Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 618(7963): 159-168, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225977

ABSTRACT

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Subject(s)
Nerve Regeneration , Humans , Neoplasms/drug therapy , Nerve Regeneration/drug effects , Protein Isoforms/agonists , Signal Transduction/drug effects , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/drug effects , Cardiotonic Agents/pharmacology , Animals , Biocatalysis/drug effects , Protein Conformation/drug effects , Neurites/drug effects , Reperfusion Injury/prevention & control , Nerve Crush , Cell Proliferation/drug effects
2.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Article in English | MEDLINE | ID: mdl-36109648

ABSTRACT

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Subject(s)
Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols , Phosphatidylinositol Phosphates/metabolism
3.
Cell ; 143(6): 865-7, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21145452

ABSTRACT

Being at the right place and time is as fundamental to biology as it is to academic careers. In this issue, Moravcevic and colleagues (2010) survey membrane-interacting proteins in yeast and discover a new membrane-targeting module, the kinase associated-1 domain KA1, which ensures that proteins are active at the correct place and time.

4.
Proc Natl Acad Sci U S A ; 116(11): 4946-4954, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30804176

ABSTRACT

Cells dynamically adjust their protein translation profile to maintain homeostasis in changing environments. During nutrient stress, the kinase general control nonderepressible 2 (GCN2) phosphorylates translation initiation factor eIF2α, initiating the integrated stress response (ISR). To examine the mechanism of GCN2 activation, we have reconstituted this process in vitro, using purified components. We find that recombinant human GCN2 is potently stimulated by ribosomes and, to a lesser extent, by tRNA. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) mapped GCN2-ribosome interactions to domain II of the uL10 subunit of the ribosomal P-stalk. Using recombinant, purified P-stalk, we showed that this domain of uL10 is the principal component of binding to GCN2; however, the conserved 14-residue C-terminal tails (CTTs) in the P1 and P2 P-stalk proteins are also essential for GCN2 activation. The HisRS-like and kinase domains of GCN2 show conformational changes upon binding recombinant P-stalk complex. Given that the ribosomal P-stalk stimulates the GTPase activity of elongation factors during translation, we propose that the P-stalk could link GCN2 activation to translational stress, leading to initiation of ISR.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Ribosomes/metabolism , Amino Acid Motifs , Eukaryotic Initiation Factor-2/metabolism , Humans , Phosphorylation , Protein Domains , Protein Serine-Threonine Kinases/chemistry , Structure-Activity Relationship
5.
Nat Chem Biol ; 15(4): 348-357, 2019 04.
Article in English | MEDLINE | ID: mdl-30718815

ABSTRACT

We have discovered a class of PI3Kγ inhibitors exhibiting over 1,000-fold selectivity over PI3Kα and PI3Kß. On the basis of X-ray crystallography, hydrogen-deuterium exchange-mass spectrometry and surface plasmon resonance experiments we propose that the cyclopropylethyl moiety displaces the DFG motif of the enzyme away from the adenosine tri-phosphate binding site, inducing a large conformational change in both the kinase- and helical domains of PI3Kγ. Site directed mutagenesis explained how the conformational changes occur. Our results suggest that these cyclopropylethyl substituted compounds selectively inhibit the active state of PI3Kγ, which is unique to these compounds and to the PI3Kγ isoform, explaining their excellent potency and unmatched isoform selectivity that were confirmed in cellular systems. This is the first example of a Class I PI3K inhibitor achieving its selectivity by affecting the DFG motif in a manner that bears similarity to DFG in/out for type II protein kinase inhibitors.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Adenosine Triphosphatases , Binding Sites , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Mutagenesis, Site-Directed , Phthalimides , Protein Binding , Protein Conformation , Protein Isoforms/physiology , Protein Kinase Inhibitors , Substrate Specificity
6.
Biophys J ; 119(11): 2205-2218, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33137306

ABSTRACT

VPS34 complex II (VPS34CII) is a 386-kDa assembly of the lipid kinase subunit VPS34 and three regulatory subunits that altogether function as a prototypical class III phosphatidylinositol-3-kinase (PI3K). When the active VPS34CII complex is docked to the cytoplasmic surface of endosomal membranes, it phosphorylates its substrate lipid (phosphatidylinositol, PI) to generate the essential signaling lipid phosphatidylinositol-3-phosphate (PI3P). In turn, PI3P recruits an array of signaling proteins containing PI3P-specific targeting domains (including FYVE, PX, and PROPPINS) to the membrane surface, where they initiate key cell processes. In endocytosis and early endosome development, net VPS34CII-catalyzed PI3P production is greatly amplified by Rab5A, a small G protein of the Ras GTPase superfamily. Moreover, VPS34CII and Rab5A are each strongly linked to multiple human diseases. Thus, a molecular understanding of the mechanism by which Rab5A activates lipid kinase activity will have broad impacts in both signaling biology and medicine. Two general mechanistic models have been proposed for small G protein activation of PI3K lipid kinases. 1) In the membrane recruitment mechanism, G protein association increases the density of active kinase on the membrane. And 2) in the allosteric activation mechanism, G protein allosterically triggers an increase in the specific activity (turnover rate) of the membrane-bound kinase molecule. This study employs an in vitro single-molecule approach to elucidate the mechanism of GTP-Rab5A-associated VPS34CII kinase activation in a reconstituted GTP-Rab5A-VPS34CII-PI3P-PX signaling pathway on a target membrane surface. The findings reveal that both membrane recruitment and allosteric mechanisms make important contributions to the large increase in VPS34CII kinase activity and PI3P production triggered by membrane-anchored GTP-Rab5A. Notably, under near-physiological conditions in the absence of other activators, membrane-anchored GTP-Rab5A provides strong, virtually binary on-off switching and is required for VPS34CII membrane binding and PI3P production.


Subject(s)
Class III Phosphatidylinositol 3-Kinases , Endosomes , rab5 GTP-Binding Proteins , Endocytosis , Humans , Intracellular Membranes , Phosphatidylinositols
7.
Trends Biochem Sci ; 40(2): 88-100, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25573003

ABSTRACT

The class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that transduce a host of cellular signals and regulate a broad range of essential functions including growth, proliferation, and migration. As such, PI3Ks have pivotal roles in diseases such as cancer, diabetes, primary immune disorders, and inflammation. These enzymes are activated downstream of numerous activating stimuli including receptor tyrosine kinases, G protein-coupled receptors (GPCRs), and the Ras superfamily of small G proteins. A major challenge is to decipher how each PI3K isoform is able to successfully synergize these inputs into their intended signaling function. This article highlights recent progress in characterizing the molecular mechanisms of PI3K isoform-specific activation pathways, as well as novel roles for PI3Ks in human diseases, specifically cancer and immune diseases.


Subject(s)
Immune System Diseases/enzymology , Neoplasms/enzymology , Phosphatidylinositol 3-Kinases/genetics , Receptors, G-Protein-Coupled/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Humans , Immune System Diseases/genetics , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
8.
J Lipid Res ; 60(2): 229-241, 2019 02.
Article in English | MEDLINE | ID: mdl-30397185

ABSTRACT

VPS34 phosphorylates phosphatidylinositol to produce PtdIns3P and is the progenitor of the phosphoinositide 3-kinase (PI3K) family. VPS34 has a simpler domain organization than class I PI3Ks, which belies the complexity of its quaternary organization, with the enzyme always functioning within larger assemblies. PtdIns3P recruits specific recognition modules that are common in protein-sorting pathways, such as autophagy and endocytic sorting. It is best characterized in two heterotetramers, complexes I and II. Complex I is composed of VPS34, VPS15, Beclin 1, and autophagy-related gene (ATG)14L, whereas complex II replaces ATG14L with UVRAG. Because VPS34 can form a component of several distinct complexes, it enables independent regulation of various pathways that are controlled by PtdIns3P. Complexes I and II are critical for early events in autophagy and endocytic sorting, respectively. Autophagy has a complex association with cancer. In early stages, it inhibits tumorigenesis, but in later stages, it acts as a survival factor for tumors. Recently, various disease-associated somatic mutations were found in genes encoding complex I and II subunits. Lipid kinase activities of the complexes are also influenced by posttranslational modifications (PTMs). Mapping PTMs and somatic mutations on three-dimensional models of the complexes suggests mechanisms for how these affect VPS34 activity.


Subject(s)
Class III Phosphatidylinositol 3-Kinases/chemistry , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Endocytosis , Enzyme Inhibitors/pharmacology , Humans , Protein Processing, Post-Translational
9.
Nature ; 501(7465): 116-20, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23913272

ABSTRACT

Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)--the common precursor of the different series of glycosphingolipids-that is operated by the cytosolic GlcCer-transfer protein FAPP2 (also known as PLEKHA8) (ref. 1). However, the molecular determinants of the FAPP2-mediated transfer of GlcCer from the cis-Golgi to the trans-Golgi network, as well as the physiological relevance of maintaining two parallel transport pathways of GlcCer--vesicular and non-vesicular--through the Golgi, remain poorly defined. Here, using mouse and cell models, we clarify the molecular mechanisms underlying the intra-Golgi vectorial transfer of GlcCer by FAPP2 and show that GlcCer is channelled by vesicular and non-vesicular transport to two topologically distinct glycosylation tracks in the Golgi cisternae and the trans-Golgi network, respectively. Our results indicate that the transport modality across the Golgi complex is a key determinant for the glycosylation pattern of a cargo and establish a new paradigm for the branching of the glycosphingolipid synthetic pathway.


Subject(s)
Glucosylceramides/metabolism , Glycosylation , Golgi Apparatus/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biological Transport , Cell Line , Globosides/biosynthesis , Globosides/chemistry , Globosides/metabolism , Glucosylceramides/chemistry , Glycosphingolipids/biosynthesis , Glycosphingolipids/chemistry , Glycosphingolipids/metabolism , Humans , Mice , Mice, Inbred C57BL , Phosphatidylinositol Phosphates/metabolism , trans-Golgi Network/metabolism
10.
Mol Cell ; 41(2): 186-96, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21255729

ABSTRACT

Members of the crenarchaeal kingdom, such as Sulfolobus, divide by binary fission yet lack genes for the otherwise near-ubiquitous tubulin and actin superfamilies of cytoskeletal proteins. Recent work has established that Sulfolobus homologs of the eukaryotic ESCRT-III and Vps4 components of the ESCRT machinery play an important role in Sulfolobus cell division. In eukaryotes, several pathways recruit ESCRT-III proteins to their sites of action. However, the positioning determinants for archaeal ESCRT-III are not known. Here, we identify a protein, CdvA, that is responsible for recruiting Sulfolobus ESCRT-III to membranes. Overexpression of the isolated ESCRT-III domain that interacts with CdvA results in the generation of nucleoid-free cells. Furthermore, CdvA and ESCRT-III synergize to deform archaeal membranes in vitro. The structure of the CdvA/ESCRT-III interface gives insight into the evolution of the more complex and modular eukaryotic ESCRT complex.


Subject(s)
Archaeal Proteins/physiology , Endosomal Sorting Complexes Required for Transport/physiology , Sulfolobus/cytology , Archaeal Proteins/analysis , Archaeal Proteins/chemistry , Endosomal Sorting Complexes Required for Transport/analysis , Endosomal Sorting Complexes Required for Transport/chemistry , Gene Expression Regulation, Archaeal , Liposomes/metabolism , Open Reading Frames , Protein Structure, Tertiary , Transcription, Genetic
11.
Mol Cell ; 41(5): 567-78, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21362552

ABSTRACT

Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110ß/p85ß complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110ß catalytic subunit, which is essential for lipid kinase activity. In vitro, p110ß basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110ß. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Gene Expression Regulation, Enzymologic , Amino Acid Motifs , Animals , Binding Sites , Humans , Hydrogen Bonding , Insecta , Mice , Mutagenesis , Mutation , Phosphorylation , Protein Conformation , Protein Structure, Tertiary , src Homology Domains
12.
Biochem J ; 474(11): 1867-1877, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28381646

ABSTRACT

Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics.


Subject(s)
Antineoplastic Agents/metabolism , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Enzyme Inhibitors/metabolism , Models, Molecular , Peptide Fragments/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Class I Phosphatidylinositol 3-Kinases , Class Ia Phosphatidylinositol 3-Kinase/chemistry , Class Ia Phosphatidylinositol 3-Kinase/genetics , Deuterium Exchange Measurement , Drug Evaluation, Preclinical/methods , Electron Transport , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Indazoles/chemistry , Indazoles/metabolism , Indazoles/pharmacology , Molecular Weight , Oligonucleotides/antagonists & inhibitors , Oligonucleotides/chemistry , Oligonucleotides/genetics , Oligonucleotides/metabolism , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/genetics , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Protein Conformation , Purines/chemistry , Purines/metabolism , Purines/pharmacology , Pyridazines , Quinazolinones/chemistry , Quinazolinones/metabolism , Quinazolinones/pharmacology , Quinolines/chemistry , Quinolines/metabolism , Quinolines/pharmacology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Signal Processing, Computer-Assisted , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulfonamides/pharmacology , Tandem Mass Spectrometry , Triazines/chemistry , Triazines/metabolism , Triazines/pharmacology
13.
Biophys J ; 113(11): 2396-2405, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29211993

ABSTRACT

Cellular pathways controlling chemotaxis, growth, survival, and oncogenesis are activated by receptor tyrosine kinases and small G-proteins of the Ras superfamily that stimulate specific isoforms of phosphatidylinositol-3-kinase (PI3K). These PI3K lipid kinases phosphorylate the constitutive lipid phosphatidylinositol-4,5-bisphosphate (PIP2) to produce the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Progress has been made in understanding direct, moderate PI3K activation by receptors. In contrast, the mechanism by which receptors and Ras synergistically activate PI3K to much higher levels remains unclear, and two competing models have been proposed: membrane recruitment versus activation of the membrane-bound enzyme. To resolve this central mechanistic question, this study employs single-molecule imaging to investigate PI3K activation in a six-component pathway reconstituted on a supported lipid bilayer. The findings reveal that simultaneous activation by a receptor activation loop (from platelet-derived growth factor receptor, a receptor tyrosine kinase) and H-Ras generates strong, synergistic activation of PI3Kα, yielding a large increase in net kinase activity via the membrane recruitment mechanism. Synergy requires receptor phospho-Tyr and two anionic lipids (phosphatidylserine and PIP2) to make PI3Kα competent for bilayer docking, as well as for subsequent binding and phosphorylation of substrate PIP2 to generate product PIP3. Synergy also requires recruitment to membrane-bound H-Ras, which greatly speeds the formation of a stable, membrane-bound PI3Kα complex, modestly slows its off rate, and dramatically increases its equilibrium surface density. Surprisingly, H-Ras binding significantly inhibits the specific kinase activity of the membrane-bound PI3Kα molecule, but this minor enzyme inhibition is overwhelmed by the marked enhancement of membrane recruitment. The findings have direct impacts for the fields of chemotaxis, innate immunity, inflammation, carcinogenesis, and drug design.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction , ras Proteins/metabolism , Enzyme Activation , Lipid Bilayers/metabolism , Microscopy, Fluorescence , Models, Molecular , Phosphatidylinositol 3-Kinases/chemistry , Phosphopeptides/metabolism , Protein Domains
14.
Biochem J ; 473(2): 135-44, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26527737

ABSTRACT

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr(366)/pSer(370) results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX-MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a 'scooting' mode of catalysis from the 'hopping' mode that is characteristic of PTEN.


Subject(s)
Cell Membrane/genetics , Cell Membrane/metabolism , PTEN Phosphohydrolase/chemistry , PTEN Phosphohydrolase/physiology , Amino Acid Sequence , Animals , Insecta , Molecular Sequence Data , Protein Structure, Secondary , Spodoptera , Substrate Specificity/physiology
15.
Biophys J ; 110(8): 1811-1825, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27119641

ABSTRACT

In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This leading-edge circuit includes a putative amplification module in which Ca(2+)-protein kinase C (Ca(2+)-PKC) is hypothesized to phosphorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2), thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoinositide-3-kinase (PI3K). We investigated this hypothesized Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein components. Our findings demonstrate that together Ca(2+)-PKC and the PIP2-binding peptide of MARCKS modulate the level of free PIP2, which serves as both a docking target and substrate lipid for PI3K. In the off state of the amplification module, the MARCKS peptide sequesters PIP2 and thereby inhibits PI3K binding to the membrane. In the on state, Ca(2+)-PKC phosphorylation of the MARCKS peptide reverses the PIP2 sequestration, thereby releasing multiple PIP2 molecules that recruit multiple active PI3K molecules to the membrane surface. These findings 1) show that the Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 system functions as an activation module in vitro, 2) reveal the molecular mechanism of activation, 3) are consistent with available in vivo data, and 4) yield additional predictions that are testable in live cells. More broadly, the Ca(2+)-PKC-stimulated release of free PIP2 may well regulate the membrane association of other PIP2-binding proteins, and the findings illustrate the power of single-molecule analysis to elucidate key dynamic and mechanistic features of multiprotein signaling pathways on membrane surfaces.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C-alpha/metabolism , Signal Transduction , Calcium/metabolism , Cell Membrane/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/chemistry , Models, Molecular , Myristoylated Alanine-Rich C Kinase Substrate , Peptide Fragments/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Conformation
16.
Semin Cell Dev Biol ; 36: 91-101, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25289568

ABSTRACT

The phosphoinositide 3-kinase (PI3K) related protein kinases (PIKKs) are a family of protein kinases with a diverse range of vital cellular functions. Recent high-resolution crystal structures of the protein kinase mTOR suggest general architectural principles that are likely to be common to all of the PIKKs. Furthermore, the structures make clear the close relationship of the PIKKs to the PI3Ks. However, the structures also make clear the unique features of mTOR that enable its substrate specificity. The active site is deeply recessed and flanked by structural elements unique to the PIKKs, namely, the FRB domain, the LST8 binding element, and a C-terminal stretch of helices known as the FATC domain. The FRB has a conserved element in it that is part of a bipartite substrate recognition mechanism that is probably characteristic of all of the PIKKs. The FRB also binds the mTOR inhibitor rapamycin that has been referred to as an allosteric inhibitor, implying that this inhibitor is actually a competitive inhibitor of the protein substrate. This bipartite substrate-binding site also helps clarify how rapamycin can result in substrate-specific inhibition.


Subject(s)
Catalytic Domain , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/ultrastructure , Catalysis , Enzyme Activation , Humans , Signal Transduction , Sirolimus/metabolism , TOR Serine-Threonine Kinases/genetics
17.
Biochemistry ; 55(46): 6395-6405, 2016 Nov 22.
Article in English | MEDLINE | ID: mdl-27933776

ABSTRACT

Amoeboid cells that employ chemotaxis to travel up an attractant gradient possess a signaling network assembled on the leading edge of the plasma membrane that senses the gradient and remodels the actin mesh and cell membrane to drive movement in the appropriate direction. In leukocytes such as macrophages and neutrophils, and perhaps in other amoeboid cells as well, the leading edge network includes a positive feedback loop in which the signaling of multiple pathway components is cooperatively coupled. Cytoplasmic Ca2+ is a recently recognized component of the feedback loop at the leading edge where it stimulates phosphoinositide-3-kinase (PI3K) and the production of its product signaling lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3). A previous study implicated Ca2+-activated protein kinase C (PKC) and the phosphatidylinositol 4,5-bisphosphate (PIP2) binding protein MARCKS as two important players in this signaling, because PKC phosphorylation of MARCKS releases free PIP2 that serves as the membrane binding target and substrate for PI3K. This study asks whether calmodulin (CaM), which is known to directly bind MARCKS, also stimulates PIP3 production by releasing free PIP2. Single-molecule fluorescence microscopy is used to quantify the surface density and enzyme activity of key protein components of the hypothesized Ca2+-CaM-MARCKS-PIP2-PI3K-PIP3 circuit. The findings show that CaM does stimulate PI3K lipid kinase activity by binding MARCKS and displacing it from PIP2 headgroups, thereby releasing free PIP2 that recruits active PI3K to the membrane and serves as the substrate for the generation of PIP3. The resulting CaM-triggered activation of PI3K is complete in seconds and is much faster than PKC-triggered activation, which takes minutes. Overall, the available evidence implicates both PKC and CaM in the coupling of Ca2+ and PIP3 signals and suggests these two different pathways have slow and fast activation kinetics, respectively.


Subject(s)
Calmodulin/metabolism , Cell Membrane/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Calcium/metabolism , Calmodulin/chemistry , Calmodulin/genetics , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Microscopy, Fluorescence , Models, Molecular , Myristoylated Alanine-Rich C Kinase Substrate , Phosphatidylinositol 3-Kinase/chemistry , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Protein Domains , Sf9 Cells , Spodoptera , Time Factors
18.
PLoS Biol ; 11(6): e1001587, 2013.
Article in English | MEDLINE | ID: mdl-23824069

ABSTRACT

All class I phosphoinositide 3-kinases (PI3Ks) associate tightly with regulatory subunits through interactions that have been thought to be constitutive. PI3Kγ is key to the regulation of immune cell responses activated by G protein-coupled receptors (GPCRs). Remarkably we find that PKCß phosphorylates Ser582 in the helical domain of the PI3Kγ catalytic subunit p110γ in response to clustering of the high-affinity IgE receptor (FcεRI) and/or store-operated Ca²âº- influx in mast cells. Phosphorylation of p110γ correlates with the release of the p84 PI3Kγ adapter subunit from the p84-p110γ complex. Ser582 phospho-mimicking mutants show increased p110γ activity and a reduced binding to the p84 adapter subunit. As functional p84-p110γ is key to GPCR-mediated p110γ signaling, this suggests that PKCß-mediated p110γ phosphorylation disconnects PI3Kγ from its canonical inputs from trimeric G proteins, and enables p110γ to operate downstream of Ca²âº and PKCß. Hydrogen deuterium exchange mass spectrometry shows that the p84 adaptor subunit interacts with the p110γ helical domain, and reveals an unexpected mechanism of PI3Kγ regulation. Our data show that the interaction of p110γ with its adapter subunit is vulnerable to phosphorylation, and outline a novel level of PI3K control.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/metabolism , Protein Kinase C beta/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Calcium/metabolism , Catalytic Domain , Cell Degranulation/drug effects , Class Ib Phosphatidylinositol 3-Kinase/chemistry , Enzyme Activation/drug effects , Enzyme Stability/drug effects , Extracellular Space/drug effects , Extracellular Space/metabolism , Mast Cells/drug effects , Mast Cells/enzymology , Mast Cells/physiology , Mice , Mice, Inbred C57BL , Models, Biological , Models, Molecular , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Signal Transduction/drug effects , Thapsigargin/pharmacology
19.
Biochem J ; 469(1): 59-69, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26173259

ABSTRACT

Class IB phosphoinositide 3-kinases γ (PI3Kγ) are second-messenger-generating enzymes downstream of signalling cascades triggered by G-protein-coupled receptors (GPCRs). PI3Kγ variants have one catalytic p110γ subunit that can form two different heterodimers by binding to one of a pair of non-catalytic subunits, p87 or p101. Growing experimental data argue for a different regulation of p87-p110γ and p101-p110γ allowing integration into distinct signalling pathways. Pharmacological tools enabling distinct modulation of the two variants are missing. The ability of an anti-p110γ monoclonal antibody [mAb(A)p110γ] to block PI3Kγ enzymatic activity attracted us to characterize this tool in detail using purified proteins. In order to get insight into the antibody-p110γ interface, hydrogen-deuterium exchange coupled to MS (HDX-MS) measurements were performed demonstrating binding of the monoclonal antibody to the C2 domain in p110γ, which was accompanied by conformational changes in the helical domain harbouring the Gßγ-binding site. We then studied the modulation of phospholipid vesicles association of PI3Kγ by the antibody. p87-p110γ showed a significantly reduced Gßγ-mediated phospholipid recruitment as compared with p101-p110γ. Concomitantly, in the presence of mAb(A)p110γ, Gßγ did not bind to p87-p110γ. These data correlated with the ability of the antibody to block Gßγ-stimulated lipid kinase activity of p87-p110γ 30-fold more potently than p101-p110γ. Our data argue for differential regulatory functions of the non-catalytic subunits and a specific Gßγ-dependent regulation of p101 in PI3Kγ activation. In this scenario, we consider the antibody as a valuable tool to dissect the distinct roles of the two PI3Kγ variants downstream of GPCRs.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Class Ib Phosphatidylinositol 3-Kinase , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Animals , Class Ib Phosphatidylinositol 3-Kinase/chemistry , Class Ib Phosphatidylinositol 3-Kinase/genetics , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Deuterium Exchange Measurement , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , HEK293 Cells , Humans , Sf9 Cells , Spodoptera
20.
Biochem J ; 466(2): 359-67, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25495341

ABSTRACT

NIH-12848 (NCGC00012848-02), a putative phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ) inhibitor, was explored as a tool for investigating this enigmatic, low activity, lipid kinase. PI5P4K assays in vitro showed that NIH-12848 inhibited PI5P4Kγ with an IC50 of approximately 1 µM but did not inhibit the α and ß PI5P4K isoforms at concentrations up to 100 µM. A lack of inhibition of PI5P4Kγ ATPase activity suggested that NIH-12848 does not interact with the enzyme's ATP-binding site and direct exploration of binding using hydrogen-deuterium exchange (HDX)-MS (HDX-MS) revealed the putative PI5P-binding site of PI5P4Kγ to be the likely region of interaction. This was confirmed by a series of mutation experiments which led to the identification of a single PI5P4Kγ amino acid residue that can be mutated to its PI5P4Ks α and ß homologue to render PI5P4Kγ resistant NIH-12848 inhibition. NIH-12848 (10 µM) was applied to cultured mouse principal kidney cortical collecting duct (mpkCCD) cells which, we show, express PI5P4Kγ that increases when the cells grow to confluence and polarize. NIH-12848 inhibited the translocation of Na⁺/K⁺-ATPase to the plasma membrane that occurs when mpkCCD cells grow to confluence and also prevented reversibly their forming of 'domes' on the culture dish. Both these NIH-12848-induced effects were mimicked by specific RNAi knockdown of PI5P4Kγ, but not that of PI5P4Ks α or ß. Overall, the data reveal a probable contribution of PI5P4Kγ to the development and maintenance of epithelial cell functional polarity and show that NIH-12848 is a potentially powerful tool for exploring the cell physiology of PI5P4Ks.


Subject(s)
Cell Differentiation/drug effects , Cell Polarity/drug effects , Enzyme Inhibitors/pharmacology , Kidney Cortex/enzymology , Models, Molecular , Phosphatidylinositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Quinazolines/pharmacology , Thiophenes/pharmacology , Amino Acid Substitution , Animals , Binding Sites , Cell Line , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Membrane/metabolism , Deuterium Exchange Measurement , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Kidney Cortex/cytology , Kidney Cortex/drug effects , Kidney Cortex/metabolism , Mice , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphatidylinositol Phosphates/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Conformation , Protein Transport/drug effects , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL