Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2319679121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830106

ABSTRACT

Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.


Subject(s)
Evolution, Molecular , Genome, Plant , Phylogeny , Polyploidy , Chromosomes, Plant/genetics , Gene Duplication
2.
Nucleic Acids Res ; 52(8): 4644-4658, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38375885

ABSTRACT

Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.


Subject(s)
Pseudouridine , RNA, Archaeal , RNA, Transfer , Sulfolobus , Pseudouridine/metabolism , Sulfolobus/genetics , Sulfolobus/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Archaeal/genetics , RNA, Archaeal/metabolism , RNA, Archaeal/chemistry , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , RNA Processing, Post-Transcriptional , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
3.
Plant Cell ; 34(11): 4173-4190, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36005862

ABSTRACT

Small nucleolar RNAs (snoRNAs) are noncoding RNAs (ncRNAs) that guide chemical modifications of structural RNAs, which are essential for ribosome assembly and function in eukaryotes. Although numerous snoRNAs have been identified in plants by high-throughput sequencing, the biological functions of most of these snoRNAs remain unclear. Here, we identified box C/D SnoR28.1s as important regulators of plant growth and development by screening a CRISPR/Cas9-generated ncRNA deletion mutant library in Arabidopsis thaliana. Deletion of the SnoR28.1 locus, which contains a cluster of three genes producing SnoR28.1s, resulted in defects in root and shoot growth. SnoR28.1s guide 2'-O-ribose methylation of 25S rRNA at G2396. SnoR28.1s facilitate proper and efficient pre-rRNA processing, as the SnoR28.1 deletion mutants also showed impaired ribosome assembly and function, which may account for the growth defects. SnoR28 contains a 7-bp antisense box, which is required for 2'-O-ribose methylation of 25S rRNA at G2396, and an 8-bp extra box that is complementary to a nearby rRNA methylation site and is partially responsible for methylation of G2396. Both of these motifs are required for proper and efficient pre-rRNA processing. Finally, we show that SnoR28.1s genetically interact with HIDDEN TREASURE2 and NUCLEOLIN1. Our results advance our understanding of the roles of snoRNAs in Arabidopsis.


Subject(s)
Arabidopsis , RNA, Plant , RNA, Small Nucleolar , Arabidopsis/genetics , Arabidopsis/growth & development , Ribose/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Methylation , RNA Processing, Post-Transcriptional , RNA, Plant/genetics , RNA, Plant/metabolism
4.
Mar Drugs ; 22(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38393036

ABSTRACT

Microalgae are considered to be natural producers of bioactive pigments, with the production of pigments from microalgae being a sustainable and economical strategy that promises to alleviate growing demand. Chlorophyll, as the main pigment of photosynthesis, has been widely studied, but its medicinal applications as an antioxidant, antibacterial, and antitumor reagent are still poorly understood. Chlorophyll is the most important pigment in plants and algae, which not only provides food for organisms throughout the biosphere, but also plays an important role in a variety of human and man-made applications. The biological activity of chlorophyll is closely related to its chemical structure; its specific structure offers the possibility for its medicinal applications. This paper reviews the structural and functional roles of microalgal chlorophylls, commonly used extraction methods, and recent advances in medicine, to provide a theoretical basis for the standardization and commercial production and application of chlorophylls.


Subject(s)
Microalgae , Humans , Chlorophyll/chemistry , Photosynthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Plants
5.
New Phytol ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37529867

ABSTRACT

Arbuscular mycorrhizal (AM) fungi play an important role in soil organic matter (SOM) formation and stabilization. Previous studies have emphasized organic compounds produced by AM fungi as persistent binding agents for aggregate formation and SOM storage. This concept overlooks the multiple biogeochemical processes mediated by AM fungal activities, which drive SOM generation, reprocessing, reorganization, and stabilization. Here, we propose an updated conceptual framework to facilitate a mechanistic understanding of the role of AM fungi in SOM dynamics. In this framework, four pathways for AM fungi-mediated SOM dynamics are included: 'Generating', AM fungal exudates and biomass serve as key sources of SOM chemodiversity; 'Reprocessing', hyphosphere microorganisms drive SOM decomposition and resynthesis; 'Reorganizing', AM fungi mediate soil physical changes and influence SOM transport, redistribution, transformation, and storage; and 'Stabilizing', AM fungi drive mineral weathering and organo-mineral interactions for SOM stabilization. Moreover, we discuss the AM fungal role in SOM dynamics at different scales, especially when translating results from small scales to complex larger scales. We believe that working with this conceptual framework can allow a better understanding of AM fungal role in SOM dynamics, therefore facilitating the development of mycorrhiza-based technologies toward soil health and global change mitigation.

6.
Environ Sci Technol ; 57(33): 12325-12338, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37574860

ABSTRACT

Organic matter (OM) formation and stabilization are critical processes in the eco-engineered pedogenesis of Fe ore tailings, but the underlying mechanisms are unclear. The present 12 month microcosm study has adopted nanoscale secondary ion mass spectrometry (NanoSIMS) and synchrotron-based scanning transmission X-ray microscopy (STXM) techniques to investigate OM formation, molecular signature, and stabilization in tailings at micro- and nanometer scales. In this system, microbial processing of exogenous isotopically labeled OM demonstrated that 13C labeled glucose and 13C/15N labeled plant biomass were decomposed, regenerated, and associated with Fe-rich minerals in a heterogeneous pattern in tailings. Particularly, when tailings were amended with plant biomass, the 15N-rich microbially derived OM was generated and bound to minerals to form an internal organo-mineral association, facilitating further OM stabilization. The organo-mineral associations were primarily underpinned by interactions of carboxyl, amide, aromatic, and/or aliphatic groups with weathered mineral products derived from biotite-like minerals in fresh tailings (i.e., with Fe2+ and Fe3+) or with Fe3+ oxyhydroxides in aged tailings. The study revealed microbial OM generation and subsequent organo-mineral association in Fe ore tailings at the submicrometer scale during early stages of eco-engineered pedogenesis, providing a basis for the development of microbial based technologies toward tailings' ecological rehabilitation.


Subject(s)
Nitrogen , Soil , Soil/chemistry , Minerals/chemistry , Biomass , Iron
7.
Environ Sci Technol ; 57(51): 21779-21790, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38091466

ABSTRACT

Arbuscular mycorrhizal (AM) fungi play an important role in organic matter (OM) stabilization in Fe ore tailings for eco-engineered soil formation. However, little has been understood about the AM fungi-derived organic signature and organo-mineral interactions in situ at the submicron scale. In this study, a compartmentalized cultivation system was used to investigate the role of AM fungi in OM formation and stabilization in tailings. Particularly, microspectroscopic analyses including synchrotron-based transmission Fourier transform infrared (FTIR) and scanning transmission X-ray microspectroscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) were employed to characterize the chemical signatures at the AM fungal-mineral and mineral-OM interfaces at the submicron scale. The results indicated that AM fungal mycelia developed well in the tailings and entangled mineral particles for aggregation. AM fungal colonization enhanced N-rich OM stabilization through organo-mineral association. Bulk spectroscopic analysis together with FTIR mapping revealed that fungi-derived lipids, proteins, and carbohydrates were associated with Fe/Si minerals. Furthermore, STXM-NEXAFS analysis revealed that AM fungi-derived aromatic, aliphatic, and carboxylic/amide compounds were heterogeneously distributed and trapped by Fe(II)/Fe(III)-bearing minerals originating from biotite-like minerals weathering. These findings imply that AM fungi can stimulate mineral weathering and provide organic substances to associate with minerals, contributing to OM stabilization and aggregate formation as key processes for eco-engineered soil formation in tailings.


Subject(s)
Ferric Compounds , Mycorrhizae , Ferric Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Synchrotrons , Fourier Analysis , Minerals/chemistry , Soil/chemistry , Iron
8.
Environ Sci Technol ; 57(51): 21744-21756, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38085882

ABSTRACT

Mineral weathering and alkaline pH neutralization are prerequisites to the ecoengineering of alkaline Fe-ore tailings into soil-like growth media (i.e., Technosols). These processes can be accelerated by the growth and physiological functions of tolerant sulfur oxidizing bacteria (SOB) in tailings. The present study characterized an indigenous SOB community enriched in the tailings, in response to the addition of elemental sulfur (S0) and organic matter (OM), as well as resultant S0oxidation, pH neutralization, and mineral weathering in a glasshouse experiment. The addition of S0 was found to have stimulated the growth of indigenous SOB, such as acidophilic Alicyclobacillaceae, Bacillaceae, and Hydrogenophilaceae in tailings. The OM amendment favored the growth of heterotrophic/mixotrophic SOB (e.g., class Alphaproteobacteria and Gammaproteobacteria). The resultant S0 oxidation neutralized the alkaline pH and enhanced the weathering of biotite-like minerals and formation of secondary minerals, such as ferrihydrite- and jarosite-like minerals. The improved physicochemical properties and secondary mineral formation facilitated organo-mineral associations that are critical to soil aggregate formation. From these findings, co-amendments of S0 and plant biomass (OM) can be applied to enhance the abundance of the indigenous SOB community in tailings and accelerate mineral weathering and geochemical changes for eco-engineered soil formation, as a sustainable option for rehabilitation of Fe ore tailings.


Subject(s)
Iron Compounds , Minerals , Bacteria , Sulfur , Oxidation-Reduction , Iron , Soil , Hydrogen-Ion Concentration
9.
Nucleic Acids Res ; 49(7): 4104-4119, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33784398

ABSTRACT

Eukaryotic rRNAs and snRNAs are decorated with abundant 2'-O-methylated nucleotides (Nm) that are predominantly synthesized by box C/D snoRNA-guided enzymes. In the model plant Arabidopsis thaliana, C/D snoRNAs have been well categorized, but there is a lack of systematic mapping of Nm. Here, we applied RiboMeth-seq to profile Nm in cytoplasmic, chloroplast and mitochondrial rRNAs and snRNAs. We identified 111 Nm in cytoplasmic rRNAs and 19 Nm in snRNAs and assigned guide for majority of the detected sites using an updated snoRNA list. At least four sites are directed by guides with multiple specificities as shown in yeast. We found that C/D snoRNAs frequently form extra pairs with nearby sequences of methylation sites, potentially facilitating the substrate binding. Chloroplast and mitochondrial rRNAs contain five almost identical methylation sites, including two novel sites mediating ribosomal subunit joining. Deletion of FIB1 or FIB2 gene reduced the accumulation of C/D snoRNA and rRNA methylation with FIB1 playing a bigger role in methylation. Our data reveal the comprehensive 2'-O-methylation maps for Arabidopsis rRNAs and snRNAs and would facilitate study of their function and biosynthesis.


Subject(s)
Arabidopsis/genetics , RNA, Chloroplast/metabolism , RNA, Mitochondrial/metabolism , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/metabolism , Ribose/metabolism , Methylation , RNA Processing, Post-Transcriptional
10.
J Environ Manage ; 338: 117837, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37023611

ABSTRACT

Dealkalization is a prerequisite to converting bauxite residue into non-hazardous materials that can be used for various upcycling applications. Structural alkali (Na+) lodged inside the densely packed aluminosilicate-cages of sodalite, the dominant desilication product from refining alumina, is a common culprit in the persistence of strong alkalinity of bauxite residue. The present study unravelled chemical and mineralogical processes involved in sodalite dealkalization, driven by organic and inorganic acids. These acids have different H+ dissociation coefficients and their anions have different chelation abilities with surface metal atoms of aluminosilicate minerals. The efficacy of sodium removal by exposure to the acids was found not only dependent on the acid strength (pKa), but also on the chelating property of dissociated conjugate anions. Following an initial H+-Na+ exchange, Na+ removal from sodalite was correlated with partial hydrolysis of aluminosilicate network and resultant chelating reactions with acid anions. The selection of organic and inorganic acids whose conjugate bases possess good chelating capability in the pH buffer zone 7-9 (e.g., oxalate or phosphate), would provide significant aid to the dealkalization process. The findings in this study are crucial in understanding the conversion of bauxite residue into a soil-like growth media (technosol) for sustainable mined land rehabilitation.


Subject(s)
Aluminum Oxide , Sodium , Aluminum Oxide/chemistry , Aluminum Silicates , Anions , Organic Chemicals
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 552-557, 2023 May.
Article in Zh | MEDLINE | ID: mdl-37248583

ABSTRACT

Objective: To observe the effect of sepsis on skeletal muscle function and to explore the role of skeletal muscle mitochondrial calcium uptake protein 1 (MICU1). Methods: A total of 40 specific-pathogen-free (SPF) healthy male C57BL/6J mice were randomly assigned to 4 groups, a sham operation group (Sham group, n=8), a sepsis modeling 6 h group (cecal ligation and puncture [CLP]-6 h group, n=10), a sepsis modeling 12 h group (CLP-12 h group, n=10), and a sepsis modeling 24 h group (CLP-24 h, n=12). The sepsis model was established by CLP. Mice in the Sham group only underwent laparotomic exploration of the cecum. Another 20 SPF mice were selected. The tibialis anterior muscle on one side was empty-transfected with adeno-associated virus (AAV) as controls (AAV-C), and the tibialis anterior muscle on the other side was transfected with AAV to enhance MICU1 expression (AAV-M). The mice were randomly assigned to two groups, a sham operation group (AAV-C-Sham and AAV-M-Sham, n=8) and a sepsis model 24 h group (AAV-C-CLP and AAV-M-CLP, n=12). The grip strength and compound muscle action potential (CMAP) of the tibialis anterior muscle were measured in each group at the corresponding time points. The levels of inflammatory factors, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), in the skeletal muscle were measured by ELISA. The morphological changes of skeletal muscle cells were observed through H&E staining. The expression levels of MICU1 and muscle atrophy-related proteins, including muscle RING-finger containing protein 1 (MuRF1) and muscle atrophy Fbox protein (MAFbx), were determined by Western blot. The expression levels of MICU1 mRNA in skeletal muscle were determined by RT-qPCR. Results: Compared with mice in the Sham group, mice in the CLP group showed decreased body weight ( P<0.05); their grip strength decreased with the prolongation of CLP modeling time ( P<0.05); the amplitude of CMAP decreased, showing prolonged duration and latency ( P<0.05); the expression levels of inflammatory factors, including TNF-α and IL-6, in skeletal muscle increased gradually ( P<0.05); the fiber diameter and cross-sectional area of skeletal muscle decreased gradually with the prolongation of modeling time ( P<0.05); the protein expression levels of MuRF1and MAFbx proteins increased gradually ( P<0.05); the expression levels of MICU1 protein and mRNA decreased gradually ( P<0.05). There was no significant difference in all indices between AAV-M-Sham and AAV-C-Sham groups ( P>0.05). Compared with mice in the AAV-C-CLP group, mice in the AAV-M-CLP group showed increased grip strength ( P<0.05); the amplitude of CMAP increased, showing shortened duration and latency ( P <0.05); the fiber diameter and cross-sectional area of skeletal muscle increased ( P<0.05); the expression levels of MuRF1and MAFbx decreased ( P<0.05). Conclusion: Sepsis leads to skeletal muscle dysfunction, which is related to the decrease in mitochondrial MICU1 expression.


Subject(s)
Sepsis , Tumor Necrosis Factor-alpha , Mice , Male , Animals , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Calcium/metabolism , Mice, Inbred C57BL , Muscle, Skeletal , Sepsis/complications , Sepsis/metabolism , Muscular Atrophy , Calcium-Binding Proteins , Mitochondrial Membrane Transport Proteins/metabolism
12.
J Cell Mol Med ; 25(18): 8775-8788, 2021 09.
Article in English | MEDLINE | ID: mdl-34337860

ABSTRACT

Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti-inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established a cisplatin-induced AKI mouse model and a co-culture system of BMDM and tubular epithelial cells (mTEC) to verify the renoprotective and anti-inflammatory effects of artesunate on AKI, and explored the underlying mechanism. We found that artesunate strongly down-regulated the serum creatinine and BUN levels in AKI mice, reduced the necroptosis of tubular cells and down-regulated the expression of the tubular injury molecule Tim-1. On the other hand, artesunate strongly inhibited the mRNA expression of inflammatory cytokines (IL-1ß, IL-6 and TNF-α), protein levels of inflammatory signals (iNOS and NF-κB) and necroptosis signals (RIPK1, RIPK3 and MLKL) in kidney of AKI mouse. Notably, the co-culture system proved that Mincle in macrophage can aggravate the inflammation and necroptosis of mTEC induced by LPS, and artesunate suppressed the expression of Mincle in macrophage of kidney in AKI mouse. Overexpression of Mincle in BMDM restored the damage and necroptosis inhibited by artesunate in mTEC, indicating Mincle in macrophage is the target of artesunate to protect tubule cells in AKI. Our findings demonstrated that artesunate can significantly improve renal function in AKI, which may be related to the inhibition of Mincle-mediated macrophage inflammation, thereby reducing the damage and necroptosis to tubular cells that provide new option for the treatment of AKI.


Subject(s)
Acute Kidney Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Artesunate/pharmacology , Inflammation/drug therapy , Necroptosis/drug effects , Animals , Macrophages , Male , Mice , Mice, Inbred C57BL , Primary Cell Culture
13.
Environ Sci Technol ; 55(12): 8020-8034, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34043324

ABSTRACT

The neutralization of strongly alkaline pH conditions and acceleration of mineral weathering in alkaline Fe ore tailings have been identified as key prerequisites for eco-engineering tailings-soil formation for sustainable mine site rehabilitation. Acidithiobacillus ferrooxidans has great potential in neutralizing alkaline pH and accelerating primary mineral weathering in the tailings but little information is available. This study aimed to investigate the colonization of A. ferrooxidans in alkaline Fe ore tailings and its role in elemental sulfur (S0) oxidation, tailings neutralization, and Fe-bearing mineral weathering through a microcosm experiment. The effects of biological S0 oxidation on the weathering of alkaline Fe ore tailings were examined via various microspectroscopic analyses. It is found that (1) the A. ferrooxidans inoculum combined with the S0 amendment rapidly neutralized the alkaline Fe ore tailings; (2) A. ferrooxidans activities induced Fe-bearing primary mineral (e.g., biotite) weathering and secondary mineral (e.g., ferrihydrite and jarosite) formation; and (3) the association between bacterial cells and tailings minerals were likely facilitated by extracellular polymeric substances (EPS). The behavior and biogeochemical functionality of A. ferrooxidans in the tailings provide a fundamental basis for developing microbial-based technologies toward eco-engineering soil formation in Fe ore tailings.


Subject(s)
Acidithiobacillus , Iron , Bacteria , Hydrogen-Ion Concentration , Minerals , Oxidation-Reduction , Sulfur
14.
Environ Sci Technol ; 55(19): 13045-13060, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34565140

ABSTRACT

Dissolved organic matter (DOM) plays an important role in soil structure and biogeochemical function development, which are fundamental for the eco-engineering of tailings-soil formation to underpin sustainable tailings rehabilitation. In the present study, we have characterized the DOM composition and its molecular changes in an alkaline Fe ore tailing primed with organic matter (OM) amendment and plant colonization. The results demonstrated that microbial OM decomposition dramatically increased DOM richness and average molecular weight, as well as its degree of unsaturation, aromaticity, and oxidation in the tailings. Plant colonization drove molecular shifts of DOM by depleting the unsaturated compounds with a high value of nominal oxidation state of carbon (NOSC), such as tannin-like and carboxyl-rich polycyclic-like compounds. This may be partially related to their sequestration by secondary Fe-Si minerals formed from rhizosphere-driven mineral weathering. Furthermore, the molecular shifts of DOM may have also resulted from plant-regulated microbial community changes, which further influenced DOM molecules through microbial-DOM interactions. These findings contribute to the understanding of DOM biogeochemistry and ecofunctionality in the tailings during early pedogenesis driven by OM input and pioneer plant/microbial colonization, providing an important basis for the development of strategies and technologies toward the eco-engineering of tailings-soil formation.


Subject(s)
Microbiota , Soil Pollutants , Minerals , Rhizosphere , Soil , Soil Pollutants/analysis
15.
BMC Neurol ; 20(1): 149, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32321464

ABSTRACT

BACKGROUND: Cavernous hemangioma of the orbit is a benign tumor mostly located behind the eye globe, but it rarely spread into the brain, which is called cerebral cavernous malformation as well, the lesion in the brain is irregular and enlarged blood. Here we report one particular case of craniorbital cavernous hemangioma. CASE PRESENTATION: A 53-year-old woman presented with exophthalmos of the right eye and reduced vision. Computerized tomographical (CT) scan showed osteolytic honeycomb radial changes of the outer plate of the skull. A magnetic resonance imaging (MRI) scan was performed to obtain further details. T1-weighted (T1W) imaging showed slightly low signal mixed with small patchy high signal. T2-weighted (T2W) imaging showed uneven high signal. There was obvious enhancement in the middle and no enhancement in the peripheral bars. A surgically manage was performed using a left frontotemporal approach, the tumor excised fully, and the histopathology results revealed a cavernous hemangioma. The patient recovered well in the follow-up. Post-operative CT scan identified the lesion was successfully resected, MRI scan also showed full resection and enhanced signal from the presence of fat. CONCLUSIONS: Craniorbital cavernous hemangioma is uncommon, however within the cranium, they can lead to numerous complications particularly if affecting the visual apparatus. it could be diagnosed by imaging, which CT scan shows osteolytic honeycomb radial changes of the outer plate of the skull, T1W imaging shows slightly low signal mixed with small patchy high signal, T2W imaging shows uneven high signal, it is obvious enhancement in the middle and no enhancement in the peripheral bars. The surgically manage is the ideally treatment when there are some symptoms.


Subject(s)
Hemangioma, Cavernous , Orbit/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Tomography, X-Ray Computed
16.
Neurochem Res ; 44(11): 2658-2669, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31612303

ABSTRACT

Subarachnoid hemorrhage (SAH) is a form of stroke associated with high mortality and morbidity. Despite advances in treatment for SAH, the prognosis remains poor. We have previously demonstrated that glycine, a non-essential amino acid is involved in neuroprotection following intracerebral hemorrhage via the Phosphatase and tensin homolog (PTEN)/protein kinase B (AKT) signaling pathway. However, whether it has a role in inducing neuroprotection in SAH is not known. The present study was designed to investigate the role of glycine in SAH. In this study, we show that glycine can reduce brain edema and protect neurons in SAH via a novel pathway. Following a hemorrhagic episode, there is evidence of downregulation of S473 phosphorylation of AKT (p-AKT), and this can be reversed with glycine treatment. We also found that administration of glycine can reduce neuronal cell death in SAH by activating the AKT pathway. Glycine was shown to upregulate miRNA-26b, which led to PTEN downregulation followed by AKT activation, resulting in inhibition of neuronal death. Inhibition of miRNA-26b, PTEN or AKT activation suppressed the neuroprotective effects of glycine. Glycine treatment also suppressed SAH-induced M1 microglial polarization and thereby inflammation. Taken together, we conclude that glycine has neuroprotective effects in SAH and is mediated by the miRNA-26b/PTEN/AKT signaling pathway, which may be a therapeutic target for treatment of SAH injury.


Subject(s)
Glycine/pharmacology , MicroRNAs/physiology , Neuroprotective Agents/pharmacology , PTEN Phosphohydrolase/physiology , Signal Transduction/physiology , Subarachnoid Hemorrhage/physiopathology , Animals , Brain/pathology , Cell Line, Tumor , Humans , Male , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/pathology
17.
Environ Sci Technol ; 53(23): 13720-13731, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31697487

ABSTRACT

The formation of water-stable aggregates in finely textured and polymineral magnetite Fe ore tailings is one of the critical processes in eco-engineering tailings into soil-like substrates as a new way to rehabilitate the tailings. Organic matter (OM) amendment and plant colonization are considered to be effective in enhancing water-stable aggregation, but the underlying mechanisms have not yet been elucidated. The present study aimed to characterize detailed changes in physicochemistry, Fe-bearing mineralogy, and organo-mineral interactions in magnetite Fe ore tailings subject to the combined treatments of OM amendment and plant colonization, by employing various microspectroscopic methods, including synchrotron-based X-ray absorption fine structure spectroscopy and nanoscale secondary ion mass spectroscopy. The results indicated that OM amendment and plant colonization neutralized the tailings' alkaline pH and facilitated water-stable aggregate formation. The resultant aggregates were consequences of ligand-promoted bioweathering of primary Fe-bearing minerals (mainly biotite-like minerals) and the formation of secondary Fe-rich mineral gels. Especially, the sequestration of OM (rich in carboxyl, aromatic, and/or carbonyl C) by Fe-rich minerals via ligand-exchange and/or hydrophobic interactions contributed to the aggregation. These findings have uncovered the processes and mechanisms of water-stable aggregate formation driven by OM amendment and plant colonization in alkaline Fe ore tailings, thus providing important basis for eco-engineered pedogenesis in the tailings.


Subject(s)
Carbon Sequestration , Ferrosoferric Oxide , Minerals , Soil , Water
18.
Neurochem Res ; 43(4): 775-784, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29460119

ABSTRACT

Curcumin, a phenolic pigment, plays an inhibitory role in astrocytes activation, a key step for neuropathic pain (NP). The present study aimed to investigate the mechanism behind the therapeutic effect of Curcumin on NP in vitro. Specifically, we investigated the inhibitory effect of Curcumin on tumor necrosis factor-α (TNF-α)-induced astrocyte migration. We also studied the effects of Curcumin on monocyte chemoattractant protein-1(MCP-1) expression and activity, as well as super oxide dismutase-2 (SOD2) expression and activity in TNF-α-induced astrocytes. Additionally, we investigated whether the adenosine-monophosphate-activated protein kinase signaling (AMPK) pathway was involved in this process. Our data demonstrated that Curcumin inhibited TNF-α-induced astrocytes migration, decreased MCP-1 expression, and up-regulated SOD2 expression in TNF-α-induced astrocytes in vitro. Our study also indicated that this process was mediated through the AMPK signaling pathway, as addition of Curcumin significantly increased the level of phosphorylated AMPK protein. Furthermore, the specific AMPK activator AICAR (5-aminoimidazole-4-carboxamide 1-D-ribofuranoside) mimicked the effects of Curcumin, whereas a selective AMPK inhibitor Compound C (also called dorsomorphin) partially blocked its function. These results could shed light on understanding of the molecular basis for the inhibition of Curcumin on MCP-1 expression during the process of astrocyte activation, and provide a molecular mechanism for using Curcumin in neuropathic pain.


Subject(s)
Astrocytes/drug effects , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/biosynthesis , Curcumin/pharmacology , MAP Kinase Signaling System/drug effects , Tumor Necrosis Factor-alpha/toxicity , Animals , Animals, Newborn , Antioxidants/pharmacology , Astrocytes/metabolism , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Gene Expression , MAP Kinase Signaling System/physiology , Rats , Rats, Sprague-Dawley
19.
Environ Sci Technol ; 52(14): 7640-7651, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29894629

ABSTRACT

Nano zero-valent iron (nZVI) has great potential in the remediation of metal(loid)-contaminated soils, but its efficiency in metal(loid) stabilization in the plant-microbe continuum is unclear. This study investigated nZVI-mediated metal(loid) behavior in the arbuscular mycorrhizal (AM) fungal-maize ( Zea mays L.) plant association. Plants with AM fungal inoculation were grown in metal(loid)- (mainly Zn and Pb) contaminated soils (Litavka River, Czech Republic) amended with/without 0.5% (w/w) nZVI. The results showed that nZVI decreased plant metal(loid) uptake but inhibited AM development and its function in metal(loid) stabilization in the rhizosphere. AM fungal inoculation alleviated the physiological stresses caused by nZVI and restrained nZVI efficiency in reducing plant metal(loid) uptake. Micro proton-induced X-ray emission (µ-PIXE) analysis revealed the sequestration of Zn (possibly through binding to thiols) by fungal structures in the roots and the precipitation of Pb and Cu in the mycorrhizal root rhizodermis (possibly by Fe compounds originated from nZVI). XRD analyses further indicated that Pb/Fe mineral transformations in the rhizosphere were influenced by AM and nZVI treatments. The study revealed the counteractive effects of AM and nZVI on plant metal(loid) uptake and uncovered details of metal(loid) behavior in the AM fungal-root-nZVI system, calling into question about nZVI implementation in mycorrhizospheric systems.


Subject(s)
Metals, Heavy , Mycorrhizae , Soil Pollutants , Czech Republic , Iron , Plant Roots
20.
Mycorrhiza ; 28(3): 285-300, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29455337

ABSTRACT

Liquorice (Glycyrrhiza uralensis) is an important medicinal plant for which there is a huge market demand. It has been reported that arbuscular mycorrhizal (AM) symbiosis and drought stress can stimulate the accumulation of the active ingredients, glycyrrhizin and liquiritin, in liquorice plants, but the potential interactions of AM symbiosis and drought stress remain largely unknown. In the present work, we investigated mycorrhizal effects on plant growth and accumulation of glycyrrhizin and liquiritin in liquorice plants under different water regimes. The results indicated that AM plants generally exhibited better growth and physiological status including stomatal conductance, photosynthesis rate, and water use efficiency compared with non-AM plants. AM inoculation up-regulated the expression of an aquaporin gene PIP and decreased root abscisic acid (ABA) concentrations under drought stress. In general, AM plants displayed lower root carbon (C) and nitrogen (N) concentrations, higher phosphorus (P) concentrations, and therefore, lower C:P and N:P ratios but higher C:N ratio than non-AM plants. On the other hand, AM inoculation increased root glycyrrhizin and liquiritin concentrations, and the mycorrhizal effects were more pronounced under moderate drought stress than under well-watered condition or severe drought stress for glycyrrhizin accumulation. The accumulation of glycyrrhizin and liquiritin in AM plants was consistent with the C:N ratio changes in support of the carbon-nutrient balance hypothesis. Moreover, the glycyrrhizin accumulation was positively correlated with the expression of glycyrrhizin biosynthesis genes SQS1, ß-AS, CYP88D6, and CYP72A154. By contrast, no significant interaction of AM inoculation with water treatment was observed for liquiritin accumulation, while we similarly observed a positive correlation between liquiritin accumulation and the expression of a liquiritin biosynthesis gene CHS. These results suggested that AM inoculation in combination with proper water management potentially could improve glycyrrhizin and liquiritin accumulation in liquorice roots and may be practiced to promote liquorice cultivation.


Subject(s)
Gene Expression Regulation, Plant , Glomeromycota/physiology , Glycyrrhiza uralensis/microbiology , Glycyrrhiza uralensis/physiology , Mycorrhizae/physiology , Droughts , Flavanones/metabolism , Glucosides/metabolism , Glycyrrhiza uralensis/genetics , Glycyrrhiza uralensis/growth & development , Glycyrrhizic Acid/metabolism , Minerals/metabolism , Photosynthesis , Stress, Physiological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL