYLs, and the majority of the PYLs underwent evolution under purifying selection in rice. 32 unique potential miRNAs that might target PYLs were identified in rice. Thus, the predicted regulation of PYLs through miRNAs in rice is more elaborate as compared with B. napus. Further, the miRNAs identified to in this study were also regulated by stresses, which adds additional layer of regulation of PYLs. The frequency of SAPs identified was higher in indica cultivars and were predominantly located in START domain that participate in ABA binding. The promoters of most of the OsPYLs have cis-regulatory elements involved in imparting abiotic stress responsive expression. In silico and q-RT-PCR expression analyses of PYL genes revealed multifaceted role of ABARs in shaping plant development as well as abiotic stress responses. CONCLUSION: The predicted miRNA mediated regulation of OsPYLs and stress regulated expression of all OsPYLs, at least, under one stress, lays foundation for further validation and fine tuning ABA receptors for stress tolerance without yield penalty in rice.


Subject(s)
Abscisic Acid/metabolism , Oryza/genetics , Plant Proteins/genetics , Receptors, Cell Surface/genetics , Amino Acid Motifs , Gene Duplication , Gene Expression Regulation, Plant , Genome, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Multigene Family , Plant Proteins/chemistry , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Stress, Physiological
4.
Physiol Mol Biol Plants ; 26(6): 1099-1110, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549675

ABSTRACT

Development of abiotic stress tolerant rice cultivars is necessary for sustainable rice production under the scenario of global climate change, dwindling fresh water resources and increase in salt affected areas. Several genes from rice have been functionally validated by using EMS mutants and transgenics. Often, many of these desirable alleles are not available indica rice which is mainly cultivated, and where available, introgression of these alleles into elite cultivars is a time and labour intensive process, in addition to the potential introgression of non-desirable genes due to linkage. CRISPR-Cas technology helps development of elite cultivars with desirable alleles by precision gene editing. Hence, this study was carried out to create mutant alleles of drought and salt tolerance (DST) gene by using CRISPR-Cas9 gene editing in indica rice cv. MTU1010. We used two different gRNAs to target regions of DST protein that might be involved in protein-protein interaction and successfully generated different mutant alleles of DST gene. We selected homozygous dst mutant with 366 bp deletion between the two gRNAs for phenotypic analysis. This 366 bp deletion led to the deletion of amino acid residues from 184 to 305 in frame, and hence the mutant was named as dst ∆184-305 . The dst ∆184-305 mutation induced by CRISPR-Cas9 method in DST gene in indica rice cv. MTU1010 phenocopied EMS-induced dst (N69D) mutation reported earlier in japonica cultivar. The dst ∆184-305 mutant produced leaves with broader width and reduced stomatal density, and thus enhanced leaf water retention under dehydration stress. Our study showed that the reduction in stomatal density in loss of function mutants of dst is, at least, in part due to downregulation of stomatal developmental genes SPCH1, MUTE and ICE1. The Cas9-free dst ∆184-305 mutant exhibited moderate level tolerance to osmotic stress and high level of salt stress in seedling stage. Thus, dst mutant alleles generated in this study will be useful for improving drought and salt tolerance and grain yield in indica rice cultivars.

5.
Virus Genes ; 51(2): 306-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26184969

ABSTRACT

The complete sequence of two Cowpea aphid-borne mosaic virus (CABMV) isolates (RR3 and RR4) from India was determined. Phylogenetic analysis showed that both isolates showed different closeness with other isolates of CABMV. CABMV-RR3 showed maximum identity of 99 % with CABMV-BR1 from Brazil at nucleotide and protein levels, whereas CABMV-RR4 showed identity of 73 and 95 % with CABMV-Z isolate from Zimbabwe at nucleotide and protein levels respectively. Similarity identity matrix revealed 69 % identity at nucleotide level and 91 % at protein level with each other. Recombination breakpoint detection showed that CABMV-MG-Avr from Brazil and CABMV-Z from Zimbabwe act as major parents in our isolates RR3 and RR4, respectively.


Subject(s)
Aphids/virology , Genome, Viral , Mosaic Viruses/classification , Mosaic Viruses/genetics , RNA, Viral/genetics , Sequence Analysis, DNA , Animals , Cluster Analysis , India , Molecular Sequence Data , Mosaic Viruses/isolation & purification , Phylogeny , Sequence Homology
6.
Front Microbiol ; 15: 1355750, 2024.
Article in English | MEDLINE | ID: mdl-38468848

ABSTRACT

Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.

7.
Sci Rep ; 14(1): 11629, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773324

ABSTRACT

Soybean is a rainfed crop grown across a wide range of environments in India. Its grain yield is a complex trait governed by many minor genes and influenced by environmental effects and genotype × environment interactions. In the current investigation, grain yield data of different sets of 41, 30 and 48 soybean genotypes evaluated during 2019, 2020 and 2021, respectively across 19 locations and twenty years' data on 19 different climatic parameters at these locations was used to study the environmental effects on grain yield, to understand the genotype × environment interactions and to identify the mega-environments. Through analysis of variance (ANOVA), it was found that predominant portion of the variation was explained by environmental effects (E) (53.89, 54.86 and 60.56% during 2019, 2020 and 2021, respectively), followed by genotype × environment interactions (GEI) (31.29, 33.72 and 28.82% during 2019, 2020 and 2021, respectively). Principal Component Analysis (PCA) revealed that grain yield was positively associated with RH (Relative humidity at 2 m height), FRUE (Effect of temperature on radiation use efficiency), WSM (Wind speed at 2 m height) and RTA (Global solar radiation based on latitude and Julian day) and negatively associated with VPD (Deficit of vapour pressure), Trange (Daily temperature range), ETP (Evapotranspiration), SW (Insolation incident on a horizontal surface), n (Actual duration of sunshine) and N (Daylight hours). Identification of mega-environments is critical in enhancing the selection gain, productivity and varietal recommendation. Through envirotyping and genotype main effect plus genotype by environment interaction (GGE) biplot methods, nineteen locations across India were grouped into four mega-environments (MEs). ME1 included five locations viz., Bengaluru, Pune, Dharwad, Kasbe Digraj and Umiam. Eight locations-Anand, Amreli, Lokbharti, Bidar, Parbhani, Ranchi, Bhawanipatna and Raipur were included in ME2. Kota and Morena constitutes ME3, while Palampur, Imphal, Mojhera and Almora were included in ME4. Locations Imphal, Bidar and Raipur were found to be both discriminative and representative; these test locations can be utilized in developing wider adaptable soybean cultivars. Pune and Amreli were found to be high-yielding locations and can be used in large scale breeder seed production.


Subject(s)
Gene-Environment Interaction , Genotype , Glycine max , Glycine max/genetics , Glycine max/growth & development , India , Environment , Principal Component Analysis
8.
Front Microbiol ; 14: 1271034, 2023.
Article in English | MEDLINE | ID: mdl-37901824

ABSTRACT

A wide variety of bacteria are present in soil but in rhizospheric area, the majority of microbes helps plant in defending diseases and facilitate nutrient uptake. These microorganisms are supported by plants and they are known as plant growth-promoting rhizobacteria (PGPR). The PGPRs have the potential to replace chemical fertilizers in a way that is more advantageous for the environment. Fluoride (F) is one of the highly escalating, naturally present contaminants that can be hazardous for PGPRs because of its antibacterial capacity. The interactions of F with different bacterial species in groundwater systems are still not well understood. However, the interaction of PGPR with plants in the rhizosphere region reduces the detrimental effects of pollutants and increases plants' ability to endure abiotic stress. Many studies reveal that PGPRs have developed F defense mechanisms, which include efflux pumps, Intracellular sequestration, enzyme modifications, enhanced DNA repair mechanism, detoxification enzymes, ion transporter/antiporters, F riboswitches, and genetic mutations. These resistance characteristics are frequently discovered by isolating PGPRs from high F-contaminated areas or by exposing cells to fluoride in laboratory conditions. Numerous studies have identified F-resistant microorganisms that possess additional F transporters and duplicates of the well-known targets of F. Plants are prone to F accumulation despite the soil's low F content, which may negatively affect their growth and development. PGPRs can be used as efficient F bioremediators for the soil environment. Environmental biotechnology focuses on creating genetically modified rhizobacteria that can degrade F contaminants over time. The present review focuses on a thorough systemic analysis of contemporary biotechnological techniques, such as gene editing and manipulation methods, for improving plant-microbe interactions for F remediation and suggests the importance of PGPRs in improving soil health and reducing the detrimental effects of F toxicity. The most recent developments in the realm of microbial assistance in the treatment of F-contaminated environments are also highlighted.

9.
Front Plant Sci ; 14: 1164461, 2023.
Article in English | MEDLINE | ID: mdl-37426982

ABSTRACT

The development of precise and controlled CRISPR-Cas tools has been made possible by the discovery of protein inhibitors of CRISPR-Cas systems, called anti-CRISPRs (Acrs). The Acr protein has the ability to control off-targeted mutations and impede Cas protein-editing operations. Acr can help with selective breeding, which could help plants and animals improve their valuable features. In this review, the Acr protein-based inhibitory mechanisms that have been adopted by several Acrs, such as (a) the interruption of CRISPR-Cas complex assembly, (b) interference with target DNA binding, (c) blocking of target DNA/RNA cleavage, and (d) enzymatic modification or degradation of signalling molecules, were discussed. In addition, this review emphasizes the applications of Acr proteins in the plant research.

10.
Front Plant Sci ; 14: 1193573, 2023.
Article in English | MEDLINE | ID: mdl-37492778

ABSTRACT

The most significant issues that humans face today include a growing population, an altering climate, an growing reliance on pesticides, the appearance of novel infectious agents, and an accumulation of industrial waste. The production of agricultural goods has also been subject to a great number of significant shifts, often known as agricultural revolutions, which have been influenced by the progression of civilization, technology, and general human advancement. Sustainable measures that can be applied in agriculture, the environment, medicine, and industry are needed to lessen the harmful effects of the aforementioned problems. Endophytes, which might be bacterial or fungal, could be a successful solution. They protect plants and promote growth by producing phytohormones and by providing biotic and abiotic stress tolerance. Endophytes produce the diverse type of bioactive compounds such as alkaloids, saponins, flavonoids, tannins, terpenoids, quinones, chinones, phenolic acids etc. and are known for various therapeutic advantages such as anticancer, antitumor, antidiabetic, antifungal, antiviral, antimicrobial, antimalarial, antioxidant activity. Proteases, pectinases, amylases, cellulases, xylanases, laccases, lipases, and other types of enzymes that are vital for many different industries can also be produced by endophytes. Due to the presence of all these bioactive compounds in endophytes, they have preferred sources for the green synthesis of nanoparticles. This review aims to comprehend the contributions and uses of endophytes in agriculture, medicinal, industrial sectors and bio-nanotechnology with their mechanism of action.

11.
Front Microbiol ; 14: 1270245, 2023.
Article in English | MEDLINE | ID: mdl-37908543

ABSTRACT

Nanotechnology (NT) and nanoparticles (NPs) have left a huge impact on every field of science today, but they have shown tremendous importance in the fields of cosmetics and environmental cleanup. NPs with photocatalytic effects have shown positive responses in wastewater treatment, cosmetics, and the biomedical field. The chemically synthesized TiO2 nanoparticles (TiO2 NPs) utilize hazardous chemicals to obtain the desired-shaped TiO2. So, microbial-based synthesis of TiO2 NPs has gained popularity due to its eco-friendly nature, biocompatibility, etc. Being NPs, TiO2 NPs have a high surface area-to-volume ratio in addition to their photocatalytic degradation nature. In the present review, the authors have emphasized the microbial (algae, bacterial, fungi, and virus-mediated) synthesis of TiO2 NPs. Furthermore, authors have exhibited the importance of TiO2 NPs in the food sector, automobile, aerospace, medical, and environmental cleanup.

12.
Front Bioeng Biotechnol ; 11: 1323249, 2023.
Article in English | MEDLINE | ID: mdl-38260746

ABSTRACT

Over the last decade there has been a huge increase in the green synthesis of nanoparticles. Moreover, there is a continuous increase in harnessing the potential of microorganisms for the development of efficient and biocompatible nanoparticles around the globe. In the present research work, investigators have synthesized TiO2 NPs by harnessing the potential of Bacillus subtilis MTCC 8322 (Gram-positive) bacteria. The formation and confirmation of the TiO2 NPs synthesized by bacteria were carried out by using UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX/EDS). The size of the synthesized TiO2 NPs was 80-120 nm which was spherical to irregular in shape as revealed by SEM. FTIR showed the characteristic bands of Ti-O in the range of 400-550 cm-1 and 924 cm-1 while the band at 2930 cm-1 confirmed the association of bacterial biomolecules with the synthesized TiO2 NPs. XRD showed two major peaks; 27.5° (rutile phase) and 45.6° (anatase phase) for the synthesized TiO2 NPs. Finally, the potential of the synthesized TiO2 NPs was assessed as an antibacterial agent and photocatalyst. The remediation of Methylene blue (MB) and Orange G (OG) dyes was carried out under UV- light and visible light for a contact time of 150-240 min respectively. The removal efficiency for 100 ppm MB dye was 25.75% and for OG dye was 72.24% under UV light, while in visible light, the maximum removal percentage for MB and OG dye was 98.85% and 80.43% respectively at 90 min. Moreover, a kinetic study and adsorption isotherm study were carried out for the removal of both dyes, where the pseudo-first-order for MB dye is 263.269 and 475554.176 mg/g for OG dye. The pseudo-second-order kinetics for MB and OG dye were 188.679 and 1666.667 mg/g respectively. In addition to this, the antibacterial activity of TiO2 NPs was assessed against Bacillus subtilis MTCC 8322 (Gram-positive) and Escherichia coli MTCC 8933 (Gram-negative) where the maximum zone of inhibition in Bacillus subtilis MTCC 8322 was about 12 mm, and for E. coli 16 mm.

13.
Front Microbiol ; 14: 1330071, 2023.
Article in English | MEDLINE | ID: mdl-38239735

ABSTRACT

The primary goal of this experiment is to examine the effectiveness of Pseudomonas aeruginosa strain PAR as a rhizobacterium that promotes plant growth in mitigating the negative effects of fluoride-induced stress in tomato (Lycopersicon esculentum Mill.) plants. A total of 16 rhizobacterial strains were tested for plant growth-promoting (PGP) attributes, with isolates S1, S2, and S3 exhibiting different characteristics. Furthermore, growth kinetics studies revealed that these isolates were resilient to fluoride stress (10, 20, 40, and 80 ppm), with isolate S2 exhibiting notable resilience compared to the other two strains. Phylogenetic analysis revealed isolate S2 as P. aeruginosa strain PAR. Physiological analyses demonstrated that P. aeruginosa strain PAR had a beneficial impact on plant properties under fluoride stress, comprising seed germination, root length, shoot height, relative water content, and leaf area, the strain also impacted the buildup of glycine betaine, soluble sugar, and proline, demonstrating its significance in enhancing plant stress tolerance. In P. aeruginosa strain PAR-treated plants, chlorophyll content increased while malondialdehyde (MDA) levels decreased, indicating enhanced photosynthetic efficiency and less oxidative stress. The strain modified antioxidant enzyme action (catalase, ascorbate, glutathione reductase, peroxidase, and superoxide dismutase), which contributed to improved stress resilience. Mineral analysis revealed a decrease in sodium and fluoride concentrations while increasing magnesium, potassium, phosphorus, and iron levels, emphasizing the strain's significance in nutrient management. Correlation and principal component analysis revealed extensive correlations between physiological and biochemical parameters, underscoring P. aeruginosa strain PAR's multifaceted impact on plant growth and stress response. This study offers valuable information on effectively utilizing PGPR, particularly P. aeruginosa strain PAR, in fluoride-contaminated soils for sustainable agriculture. It presents a promising biological strategy to enhance crop resilience and productivity.

14.
Redox Rep ; 28(1): 2269331, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010378

ABSTRACT

Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.


Subject(s)
Alzheimer Disease , Brain Neoplasms , Ferroptosis , Nanostructures , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Alzheimer Disease/drug therapy , Brain Neoplasms/drug therapy , Iron , Lipid Peroxidation
15.
Pathogens ; 11(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35631050

ABSTRACT

Chilli leaf curl virus (ChiLCV), (Genus Begomovirus, family Geminiviridae) and associated satellites pose a serious threat to chilli production, worldwide. This study highlights the factors accountable for genetic diversity, recombination, and evolution of ChiLCV, and associated chilli leaf curl alphasatellite (ChiLCA) and chilli leaf curl betasatellite (ChiLCB). Phylogenetic analysis of complete genome (DNA-A) sequences of 132 ChiLCV isolates from five countries downloaded from NCBI database clustered into three major clades and showed high population diversity. The dN/dS ratio and Tajima D value of all viral DNA-A and associated betasatellite showed selective control on evolutionary relationships. Negative values of neutrality tests indicated purified selection and an excess of low-frequency polymorphism. Nucleotide diversity (π) for C4 and Rep genes was higher than other genes of ChiLCV with an average value of π = 18.37 × 10-2 and π = 17.52 × 10-2 respectively. A high number of mutations were detected in TrAP and Rep genes, while ChiLCB has a greater number of mutations than ChiLCA. In addition, significant recombination breakpoints were detected in all regions of ChiLCV genome, ChiLCB and, ChiLCA. Our findings indicate that ChiLCV has the potential for rapid evolution and adaptation to a range of geographic conditions and could be adopted to infect a wide range of crops, including diverse chilli cultivars.

16.
Ann Med Surg (Lond) ; 78: 103761, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35734678

ABSTRACT

Background: Kidney transplantation is the treatment of choice for patients with end-stage renal disease (ESKD). Kidney paired donation (KPD) provides the chance to match an incompatible donor/recipient pair with another donor and recipient in a similar condition. We aimed to compare the outcomes of pair exchange kidney transplantation with traditional live donor kidney transplantation in our context. Method: A review of medical records of 62 patients (31 pairs) who underwent two-way conventional living kidney pair exchange from July 2016 to June 2021 was done. The control group was considered those 62 patients who had undergone classic live donor kidney transplantation (LDKT) during the study period. The patient's demographics, intraoperative and postoperative variables including delayed graft function, length of hospital stay, graft survival, patient survival, and rejections rates were compared between the groups (KPD and LDKT). Results: The majority of recipients were male (77.4 and 80.6%) while donors were female (77.4 and 69.4%) in KPD and the LDKT groups. Mean ages were 37 years (range: 19-59) and 37 years (range: 17-65) for the recipient's in KPD and the LDKT. KPD transplantation was performed in 62 recipients to avoid blood group incompatibility. There were no significant differences in outcomes comprising delayed graft function (1.6 and 3.2%), graft survival (100% in both groups), patient survival (95.2 and 96.8%), and rejections rates (1.6 and 1.6%) between KPD and LDKT group (P > 0.005). The length of stay was similar (5.9 and 5.7 days) in KPD and LDKT groups (P > 0.005). Conclusions: The outcomes of KPD were comparable with classic LDKT in terms of delayed graft function, length of hospital stay, graft survival, patient survival, and rejections rates in our study. Therefore, the kidney paired donation program should be encouraged and promoted in centers where the ABO-incompatible transplant is expensive with added risk and the rate of deceased donor transplantation is very low.

17.
Ann Med Surg (Lond) ; 81: 104386, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36147109

ABSTRACT

Introduction: and importance: Kidney transplantation is one of the best treatment options for patients with end-stage renal disease. More than 90% of patients awaiting renal transplantation die without getting the kidney for transplantation. Brain dead donor kidney transplantation can bridge this gap proficiently. We aim to report details of the first six patients who had undergone brain-dead donor kidney transplantation in the history of transplantation in Nepal. Case presentation: We conducted a descriptive analysis of clinical data of six adult recipients with kidney transplantation from three brain-dead donors. We described postoperative complications, length of stay, graft function which was documented with serum creatinine, acute rejection episode, delayed graft function, and patient/graft survival of recipient. Recipients were between 15 and 56 years old. Three patients experienced delayed graft function. Urinary tract infection was observed in two patients, both of whom were treated with antibiotics. One patient had acute graft rejection. None of our patients required reoperation. Length of hospital stay ranged from 9 to 32 days. The postoperative graft function was 100% in all patients. There was no graft loss, and no death was observed during follow-up. Clinical discussion: Following the initiation of the brain-dead donor transplantation program, a lot of work needs to be done to make it a regular practice. Thus, this program needs support from all sections of society and government. This can be the only solution to decrease the huge gap between the supply and demand of organs in Nepal. Conclusion: This case reports indeed revealed impressive success in initiating a brain-dead donor kidney transplantation program in a developing country that in terms of quality, meets comprehensive standard with acceptable graft function and patient/graft survival in under limited resources healthcare setting.

18.
Egypt Heart J ; 74(1): 59, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35962873

ABSTRACT

BACKGROUND: Atrial septal defect (ASD) is one of the common congenital heart defects. Its management has transformed dramatically in the last 4 decades with the transition from surgical to percutaneous transcatheter closure for most secundum-type ASDs. Various devices are available for transcatheter closure of ASD with Amplatzer atrial septal occluder being most commonly used worldwide. Cocoon septal occlude has a nanocoating of platinum using nano-fusion technology over nitinol framework that imparts better radiopacity and excellent biocompatibility and prevents leaching of nickel into circulation, and by smoothening nitinol wire makes this device very soft and smooth. The aim of this study was to evaluate feasibility, effectiveness, safety, and long-term outcome of transcatheter closure of ASD using Cocoon septal occluder (Vascular Innovation, Thailand). RESULTS: All patients undergoing transcatheter closure of hemodynamically significant ASD between September 2012 and July 2019 in our institute were included into this single-center, prospective study. Exclusion criteria were defect > 40 mm, unsuitable anatomy, Eisenmenger syndrome, and anomalous pulmonary venous return. Three hundred and twenty patients underwent device closure, of which 238 (74%) were female. The mean age was 14.6 years (range 6-29), and the median weight was 30.2 kg (range 10-53 kg). Procedure was performed under fluoroscopy using transthoracic and transesophageal echocardiography in 298 (93.1%) and 22(6.9%) patients, respectively. Balloon-assisted technique was used, when septal defect was ≥ 34 mm, in 9 (2.8%) patients. The mean diameter of defect and device was 21.4 mm (range 12-36 mm) and 26.9 mm (range 14-40 mm), respectively. Aortic rim was absent in 11 (3.4%) patients. Primary success was achieved in 312 (97.5%) patients. Early embolization to right ventricle was noted in 2 (0.6%) patients. In both cases, 40-mm device was attempted for defect of 36 mm with inadequate aortic rim using balloon-assisted technique. One (0.3%) patient developed perforation of right atrium. All were surgically repaired. Three (0.9%) patients developed complete heart block following device deployment requiring device retrieval. Two patients had had moderate residual shunt at 6 months of follow-up. After mean follow-up of 50.92 months (range 12.5-89 months), no erosion, allergic reactions to nickel, or other major complications were reported. CONCLUSIONS: Percutaneous transcatheter closure of ASD by Cocoon septal occluder (up to 36 mm) is safe and feasible with high success rate and without any significant device-related major complications over long-term follow-up. With unique device design and excellent long-term safety, it could be preferred dual-disk occluder for transcatheter closure of atrial septal defect. In most of the patients, ASD device can be safely deployed under transthoracic echocardiographic guidance.

19.
3 Biotech ; 10(4): 169, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32206503

ABSTRACT

A monopartite begomovirus associated with betasatellite was identified from Osteospermum fruticosum (Cape Daisy) showing severe yellowing vein net symptoms in Rajasthan, India through molecular characterization. The DNA-A shared the highest nucleotide (96.61%) identity to Chilli leaf curl Ahmedabad virus (KM880103), while the betasatellite depicted the highest sequence similarity (99.28%) to Chilli leaf curl betasatellite (JF706231, 99.28%). Based on the sequence identity with other begomoviruses known to date, they were recognized as Chilli leaf curl virus (CDI, MH355641) and Chilli leaf curl betasatellite (CDB1, MH355642), respectively. Phylogenetic analysis showed that DNA-A (CD1) clustered with ChiLCV Goa (KP235539), whereas the betasatellite (CDB1) clustered with ChiLCB Jodhapur (JF70623). Recombination events were observed among the clades of ChiLCV, showing intragenic recombination in Rep (C1) and coat protein (V1/AV1) regions. To our knowledge, this is the first report of ChiLC begomovirus strain affecting O. fruticosum.

20.
3 Biotech ; 10(6): 257, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32432019

ABSTRACT

Watermelon mosaic virus (WMV) is an important virus causing adverse effects on cucurbits throughout the world. In this study, we recorded WMV infection in the watermelon (Citrullus lanatus)-growing area of Alwar and Sikar in districts of Rajasthan, India. The RT-PCR-based detection was performed to confirm the presence of WMV, by using potyvirus-degenerated coat protein primers. Further, the complete genome sequences of two WMV isolates were compared with previously reported genome sequences. The complete genome of each isolate was 10,030 nt long, excluding the poly-A tails. Phylogeny relationships of the WMV isolates in the present study revealed the presence of uneven evolutionary pressure among the different WMV viral genomic segments. The analysis revealed that all the WMV isolates were divided into three clusters and the Indian WMV isolates cluster together with the French isolate. Recombination analysis of WMV exhibited significant recombination hotspots in the P1, NIa-Pro and Nib-CP regions. Our finding highlights the importance of genetic variability and recombination analysis to provide a better understanding of WMV molecular diversity.

SELECTION OF CITATIONS
SEARCH DETAIL