Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 774
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(11): e2312136121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38446848

ABSTRACT

Anxiety is a remarkably common condition among patients with pharyngitis, but the relationship between these disorders has received little research attention, and the underlying neural mechanisms remain unknown. Here, we show that the densely innervated pharynx transmits signals induced by pharyngeal inflammation to glossopharyngeal and vagal sensory neurons of the nodose/jugular/petrosal (NJP) superganglia in mice. Specifically, the NJP superganglia project to norepinephrinergic neurons in the nucleus of the solitary tract (NTSNE). These NTSNE neurons project to the ventral bed nucleus of the stria terminalis (vBNST) that induces anxiety-like behaviors in a murine model of pharyngeal inflammation. Inhibiting this pharynx→NJP→NTSNE→vBNST circuit can alleviate anxiety-like behaviors associated with pharyngeal inflammation. This study thus defines a pharynx-to-brain axis that mechanistically links pharyngeal inflammation and emotional response.


Subject(s)
Pharyngitis , Pharynx , Humans , Animals , Mice , Anxiety , Brain , Sensory Receptor Cells , Inflammation
2.
J Am Chem Soc ; 146(13): 9205-9215, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38523309

ABSTRACT

The nonfused thiophene-benzene-thiophene (TBT) unit offers advantages in obtaining low-cost organic photovoltaic (OPV) materials due to its simple structure. However, OPV cells, including TBT-based acceptors, exhibit significantly lower energy conversion efficiencies. Here, we introduce a novel approach involving the design and synthesis of three TBT-based acceptors by substituting different position-branched side chains on the TBT unit. In comparison to TBT-10 and TBT-11, TBT-13, which exclusively incorporates α-position branched side chains with a large steric hindrance, demonstrates a more planar and stable conformation. When blended with the donor PBQx-TF, TBT-13-based blend film achieves favorable π-π stacking and aggregation characteristics, resulting in excellent charge transfer performance in the corresponding device. Due to the simultaneous enhancements in short-circuit current density and fill factor, the TBT-13-based OPV cell obtains an outstanding efficiency of 16.1%, marking the highest value for the cells based on fully nonfused acceptors. Our work provides a practical molecular design strategy for high-performance and low-cost OPV materials.

3.
J Am Chem Soc ; 146(12): 8697-8705, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38478698

ABSTRACT

Organic photovoltaic (OPV) cells have demonstrated remarkable success on the laboratory scale. However, the lack of cathode interlayer materials for large-scale production still limits their practical application. Here, we rationally designed and synthesized a cathode interlayer, named NDI-Ph. Benefiting from their well-modulated work function and self-doping effect, NDI-Ph-based binary OPV cells achieve an excellent power conversion efficiency (PCE) of 19.1%. NDI-Ph can be easily synthesized on a 100 g scale with a low cost of 1.96 $ g-1 using low-cost raw materials and a simple postprocessing method. In addition, the insensitivity to the film thickness of NDI-Ph enables it to maintain a high PCE at various coating speeds and solution concentrations, demonstrating excellent adaptability for high-throughput OPV cell manufacturing. As a result, a module with 21.9 cm2 active area achieves a remarkable PCEactive of 15.8%, underscoring the prospects of NDI-Ph in the large-scale production of OPV cells.

4.
J Med Virol ; 96(1): e29396, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235848

ABSTRACT

The RNA-dependent RNA polymerase (RdRp) is a crucial element in the replication and transcription of RNA viruses. Although the RdRps of lethal human coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) have been extensively studied, the molecular mechanism of the catalytic subunit NSP12, which is involved in pathogenesis, remains unclear. In this study, the biochemical and cell biological results demonstrate the interactions between SARS-CoV-2 NSP12 and seven host proteins, including three splicing factors (SLU7, PPIL3, and AKAP8). The entry efficacy of SARS-CoV-2 considerably decreased when SLU7 or PPIL3 was knocked out, indicating that abnormal splicing of the host genome was responsible for this occurrence. Furthermore, the polymerase activity and stability of SARS-CoV-2 RdRp were affected by the three splicing factors to varying degrees. In addition, NSP12 and its homologues from SARS-CoV and MERS-CoV suppressed the alternative splicing of cellular genes, which were influenced by the three splicing factors. Overall, our research illustrates that SARS-CoV-2 NSP12 can engage with various splicing factors, thereby impacting virus entry, replication, and gene splicing. This not only improves our understanding of how viruses cause diseases but also lays the foundation for the development of antiviral therapies.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , RNA-Dependent RNA Polymerase/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , RNA Splicing Factors
5.
Glob Chang Biol ; 30(4): e17267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38563471

ABSTRACT

Lakes, as integral social-ecological systems, are hotspots for exploring climatic and anthropogenic impacts, with crucial pathways revealed by continuous sediment records. However, the response of multi-proxies in large shallow lakes to typical abrupt events and sustained drivers since the Anthropocene remains unclear. Here, we explored the driver-identification relationships between multi-proxy peaks and natural and anthropogenic events as well as the attribution of short-term perturbations and long-term pressures. To this end, sediment core records, socio-ecological data, and documented events from official records were integrated into a large shallow lake (Dongting Lake, China). Significant causal cascades and path effects (goodness-of-fit: 0.488; total effect: -1.10; p < .001) were observed among catchment environmental proxies, lake biogenic proxies, and mixed-source proxies. The peak-event identification rate (PEIR) and event-peak driving rate were proposed, and values of 28.57%-46.43% and 50%-81.25% were obtained, respectively. The incomplete accuracy of depicting event perturbations using sediment proxies was caused by various information filters both inside and outside the lake. PEIRs for compound events were 1.41 (±0.72) and 1.09 (±0.46) times greater than those for anthropogenic-dominated and natural-dominated events, respectively. Furthermore, socio-economic activity, hydrologic dynamics, land-use changes, and agriculture exerted significant and persistent pressures, cumulatively contributing 55.3%-80.9% to alterations in sediment proxies. Relatively synergistic or antagonistic trends in temporal contributions of these forces were observed after 2000, which were primarily attributed to the "Grain for Green" project and the Three Gorges Dam. This study represents one of the few investigations to distinguish the driver-response relationship of multiple proxies in large shallow lakes under typical event perturbations and long-term sustained pressures since the Anthropocene. The findings will help policymakers and managers address ecological perturbations triggered by climate change and human activities over long-term periods.


Subject(s)
Geologic Sediments , Lakes , Humans , Ecosystem , China , Agriculture , Environmental Monitoring
6.
Oncology ; 102(3): 206-216, 2024.
Article in English | MEDLINE | ID: mdl-37517399

ABSTRACT

INTRODUCTION: BRCA1/2 germline mutations are the most well-known genetic determinants for breast cancer. However, the distribution of germline mutations in non-BRCA1/2 cancer susceptibility genes in Chinese breast cancer patients is unclear. The association between clinical characteristics and germline mutations remains to be explored. METHODS: Consecutive breast cancer patients from Peking University People's Hospital were enrolled. Clinical characteristics were collected, and next-generation sequencing was performed using blood samples of participants to identify pathogenic/likely pathogenic (P/LP) germline mutations in 32 cancer susceptibility genes including homologous recombination repair (HRR) genes. RESULTS: A total of 885 breast cancer patients underwent the detection of germline mutations. 107 P/LP germline mutations of 17 genes were identified in 116 breast cancer patients including 79 (8.9%) in BRCA1/2 and 40 (4.5%) in 15 non-BRCA1/2 genes. PALB2 was the most frequently mutated gene other than BRCA1/2 but still relatively rare (1.1%). There were 38 novel P/LP germline variants detected. P/LP germline mutations in BRCA1/2 were significantly associated with onset age (p < 0.001), the family history of breast/ovarian cancer (p = 0.010), and molecular subtype (p < 0.001), while being correlated with onset age (p < 0.001), site of breast tumor (p = 0.028), and molecular subtype (p < 0.001) in HRR genes. CONCLUSIONS: The multiple-gene panel prominently increased the detection rate of P/LP germline mutations in 32 cancer susceptibility genes compared to BRCA1/2 alone. Onset younger than or equal to 45 years of age, bilateral and triple-negative breast cancer patients may be more likely to be recommended for detecting P/LP germline mutations in HRR genes.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Germ-Line Mutation , BRCA1 Protein/genetics , Genetic Predisposition to Disease , BRCA2 Protein/genetics , Triple Negative Breast Neoplasms/genetics , High-Throughput Nucleotide Sequencing
7.
Reprod Biomed Online ; 49(2): 103977, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38824761

ABSTRACT

RESEARCH QUESTION: Can microbes vertically transmit from semen and follicular fluid to embryo culture media during assisted reproductive technology (ART) treatment? DESIGN: Spent embryo culture media (SECM), seminal fluid and follicular fluid samples were collected from 61 couples with infertility undergoing ART treatment at the Prince of Wales Hospital, Hong Kong SAR, China. Metagenomic analysis was conducted using 16s rRNA sequencing to identify the source of microbes in SECM, correlation between the semen microbiome and male infertility, and correlation between the follicular fluid microbiome and female infertility. RESULTS: Microbial vertical transmission into SECM was reported in 82.5% of cases, and semen was the main source of contamination in conventional IVF cases. The increased abundances of Staphylococcus spp. and Streptococcus anginosus in semen had negative impacts on total motility and sperm count, respectively (P < 0.001). Significant increases in abundance of the genera Prophyromonas, Neisseria and Facklamia were observed in follicular fluid in women with anovulation, uterine factor infertility and unexplained infertility, respectively (P < 0.01). No significant correlation was found between the bacteria identified in all sample types and ART outcomes, including fertilization rate, embryo development, number of available embryos, and clinical pregnancy rate. CONCLUSION: Embryo culture media can be contaminated during ART treatment, not only by seminal microbes but also by follicular fluid and other sources of microbes. Strong correlations were found between specific microbial taxa in semen and sperm quality, and between the follicular fluid microbiome and the aetiology of female infertility. However, no significant association was found between the microbiomes of SECM, semen and follicular fluid and ART outcomes.

8.
J Biochem Mol Toxicol ; 38(1): e23523, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37654027

ABSTRACT

Pyroptosis, a newly discovered pro-inflammatory programmed necrosis of cells, serves as an initiating and promoting event that leads to intervertebral disc (IVD) degeneration (IDD). Endoplasmic reticulum stress (ERS) and autophagy are vital regulatory mechanisms of cellular homeostasis, which is also closely related to IDD. However, the role and relationship of ERS and autophagy in the pyroptosis of nucleus pulposus cell (NPC) are not well understood. In this research, we aimed to elucidate the role and mechanism of ERS-C/EBP homologous protein (CHOP) in lipopolysaccharide (LPS)-induced cell pyroptosis and determine its interaction with autophagy. ERS and autophagy inducers or inhibitors were used or not in the preconditioning of rat NPCs. Cell viability, pyroptosis-related protein expression, caspase-1 activity assay, and enzyme-linked immunosorbent assay were performed to observe rat NPC pyroptosis after the treatment of LPS. Activation of the ERS pathway and autophagy were assessed by quantitative real-time PCR, western blot analyses, and immunofluorescence staining assay to classify the molecular mechanisms. Our results showed that LPS stimulation induced NPC pyroptosis with concomitant activation of the ERS-CHOP pathway and initiated autophagy. Activation of the ERS-CHOP pathway exacerbated rat NPC pyroptosis, whereas autophagy inhibited cell pyroptosis. LPS-induced cell pyroptosis and CHOP upregulation were negatively regulated by autophagy. LPS-induced autophagy was depressed by the ERS inhibitor but aggravated by the ERS inducer. Taken together, our findings suggested that LPS induced NPC pyroptosis by activating ERS-CHOP signaling and ERS mediated LPS-induced autophagy, which in turn alleviated NPC pyroptosis by inhibiting CHOP signaling.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Rats , Animals , Lipopolysaccharides/toxicity , Nucleus Pulposus/metabolism , Pyroptosis , Endoplasmic Reticulum Stress , Intervertebral Disc Degeneration/metabolism , Apoptosis/physiology , Autophagy
9.
Oral Dis ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888044

ABSTRACT

BACKGROUND: Apoptosis can fuel oncogenesis by the education of surrounding stromal cells. However, the function of cancer-associated fibroblasts (CAFs), which interacted with apoptotic cancer cells, in oral squamous cell carcinoma (OSCC) progression is still unknown. OBJECTIVES: This study aimed to explore the prognostic value of apoptosis and the biological effects of CAFs, interacted with apoptotic cancer cells, on OSCC. METHODS: A total of 166 samples from OSCC patients were stained via TUNEL reaction to evaluate the correlation between apoptosis and clinical characteristics. Cell viability and proliferation were assessed through flow cytometry and CCK-8 assays, respectively. Levels of mRNA and protein were examined through qRT-PCR, western blot and immunofluorescence. RESULTS: Higher percentage of apoptotic cancer cells in OSCC positively correlated with more Ki67+ cells and predicted poor clinical outcomes. Conditioned medium from CAFs exposed to apoptotic cancer cells significantly facilitated cell proliferation. Co-culture CAFs with apoptotic cancer cells dampened the phosphorylation of STING/IRF3 signaling, as well as the production of type I interferon, which was required for the inhibition of OSCC cell proliferation. CONCLUSION: These results demonstrate the interplay between apoptotic cancer cells and CAFs promotes OSCC proliferation via STING signaling, identifying a potential therapy targeted CAFs surrounded with apoptotic cancer cells for OSCC.

10.
Eur Arch Otorhinolaryngol ; 281(4): 1735-1743, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37924365

ABSTRACT

PURPOSE: To investigate the effect of the interval between bilateral cochlear implantation on the development of bilateral peripheral auditory pathways as revealed by the electrically evoked auditory brainstem response (EABR). METHODS: Fifty-eight children with profound bilateral sensorineural hearing loss were recruited. Among them, 33 children received sequential bilateral cochlear implants (CIs), and 25 children received simultaneous bilateral CIs. The bilateral EABRs evoked by electrical stimulation from the CI electrode were recorded on the day of second-side CI activation. RESULTS: The latencies of wave III (eIII) and wave V (eV) were significantly shorter on the first CI side than on the second CI side in children with sequential bilateral CIs but were similar between the two sides in children with simultaneous bilateral CIs. Furthermore, the latencies were prolonged from apical to basal channels along the cochlea in the two groups. In children with sequential CIs, the inter-implant interval was negatively correlated with the eV latency on the first CI side and was positively correlated with bilateral differences in the eIII and eV latencies. CONCLUSIONS: Unilateral CI use promotes the maturation of ipsilateral auditory conduction function. However, a longer inter-implant interval results in more unbalanced development of bilateral auditory brainstem pathways. Bilateral cochlear implantation with no or a short interval is recommended.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Hearing Loss, Sensorineural , Child , Humans , Hearing Loss, Sensorineural/surgery , Evoked Potentials, Auditory, Brain Stem/physiology , Brain Stem/surgery , Deafness/surgery
11.
Foodborne Pathog Dis ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597599

ABSTRACT

Listeria monocytogenes is a foodborne pathogen. In 2022, we collected 15 strains of L. monocytogenes isolated from patients in some foodborne disease sentinel monitoring hospitals in Sichuan Province. Through whole genome sequencing (WGS), we obtained the virulence genes carried by the strains, multi-locus sequence typing (MLST), core genome MLST (cgMLST), clonal complex (CC), and serum groups and constructed a phylogenetic tree and minimum spanning tree with nonhuman strains. An analysis shows that all 15 strains of L. monocytogenes carry virulence genes LIPI-1 and LIPI-2, whereas the carrying rates of LIPI-3 and LIPI-4 virulence genes are relatively low. The MLST typing results showed a total of 10 sequence types (ST), including 10 CCs, with ST7 being the dominant type. The cgMLST clearly distinguishes strains of different lineages and CC types. The serum group is divided into three types: IIa, IIb, and IVb, with IIa being the dominant serum group. An analysis of antibiotic genes showed that all 15 strains carried FosX, lin, mprF, and norB with high carrying rates. The minimum inhibitory concentration results indicated that all were susceptible to eight antibiotics (ampicillin, penicillin, tetracycline, meropenem, erythromycin, vancomycin, ciprofloxacin, and trimethoprim-sulfamethoxazole). The analysis of strains isolated from different sources of Listeria revealed varying degrees of diversity, and the contamination of meat and environment within the province is closely related to clinical cases. L. monocytogenes isolated from clinical cases in Sichuan Province carry multiple virulence and antibiotic genes, with high potential pathogenicity. It is necessary to further strengthen the monitoring and control of food and environment by L. monocytogenes within Sichuan Province.

12.
BMC Nurs ; 23(1): 159, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443951

ABSTRACT

BACKGROUND: The retention of new nurses has become a major challenge for medical institutions. Job embeddedness has been seen as a valuable lens for examining nurse turnover, but greater details about job embeddedness are rarely disclosed, especially among new nurses. This study aimed to reveal how the nursing work environment, head nurse leadership and presenteeism shape job embeddedness in this population from the perspective of conservation of resources (COR) theory. METHOD: A cross-sectional multicentre study involving 436 participants from 10 cities and 33 hospitals was conducted over 4 months. Samples were selected using a two-stage convenience sampling method. A sequential multiple mediation model performed with SPSS-PROCESS was used to analyse the relationships among the nursing work environment, head nurse leadership, presenteeism and job embeddedness. RESULTS: The nursing work environment not only directly affects the job embeddedness of new nurses (ß = 0.480, p < 0.001) but also indirectly affects it through the sequential multiple mediating effects of head nurse leadership and presenteeism (R2 = 0.535, F = 82.160, p < 0.001). CONCLUSIONS: New nurses' job embeddedness needs to be improved. These results suggest that preserving adequate resources for new nurses, such as work environment resources, head nurse leadership resources, and individual productivity resources, is an effective way to shape their job embeddedness. In addition, when a certain resource is insufficient, fully considering the principles of investment and buffering between resources and providing reciprocal, alternative, or buffer resources in a timely manner are necessary to improve new nurses' job embeddedness. LARGE LANGUAGE MODELS: Large language models (LLMs), such as ChatGPT, were not used during the writing of this article. An expert native English speaker performed language revision.

13.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2619-2628, 2024 May.
Article in Zh | MEDLINE | ID: mdl-38812162

ABSTRACT

Nontraumatic avascular necrosis of the femoral head(NANFH) is a common and refractory femoral head disease that causes bone death due to interruption of blood supply. Early clinical symptoms are atypical, such as hip pain and limited joint function. In the late stage, severe pain, shortening of the affected limb, claudication, and other serious symptoms are common, which se-riously affects the quality of life of patients. Therefore, it is of great significance to actively improve the clinical symptoms of NANFH to enhance the quality of life of patients. The pathogenesis of NANFH is complex, such as traumatic vascular circulatory disorders, the use of hormones or other drugs, alcoholism, and diabetes mellitus. These factors directly or indirectly lead to femoral head vascular damage, thrombosis, and coagulation system disorders, which reduce the blood supply to the acetabulum and femoral head, thus causing ischaemic death of the femoral head or even femoral head collapse. NANFH is mainly categorized as "bone impotence" and "bone paralysis" in traditional Chinese medicine(TCM). The treatment of NANFH with TCM has the characteristics and advantages of a long history, stable and reliable therapeutic effect, fewer adverse reactions, good patient tolerance, and high acceptance. Previous studies have shown that the promotion of angiogenesis is a key initiative in the prevention and treatment of NANFH, and TCM can promote fe-moral head angiogenesis by interfering with the expression of angiogenesis-related factors, which in turn can help to restore the blood supply of the femoral head and thus improve clinical symptoms of NANFH and prevent and treat NANFH. This article described the roles of blood supply interruption and angiogenesis in NANFH and the accumulated knowledge and experience of TCM in NANFH and summarized the role of angiogenesis-related factors in NANFH and the research progress on TCM intervention, so as to provide an idea for the subsequent research and a new basis for the clinical application of TCM in the treatment of NANFH.


Subject(s)
Drugs, Chinese Herbal , Femur Head Necrosis , Humans , Femur Head Necrosis/prevention & control , Femur Head Necrosis/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/administration & dosage , Medicine, Chinese Traditional , Animals , Femur Head/blood supply , Neovascularization, Pathologic/drug therapy , Neovascularization, Physiologic/drug effects , Angiogenesis
14.
Zhongguo Zhong Yao Za Zhi ; 49(4): 902-911, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-38621897

ABSTRACT

Alzheimer's disease(AD), vascular dementia(VD), and traumatic brain injury(TBI) are more common cognitive impairment diseases characterized by high disability and mortality rates, imposing a heavy burden on individuals and their families. Although AD, VD, and TBI have different specific mechanisms, their pathogenesis is closely related to the nucleotide-binding oligome-rization domain-like receptor protein 3(NLRP3). The NLRP3 inflammasome is involved in neuroinflammatory responses, mediating microglial polarization, regulating the reduction of amyloid ß-protein(Aß) deposition, neurofibrillary tangles(NFTs) formation, autophagy regulation, and maintaining brain homeostasis, and synaptic stability, thereby contributing to the development of AD, VD, and TBI. Previous studies have shown that traditional Chinese medicine(TCM) can alleviate neuroinflammation, promote microglial polarization towards the M2 phenotype, reduce Aß deposition and NFTs formation, regulate autophagy, and maintain brain homeostasis by intervening in NLRP3 inflammasome, hence exerting a role in preventing and treating cognitive impairment-related diseases, reducing psychological and economic pressure on patients, and improving their quality of life. Therefore, this article elucidated the role of NLRP3 inflammasome in AD, VS, and TBI, and provided a detailed summary of the latest research results on TCM intervention in NLRP3 inflammasome for the prevention and treatment of these diseases, aiming to inherit the essence of TCM and provide references and foundations for clinical prevention and treatment of cognitive impairment-related diseases with TCM. Meanwhile, this also offers insights and directions for further research in TCM for the prevention and treatment of cognitive impairment-related diseases.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amyloid beta-Peptides/metabolism , Medicine, Chinese Traditional , Quality of Life , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control
15.
Angew Chem Int Ed Engl ; 63(8): e202318470, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38179860

ABSTRACT

The practical implementation of aqueous zinc-iodine batteries (ZIBs) is hindered by the rampant Zn dendrites growth, parasite corrosion, and polyiodide shuttling. In this work, ionic liquid EMIM[OAc] is employed as an all-round solution to mitigate challenges on both the Zn anode and the iodine cathode side. First, the EMIM+ embedded lean-water inner Helmholtz plane (IHP) and inert solvation sheath modulated by OAc- effectively repels H2 O molecules away from the Zn anode surface. The preferential adsorption of EMIM+ on Zn metal facilitates uniform Zn nucleation via a steric hindrance effect. Second, EMIM+ can reduce the polyiodide shuttling by hindering the iodine dissolution and forming an EMIM+ -I3 - dominated phase. These effects holistically enhance the cycle life, which is manifested by both Zn || Zn symmetric cells and Zn-I2 full cells. ZIBs with EAc deliver a capacity decay rate of merely 0.01 ‰ per cycle after over 18,000 cycles at 4 A g-1 , and lower self-discharge and better calendar life than the ZIBs without ionic liquid EAc additive.

16.
Angew Chem Int Ed Engl ; 63(17): e202401066, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38450828

ABSTRACT

In the field of organic photovoltaics (OPVs), significant progress has been made in tailoring molecular structures to enhance the open-circuit voltage and the short-circuit current density. However, there remains a crucial gap in the development of coordinated material design strategies focused on improving the fill factor (FF). Here, we introduce a molecular design strategy that incorporates electrostatic potential fluctuation to design organic photovoltaic materials. By reducing the fluctuation amplitude of IT-4F, we synthesized a new acceptor named ITOC6-4F. When using PBQx-TF as a donor, the ITOC6-4F-based cell shows a markedly low recombination rate constant of 0.66×10-14 cm3 s-1 and demonstrates an outstanding FF of 0.816, both of which are new records for binary OPV cells. Also, we find that a small fluctuation amplitude could decrease the energetic disorder of OPV cells, reducing energy loss. Finally, the ITOC6-4F-based cell creates the highest efficiency of 16.0 % among medium-gap OPV cells. Our work holds a vital implication for guiding the design of high-performance OPV materials.

17.
J Am Chem Soc ; 145(1): 311-321, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36538760

ABSTRACT

A unified strategy toward asymmetric divergent syntheses of nine C8-ethano-bridged diterpenoids A1-A9 (candol A, powerol, sicanadiol, epi-candol A, atisirene, ent-atisan-16α-ol, 4-decarboxy-4-methyl-GA12, trachinol, and ent-beyerane) has been developed based on late-stage transformations of common synthons having ent-kaurane and ent-trachylobane cores. The expeditious assembly of crucial advanced ent-kaurane- and ent-trachylobane-type building blocks is strategically explored through a regioselective and diastereoselective Fe-mediated hydrogen atom transfer (HAT) 6-exo-trig cyclization of the alkene/enone and 3-exo-trig cyclization of the alkene/ketone, showing the multi-reactivity of densely functionalized polycyclic substrates with πC═C and πC═O systems in HAT-initiated reactions. Following the rapid construction of five major structural skeletons (ent-kaurane-, ent-atisane-, ent-beyerane-, ent-trachylobane-, and ent-gibberellane-type), nine C8-ethano-bridged diterpenoids A1-A9 could be accessed in the longest linear 8 to 11 steps starting from readily available chiral γ-cyclogeraniol 1 and known chiral γ-substituted cyclohexenone 2, in which enantioselective total syntheses of candol A (A1, 8 steps), powerol (A2, 9 steps), sicanadiol (A3, 10 steps), epi-candol A (A4, 8 steps), ent-atisan-16α-ol (A6, 11 steps), and trachinol (A8, 10 steps) are achieved for the first time.


Subject(s)
Diterpenes, Kaurane , Diterpenes
18.
J Am Chem Soc ; 145(25): 13686-13695, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37311087

ABSTRACT

Low-bandgap materials have achieved rapid development and promoted the enhancement of power conversion efficiencies (PCEs) of organic photovoltaic (OPV) cells. However, the design of wide-bandgap non-fullerene acceptors (WBG-NFAs), required by indoor applications and tandem cells, has been lagging far behind the development of OPV technologies. Here, we designed and synthesized two NFAs named ITCC-Cl and TIDC-Cl by finely optimizing ITCC. In contrast with ITCC and ITCC-Cl, TIDC-Cl can maintain a wider bandgap and a higher electrostatic potential simultaneously. When blending with the donor PB2, the highest dielectric constant is also obtained in TIDC-Cl-based films, enabling efficient charge generation. Therefore, the PB2:TIDC-Cl-based cell possessed a high PCE of 13.8% with an excellent fill factor (FF) of 78.2% under the air mass 1.5G (AM 1.5G) condition. Furthermore, an exciting PCE of 27.1% can be accomplished in the PB2:TIDC-Cl system under the illumination of 500 lux (2700 K light-emitting diode). Combined with the theoretical simulation, the tandem OPV cell based on TIDC-Cl was fabricated and exhibited an excellent PCE of 20.0%.

19.
Glob Chang Biol ; 29(16): 4586-4594, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37265328

ABSTRACT

Identifying the thresholds for the positive responses of total net primary productivity (NPP) to nitrogen (N) enrichment is an essential prerequisite for predicting the benefits of N deposition on ecosystem carbon sequestration. However, the responses of below-ground NPP (BNPP) to N enrichment are unknown in many ecosystems, which limits our ability to understand the carbon cycling under the scenario of increasing N availability. We examined the changes in above-ground NPP (ANPP), BNPP, and NPP of a temperate meadow steppe across a wide-ranging N addition gradient (0, 2, 5, 10, 20, and 50 g N m-2 year-1 ) during 5 years. Both ANPP and NPP increased nonlinearly with N addition rates. The N saturation threshold for ANPP (TA ) and NPP (TN ) was at the rate of 13.11 and 6.70 g N m-2 year-1 , respectively. BNPP decreased with increasing N addition when N addition rates ˃5 g N m-2 year-1 , resulting in much lower TN than TA . Soil N enrichment played a key role in driving the negative impacts of high N addition rates on BNPP, and consequently on the earlier occurrence of N saturation threshold for NPP. Our results highlight the negative effects of soil N enrichment on NPP in natural grasslands super-saturated with N. Furthermore, by considering ANPP and BNPP simultaneously, our results indicate that previous findings from above-ground might have over-estimated the positive effects of N deposition on primary productivity.


Subject(s)
Ecosystem , Grassland , Nitrogen , Carbon Cycle , Soil
20.
Langmuir ; 39(7): 2719-2728, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36753560

ABSTRACT

Thermoelectric (TE) performance of the Janus ZrSSe monolayer under biaxial strain is systematically explored by the first-principles approach and Boltzmann transport theory. Our results show that the Janus ZrSSe monolayer has excellent chemical, dynamical, thermal, and mechanical stabilities, which provide a reliable platform for strain tuning. The electronic structure and TE transport parameters of the Janus ZrSSe monolayer can be obviously tuned by biaxial strain. Under 2% tensile strain, the optimal power factor PF of the n-type-doped Janus ZrSSe monolayer reaches 46.36 m W m-1 K-2 at 300 K. This value is higher than that of the most classical TE materials. Under 6% tensile strain, the maximum ZT values for the p-type- and n-type-doped Janus ZrSSe monolayers are 4.41 and 4.88, respectively, which are about 3.83 and 1.49 times the results of no strain, respectively. Such high TE performance can be attributed to high band degeneracy and short phonon relaxation time under strain, causing simultaneous increase of the Seebeck coefficient and suppression of the phonon thermal transport. Present work demonstrates that the Janus ZrSSe monolayer is a promising candidate as a strain-tunable TE material and stimulates further experimental synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL