Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(39): e2205668119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122231

ABSTRACT

Hydrolysis of N2O5 under tropospheric conditions plays a critical role in assessing the fate of O3, OH, and NOx in the atmosphere. However, its removal mechanism has not been fully understood, and little is known about the role of entropy. Herein, we propose a removal path of N2O5 on the water clusters/droplet with the existence of amine, which entails a low free-energy barrier of 4.46 and 3.76 kcal/mol on a water trimer and droplet, respectively, at room temperature. The free-energy barrier exhibits strong temperature dependence; a barrierless hydrolysis process of N2O5 at low temperature (≤150 K) is observed. By coupling constrained ab initio molecular dynamics (constrained AIMD) simulations with thermodynamic integration methods, we quantitively evaluated the entropic contributions to the free energy and compared NH3-, methylamine (MA)-, and dimethylamine (DMA)-promoted hydrolysis of N2O5 on water clusters and droplet. Our results demonstrate that methylation of NH3 stabilizes the product state and promotes hydrolysis of N2O5 by reducing the free-energy barriers. Furthermore, a quantitative analysis of the internal coordinate distribution of the reaction center and the relative position of surrounding species reveals that the significant entropic contribution primarily results from the ensemble effect of configurations observed in the AIMD simulations. Such an ensemble effect becomes more significant with more water molecules included. Lowering the temperature effectively minimizes the entropic contribution, making the hydrolysis more exothermic and barrierless. This study sheds light on the importance of the promoting effect of amines and the entropic effect on gas-phase hydrolysis reactions, which may have far-reaching implications in atmospheric chemistry.


Subject(s)
Amines , Water , Dimethylamines , Hydrolysis , Methylamines , Water/chemistry
2.
J Cell Mol Med ; 28(9): e18361, 2024 May.
Article in English | MEDLINE | ID: mdl-38722283

ABSTRACT

Hypoxia and Ferroptosis are associated with the malignant behaviour of cervical cancer. Endothelial PAS domain-containing protein 1 (EPAS1) contributes to the progression of cervical cancer. EPAS1 plays important roles in hypoxia and ferroptosis. Using the GEO dataset, machine-learning algorithms were used to screen for hypoxia- and ferroptosis-related genes (HFRGs) in cervical cancer. EPAS1 was identified as the hub gene. qPCR and WB were used to investigate the expression of EPAS1 in normal and cervical cancer tissues. The proliferation, invasion and migration of EPAS1 cells in HeLa and SiHa cell lines were detected using CCK8, transwell and wound healing assays, respectively. Apoptosis was detected by flow cytometry. A dual-luciferase assay was used to analyse the MALAT1-miR-182-5P-EPAS1 mRNA axis and core promoter elements of the super-enhancer. EPAS1 was significantly overexpressed in cervical cancer tissues. EPAS1 could increase the proliferation, invasion, migration of HeLa and SiHa cells and reduce the apoptosis of HeLa and SiHa cell. According to the double-luciferase assay, EPAS1 expression was regulated by the MALAT1-Mir-182-5p-EPAS1 mRNA axis. EPAS1 is associated with super-enhancers. Double-luciferase assay showed that the core elements of the super-enhancer were E1 and E3. EPAS1, an HFRG, is significantly overexpressed in cervical cancer. EPAS1 promotes malignant behaviour of cervical cancer cells. EPAS1 expression is regulated by super-enhancers and the MALAT1-miR-182-5P- EPAS1 mRNA axis. EPAS1 may be a target for the diagnosis and treatment of cervical cancer.


Subject(s)
Apoptosis , Basic Helix-Loop-Helix Transcription Factors , Cell Movement , Cell Proliferation , Ferroptosis , Gene Expression Regulation, Neoplastic , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Female , Ferroptosis/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , HeLa Cells , RNA, Long Noncoding/genetics , RNA, Competitive Endogenous
3.
BMC Vet Res ; 20(1): 19, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195531

ABSTRACT

BACKGROUND: The present study aimed to investigate the prevalence and molecular characterization of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from dairy cattle with endometritis in China. The prevalence of ESBL-producing E. coli in sample was detected using ChromID ESBL agar, and genotyping of the ESBL producers was performed by PCR and DNA sequencing. RESULTS: The results revealed that the proportion of positive pathogens tested was 69.76% (180/258) in samples obtained from cows diagnosed with clinical endometritis, with E. coli accounting for 170 out of the 180 positive samples. The infection rate of isolated E. coli was 39.14% (101/258), and co-infections with other pathogens were prevalent. Furthermore, among the 158 E. coli isolates, 50 strains were identified as ESBL producers, with TEM and CTX-M prevalence rates at 78.00% and 32.00%, respectively. Drug sensitivity experiments indicated that 50 isolates of ESBL- producing E. coli were multidrug resistance (MDR), with 48.0% of them exhibiting positive results for both the class 1 integron gene and five gene cassettes associated with resistance to trimethoprim (dfr1 and dfrA17) and aminoglycosides (aadA1, aadA5, and dfrA1), respectively. CONCLUSION: This investigation demonstrated a substantial prevalence and heightened level of antimicrobial resistance among ESBL-producing E. coli isolates derived from dairy cattle infected with endometritis in China.


Subject(s)
Cattle Diseases , Endometritis , Female , Animals , Cattle , Endometritis/epidemiology , Endometritis/veterinary , Escherichia coli/genetics , Prevalence , China/epidemiology , beta-Lactamases/genetics , Cattle Diseases/epidemiology
4.
Article in English | MEDLINE | ID: mdl-38843424

ABSTRACT

Aim: To explore the relationship between DAZ (Deleted in Azoospermia, DAZ) and DAZLA (Deleted in Azoospermia-like autosomal) gene deletion and male idiopathic azoospermia and oligozoospermia. Methods: 80 patients with azoospermia (azoospermia group) and 80 patients with oligozoospermia (oligozoospermia group) who were treated at our hospital from April 2021 to April 2023, and male volunteers who underwent health examinations at our hospital during the same period were selected as the control group, The incidence of DAZ and DAZLA gene locus deletion in three groups of men was detected by polymerase chain reaction (PCR), and the differences of reproductive hormone levels and main semen parameters among the three groups were compared. The azoospermia were stratified according to whether DAZ and DAZLA gene locus deletion occurred. Results: DAZ gene locus deletion rate in azoospermia and oligospermia groups was considerably higher than in the control group (P < .05). The DAZLA gene locus deletion rate in the azoospermia group was apparently higher than that in the oligospermia and control groups (P < .05). The semen volume was compared between azoospermia and oligospermia patients and controls (P > .05). Sperm concentration, sperm survival rate, the proportion of normal morphological sperm, and the proportion of progressive motility sperm in the oligospermia group were lower than those in the control group (P < .05). The levels of serum T (Testosterone, T) and T/LH in the azoospermiaspermia group were lower than those in the control group (P < .05). Serum LH (Luteinizing Hormone) and FSH (Follicular Stimulating Hormone) in azoospermia group and oligospermia group were higher than those in the control group (P < .05). The Serum LH determination value of the azoospermia group is higher than the oligospermia group (P < .05). Serum T/LH in the azoospermia group was lower than in the oligospermia group (P < .05). The serum T and T/LH values in azoospermia male patients with DAZ and DAZLA gene deletion were lower than those without deletion (P < .05). Sperm concentration and survival rate of oligospermatism male patients with DAZ gene deletion were lower than those without deletion (P < .05). Sperm and serum T and T/LH values of oligospermatism male patients with DAZ gene deletion were lower than those without deletion (P < .05). Conclusion: The incidence of DAZ and DAZLA gene locus deletion in male patients with idiopathic azoospermia and oligozoospermia was higher than in normal males. The gene locus deletion was related to decreased androgen level, sperm count and motility.

5.
Plant Dis ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38197884

ABSTRACT

Bottle gourd [Lagenaria siceraria (Mol.) Stand] is a widely cultivated succulent crop species. In December 2022, a serious bottle gourd disease occurred in the protected vegetable planting base of Xingguo County, Ganzhou City, Jiangxi Province, China, with 85% of the 2,100 plants having gray mold disease-like symptoms, including gray spots on the infected fruit. They quickly expanded at suitable temperature and humidity, forming a gray mold layer with inward depressions, which spread to the fruit stem causing watery rot, and the flesh turned black and started to rot. To isolate the pathogen, fruits of the diseased plants were surface-disinfected with 75% ethanol for 30 s, immersed in 0.1% HgCl2 for 1 min, rinsed thrice with sterile water, and cultured on a potato-dextrose agar (PDA) medium at 28°C. Mycelia from the diseased tissue were subcultured on fresh PDA medium to obtain pure cultures. After incubation at 25°C for 7 days, olive-green colonies (~2.5 mm·d-1) developed. Cultures developed numerous elliptical and limoniform conidia measuring 2.69~9.79 µm to 2.10~5.92 µm (average 5.62×3.12 µm) (n=20). The morphological characteristics of the pathogen resembled those of Cladosporium spp. Fungal genomic DNA was extracted, and the internal transcribed spacer (ITS), partial translation elongation factor-1 alpha (TEF-1α), and actin (ACT) regions were amplified with primers ITS1/4, TEF-728F/986R, and ACT-512F/783R, respectively, and sequenced (Bensch et al. 2012; Jo et al. 2018). Basic Local Alignment Search Tool analysis (BLAST) revealed that the ITS (accession no. OQ186729), ACT (OQ240962), and TEF-1α (OQ240963) sequences of isolate hjt4 shared the highest similarity (99-100%) with those of Cladosporium tenuissimum (accessions no. OM232068, OM256530, OM256526) (Duccio et al. 2015). A phylogenetic tree of the isolate hjt4 and its close relatives within Cladosporium was constructed using the MEGA X neighbor-joining method. The pathogen was identified as C. tenuissimum based on morphological and molecular characteristics. A specimen (JXAU-H2022982) was deposited at the Herbarium of the College of Agronomy, Jiangxi Agricultural University. To confirm its pathogenicity, seven-day-old healthy bottle gourd fruits were disinfected with 75% ethanol, 1 mm-deep wounds were made with sterilized scalpels, and the plants were inoculated with PDA plugs (0.8 cm in diameter) containing actively growing mycelia of isolate hjt4. Plants inoculated with sterile PDA plugs served as controls. Each group contained three fruits, and the experiment was performed in triplicate. All fruits were incubated in a biochemical incubator at 28°C. After 3 days, the fruit surface shrank, and the flesh turned to a black colour and rotten, which rapidly spread to the branches. Control fruits did not develop any symptoms. Reisolated colonies showed the same morphological traits as those of the inoculation isolates, whereas no target colonies were isolated from the control fruits. The pathogen was previously reported to cause leaf blight disease in Coriandrum sativum (Zhou et al. 2022) and sooty spots on Cape gooseberry (Miyake et al. 2022), among others. To our knowledge, this is the first report of gray mold disease caused by C. tenuissimum on bottle gourd in China. The findings provide an important foundation for monitoring and controlling the spread of this disease.

6.
J Clin Nurs ; 33(2): 580-590, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044758

ABSTRACT

AIMS AND OBJECTIVES: (i) To estimate the national incidence of unplanned removal of peripherally inserted central catheters (PICCs) in China. (ii) To explore the associated risk factors to provide evidence for the prevention. DESIGN: A multi-centre prospective cohort study. METHODS: A representative sample of 3222 Chinese adult patients with successful PICC insertion was recruited for the PICC Safety Management Research (PATH) using a two-stage cluster sampling method from December 2020 to June 2022. Sixty hospitals from seven Chinese provinces representing all geographical regions were selected. Demographic information and PICC characteristics were collected using a standard online case report form. Risk factors for the unplanned removal of PICCs were assessed using a cause-specific hazard model and verified using a sub-distribution hazard model. STROBE guidelines were followed in reporting this study. RESULTS: Three thousand one hundred and sixty-six patients were included in the final analysis with a mean age of 59 years and a total of 344,247 catheter days. The incidence of unplanned removal was 10.04%. Female, with thrombosis history, PICC insertion due to infusion failure, valved catheter and double-lumen catheter were risk factors, whereas longer insertion and exposure length were protective factors in the cause-specific hazard model. Higher BMI became an independent risk factor in the sub-distribution hazard model. CONCLUSIONS: Unplanned removal of PICCs is a serious clinical challenge in China. Our findings call for prevention strategies targeting the identified risk factors. RELEVANCE TO CLINICAL PRACTICE: Our study characterised the epidemiology of unplanned removal of PICCs among Chinese adult inpatients, highlighting the need for prevention among this population and providing a basis for the formulation of relevant prevention strategies. PATIENT OR PUBLIC CONTRIBUTION: Patients contributed through sharing their information required for the case report form. Healthcare professionals who provide direct care to the patient at each medical centre contributed by completing the online case report form.


Subject(s)
Catheter-Related Infections , Catheterization, Central Venous , Catheterization, Peripheral , Central Venous Catheters , Adult , Humans , Female , Middle Aged , Catheterization, Central Venous/adverse effects , Prospective Studies , Incidence , Risk Factors , Catheters , Catheterization, Peripheral/adverse effects , Inpatients , Retrospective Studies , Catheter-Related Infections/etiology
7.
Nano Lett ; 23(14): 6449-6457, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37379096

ABSTRACT

Spin obit torque (SOT) driven magnetization switching has been used widely for encoding consumption-efficient memory and logic. However, symmetry breaking under a magnetic field is required to realize the deterministic switching in synthetic antiferromagnets with perpendicular magnetic anisotropy (PMA), which limits their potential applications. Herein, we report all electric-controlled magnetization switching in the antiferromagnetic Co/Ir/Co trilayers with vertical magnetic imbalance. Besides, the switching polarity could be reversed by optimizing the Ir thickness. By using the polarized neutron reflection (PNR) measurements, the canted noncollinear spin configuration was observed in Co/Ir/Co trilayers, which results from the competition of magnetic inhomogeneity. In addition, the asymmetric domain walls demonstrated by micromagnetic simulations result from introducing imbalance magnetism, leading to the deterministic magnetization switching in Co/Ir/Co trilayers. Our findings highlight a promising route to electric-controlled magnetism via tunable spin configuration, improve our understanding of physical mechanisms, and significantly promote industrial applications in spintronic devices.

8.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396786

ABSTRACT

An increasing amount of evidence indicates that Baicalin (Bai, a natural glycosyloxyflavone compound) exhibits an antiviral effect against avian viruses. However, it remains unclear if the antiviral effect of Bai against infectious bronchitis virus (IBV) is exerted indirectly by modulating respiratory tract microbiota and/or their metabolites. In this study, we investigated the protection efficacy of Bai in protecting cell cultures and broilers from IBV infection and assessed modulation of respiratory tract microbiota and metabolites during infection. Bai was administered orally to broilers by being mixed in with drinking water for seven days. Ultimately, broilers were challenged with live IBV. The results showed that Bai treatment reduced respiratory tract symptoms, improved weight gain, slowed histopathological damage, reduced virus loads and decreased pro-inflammation cytokines production. Western blot analysis demonstrated that Bai treatment significantly inhibited Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and nuclear factor kappa-B (NF-κB) expression both in cell culture and cells of the trachea. Bai treatment reversed respiratory tract microbiota dysbiosis, as shown by 16S rDNA sequencing in the group of broilers inoculated with IBV. Indeed, we observed a decrease in Proteobacteria abundance and an increase in Firmicutes abundance. Metabolomics results suggest that the pentose phosphate pathway, amino acid and nicotinamide metabolism are linked to the protection conferred by Bai against IBV infection. In conclusion, these results indicated that further assessment of anti-IBV strategies based on Bai would likely result in the development of antiviral molecule(s) which can be administered by being mixed with feed or water.


Subject(s)
Coronavirus Infections , Flavonoids , Gammacoronavirus , Infectious bronchitis virus , Poultry Diseases , Animals , Chickens , Trachea , Antiviral Agents/pharmacology , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Poultry Diseases/microbiology
9.
Molecules ; 29(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474475

ABSTRACT

Regeneration has been considered as an ideal way for the post-treatment of waste FCC catalyst (ECat). In this work, the degeneration mechanism of ECat was firstly researched and attributed to the increasing of strong acid sites accessibility of ECat in contrast with fresh FCC catalyst by adsorption FTIR. Based on the proposed degeneration mechanism, ECat was successfully regenerated through suitable weakening for strong acid sites by boron modification. Characterization and evaluation results suggested that, the strong acid sites of regenerated ECat (R-ECat) were apparently decreased by boron modification which had significantly improve the heavy oil catalytic cracking performance of R-ECat. Because of the excellent performance, R-ECat in this work could successfully substitute for partial fresh FCC catalyst in FCC unit, which would provide a practicable way for the reutilization of ECat.

10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 392-399, 2024 Mar 28.
Article in English, Zh | MEDLINE | ID: mdl-38970513

ABSTRACT

OBJECTIVES: Hypoxia is an important cause of chemotherapy resistance in gastric cancer. However, little is known about the growth of gastric cancer under purely hypoxia conditions. This study aims to study the effect of hypoxia on the growth patterns of gastric cancer cells and explore the response of gastric cancer cells to the chemotherapeutic drug 5-fluorouracil (5-FU) in a hypoxic environment. METHODS: Gastric cancer cells MKN45 were cultured under 1% oxygen hypoxia and conventional air conditions. An intervention group with the addition of the chemotherapeutic drug 5-FU was also established. The proliferation and apoptosis of gastric cancer cells under different oxygen conditions and intervention groups were detected using the cell counting kit-8 (CCK-8) method, JC-1 mitochondrial membrane potential assay, and Annexin-V/PI double staining method. Cell cycle changes were detected by flow cytometry, and mitochondrial changes were detected using electron microscopy. RESULTS: In the absence of 5-FU intervention, compared with the normoxia group, the hypoxia group showed higher rates of early and late apoptosis and higher cell death rates as indicated by the JC-1 mitochondrial membrane potential assay, Annexin-V/PI double staining, and CCK-8 results. Flow cytometry results showed that the cell cycle was arrested in the G0/G1 phase without progression. Electron microscopy revealed more severe mitochondrial destruction. However, with 5-FU intervention, the hypoxia group showed lower apoptosis rates, more cell cycle progression, and less mitochondrial destruction compared with the normoxia group. CONCLUSIONS: Hypoxic environments promote apoptosis and even death in gastric cancer cells, but hypoxia counteracts the efficacy of the chemotherapeutic drug 5-FU, which may contribute to 5-FU chemotherapy resistance.


Subject(s)
Apoptosis , Cell Hypoxia , Cell Proliferation , Fluorouracil , Membrane Potential, Mitochondrial , Stomach Neoplasms , Fluorouracil/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Humans , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects , Cell Hypoxia/drug effects , Drug Resistance, Neoplasm , Cell Cycle/drug effects , Antimetabolites, Antineoplastic/pharmacology
11.
Angew Chem Int Ed Engl ; 63(21): e202318872, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38503685

ABSTRACT

Alloying Pt catalysts with transition metal elements is an effective pathway to enhance the performance of oxygen reduction reaction (ORR), but often accompanied with severe metal dissolution issue, resulting in poor stability of alloy catalysts. Here, instead of forming traditional alloy structure, we modify Pt surface with a novel Ni-W dimer structure by the atomic layer deposition (ALD) technique. The obtained NiW@PtC catalyst exhibits superior ORR performance both in liquid half-cell and practical fuel cell compared with initial Pt/C. It is discovered that strong synergistic Ni-W dimer structure arising from short atomic distance induced a stable compressive strain on the Pt surface, thus boosting Pt catalytic performance. This surface modification by synergistic dimer sites offers an effective strategy in tailoring Pt with excellent activity and stability, which provides a significant perspective in boosting the performance of commercial Pt catalyst modified with polymetallic atom sites.

12.
J Biol Chem ; 298(1): 101412, 2022 01.
Article in English | MEDLINE | ID: mdl-34793835

ABSTRACT

The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation-contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose-response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation-contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation-contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.


Subject(s)
Biosensing Techniques , Ryanodine Receptor Calcium Release Channel , Animals , Calcium/metabolism , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Mice , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/analysis , Ryanodine Receptor Calcium Release Channel/metabolism
13.
Small ; 19(38): e2300122, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37144423

ABSTRACT

As a clean and effective approach, the introduction of external magnetic fields to improve the performance of catalysts has attracted extensive attention. Owing to its room-temperature ferromagnetism, chemical stability, and earth abundance, VSe2 is expected to be a promising and cost-effective ferromagnetic electrocatalyst for the accomplishment of high-efficient spin-related OER kinetics. In this work, a facile pulsed laser deposition (PLD) method combined with rapid thermal annealing (RTA) treatment is used to successfully confine monodispersed 1T-VSe2 nanoparticles in amorphous carbon matrix. As expected, with external magnetic fields of 800 mT stimulation, the confined 1T-VSe2 nanoparticles exhibit highly efficient oxygen evolution reaction (OER) catalytic activity with an overpotential of 228 mV for 10 mA cm-2 and remarkable durability without deactivation after >100 h OER operation. The experimental results together with theoretical calculations illustrate that magnetic fields can facilitate the surface charge transfer dynamics of 1T-VSe2 , and modify the adsorption-free energy of *OOH, thus finally improving the intrinsic activity of the catalysts. This work realizes the application of ferromagnetic VSe2 electrocatalyst in highly efficient spin-dependent OER kinetics, which is expected to promote the application of transition metal chalcogenides (TMCs) in external magnetic field-assisted electrocatalysis.

14.
Langmuir ; 39(17): 6188-6200, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37073727

ABSTRACT

Molecular adsorption on solids is inevitable and has significant influences on the wettability of materials, while the tuning mechanism of the wettability from molecular adsorption is yet to be understood. Using molecular dynamics (MD) simulations, we comprehensively studied the relation between the wettability of the TiO2 surface and the adsorption of water and carboxylic acid molecules. Our results reveal that the increasing amount of surface hydroxyl groups from the decomposition adsorption of H2O increases the hydrophilicity of TiO2, providing molecular-level evidence for the previously proposed mechanism of photo-induced hydrophilicity. By contrast, the surface wettability becomes tunable with water contact angles changing from 0 to ∼130° through length adjustment of the adsorbed carboxylic acids. The TiO2 surface is hydrophilic with the adsorption of short-alkyl-chain carboxylic acids (e.g., HCOOH) and becomes hydrophobic when longer-alkyl-chain carboxylic acids (H(CH2)nCOOH, n > 2) are present. Furthermore, long-alkyl-chain acids also increase surface oleophilicity, while the adsorption of HCOOH and CH3COOH significantly enhances the oleophobicity of TiO2. Water molecules can also more easily penetrate the space between oily contaminants and adsorbed short acid molecules, thereby further increasing its self-cleaning capacity. The present simulations not only reveal the mechanism of wettability caused by molecular adsorption but also provide a promising method to create materials with controllable wettability and high self-cleaning efficiency.

15.
Cell Biol Int ; 47(1): 201-215, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36208091

ABSTRACT

Several studies have shown that MutS homolog 2 (MSH2) is highly expressed in many cancer tissues. Transcriptome expression data were collected from the Cancer Genome Atlas (TCGA) database. We analyzed the expression of MSH2 in normal and tumor tissues, the relationship between MSH2 expression and various prognostic factors, and the relationship between MSH2 expression and overall survival, disease specific survival, and progression free interval. We also examined MSH2 promoter methylation between endometrial cancer and normal endometrial tissues, and identified the prognostic value of MSH2 methylation in endometrial cancer. MSH2 was highly expressed in endometrial cancer tumor tissues compared with normal tissues. High MSH2 expression might be an independent prognostic factor for OS, DSS, and PFI. Further, high MSH2 expression was correlated with age and histological type, but not with BMI, clinical stage, tumor invasion, or other clinical features. MSH2 promoter methylation in endometrial cancer was significantly lower than in normal tissues. Additionally, MSH2 levels, OS, DSS, and PFI were associated with BMI, age, tumor invasion, and histological type. ssGSEA showed that MSH2 expression was positively correlated with the infiltration of Th2 cells, Tcm cells, T helper cells, and Tgd cells, whereas it was negatively correlated with NK CD56 bright cells, pDC cells, iDC cells, cytotoxic cells, and neutrophils. Increased MSH2 expression and reduced MSH2 methylation in endometrial cancer predicts poor prognosis. MSH2 may be used as a biomarker for the diagnosis and prognosis of endometrial cancer and as an immunotherapy target.


Subject(s)
Biomarkers, Tumor , Endometrial Neoplasms , MutS Homolog 2 Protein , Female , Humans , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/pathology , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Promoter Regions, Genetic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
16.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958501

ABSTRACT

The aim of this study was to investigate the inhibitory effects of Cordyceps militaris solid medium extract (CME) and cordycepin (COR) on LTA-induced inflammation in MH-S cells and their mechanisms of action. In this study, the establishment of an LTA-induced MH-S inflammation model was determined, the CCK-8 method was used to determine the safe concentration range for a drug for COR and CME, the optimal concentration of COR and CME to exert anti-inflammatory effects was further selected, and the expression of inflammatory factors of TNF-α, IL-1ß, IL-18, and IL-6 was detected using ELISA. The relative expression of TNF-α, IL-1ß, IL-18, IL-6, IL-10, TLR2 and MyD88 mRNA was detected using RT-PCR, and the IL-1ß, IL-18, TLR2, MyD88, NF-κB p-p65, NLRP3, pro-caspase-1, Caspase-1 and ASC protein expression in the cells were detected using Western blot; immunofluorescence assay detected the expression of Caspase-1 in MH-S cells. The results revealed that both CME and COR inhibited the levels of IL-1ß, IL-18, IL-6, and TNF-α in the supernatants of LTA-induced MH-S cells and the mRNA expression levels of IL-1ß, IL-18, IL-6, TNF-α, TLR2 and MyD88, down-regulated the LTA-induced IL-1ß, IL-18, TLR2 in MH-S cells, MyD88, NF-κB p-p65/p65, NLRP3, ASC, pro-caspase-1, and caspase-1 protein expression levels, and inhibited LTA-induced caspase-1 activation in MH-S cells. In conclusion, CME can play a therapeutic role in LTA-induced inflammation in MH-S cells via TLR2/NF-κB/NLRP3, and may serve as a potential drug for bacterial pneumonia caused by Gram-positive bacteria.


Subject(s)
Cordyceps , NF-kappa B , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Cordyceps/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Caspase 1/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , RNA, Messenger
17.
Mol Psychiatry ; 26(8): 3701-3722, 2021 08.
Article in English | MEDLINE | ID: mdl-33106599

ABSTRACT

Leptin is an adipocyte-derived hormone with pleiotropic functions affecting appetite and mood. While leptin's role in the regulation of appetite has been extensively studied in hypothalamic neurons, its function in the hippocampus, where it regulates mood-related behaviors, is poorly understood. Here, we show that the leptin receptor (LepRb) colocalizes with brain-derived neurotrophic factor (BDNF), a key player in the pathophysiology of major depression and the action of antidepressants, in the dentate gyrus of the hippocampus. Leptin treatment increases, whereas deficiency of leptin or leptin receptors decreases, total Bdnf mRNA levels, with distinct expression profiles of specific exons, in the hippocampus. Epigenetic analyses reveal that histone modifications, but not DNA methylation, underlie exon-specific transcription of the Bdnf gene induced by leptin. This is mediated by stimulation of AKT signaling, which in turn activates histone acetyltransferase p300 (p300 HAT), leading to changes in histone H3 acetylation and methylation at specific Bdnf promoters. Furthermore, deletion of Bdnf in the dentate gyrus, or specifically in LepRb-expressing neurons, abolishes the antidepressant-like effects of leptin. These findings indicate that leptin, acting via an AKT-p300 HAT epigenetic cascade, induces exon-specific Bdnf expression, which in turn is indispensable for leptin-induced antidepressant-like effects.


Subject(s)
Brain-Derived Neurotrophic Factor , Epigenesis, Genetic , Leptin , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Exons/genetics , Gene Expression Regulation , Hippocampus/metabolism , Histones/metabolism , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt , p300-CBP Transcription Factors
18.
Eur J Clin Microbiol Infect Dis ; 41(7): 1039-1049, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35612766

ABSTRACT

The dormancy survival regulator (DosR) antigens upgraded during latency and resuscitation-promoting factors (Rpfs) expressed over the reactivation from dormant Mycobacterium tuberculosis (M. tuberculosis) could be used to diagnose tuberculosis (TB) at different stages. We performed a retrospective cohort study based on four groups, including healthy controls (HCs), active tuberculosis infections (ATBs), latent tuberculosis infections (LTBIs), and relapse tuberculosis infections (RTBs) enrolled between November 2020 and June 2021. Compared to the fusion protein E6-C10, combined with early secreted antigenic target 6 kDa (ESAT-6) and culture filtrate of 10 kDa (CFP-10), the DosR- or Rpf-encoded antigens could not elicit significant IFN-γ concentration for the diagnosis of ATB. Of note, the DosR antigens produce significantly more antigen-specific IFN-γ in LTBIs than Rpfs, and the levels of antigen-specific IFN-γ elicited in RTBs stimulated by Rpfs were higher than the DosR antigens. Among the DosR antigens, Rv2003c was the most immunogenic in diagnosing LTBIs, followed by Rv2007c and Rv2005c. As far as Rpfs are concerned, Rv0867c was the best antigen to identify RTBs, followed by Rv2389c and Rv1009. Both Rv2450c and Rv1884c showed relatively limited IFN-γ concentration in RTBs. Besides, the selected DosR antigens and Rpfs showed ideal specificity and inadequate sensitivity, which could have been enhanced by the fusion antigens prepared by the DosR antigens or Rpfs, respectively. The results of this study can provide more accurate detection methods for LTBIs and RTBs and could be used for screening the dormant M. tuberculosis throughout reactivation.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Antigens, Bacterial , Bacterial Proteins , Humans , Latent Tuberculosis/diagnosis , Latent Tuberculosis/microbiology , Recurrence , Retrospective Studies , Tuberculosis/epidemiology
19.
Avian Pathol ; 51(6): 574-589, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35917182

ABSTRACT

Baicalin, a flavonoid compound extracted from the dry root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammation, anti-viral, anti-bacterial, and immunomodulatory activity. However, the effect of baicalin against avian infectious bronchitis virus (IBV) remains unknown. The purpose of this study was to investigate the anti-IBV activity and underlying mechanism of baicalin in vitro. The results showed that baicalin has a direct virucidal effect but no prophylactic effect on IBV infection. The mRNA and protein of IBV N were decreased significantly when IBV-infected cells were treated with baicalin during the multiple stages of the virus replication cycle, including viral adsorption, invasion, internalization, and release. Stress granule (SG) formation resulted from the increase of G3BP1 and the phosphorylation of the PKR/eIF2α due to the treatment of IBV-infected cells with baicalin. The inhibitory activity of baicalin on IBV replication was increased when G3BP1 expression was inhibited, and the down-regulation of G3BP1 expression occurred when the expression of PKR and eIF2α was inhibited. These findings revealed that baicalin activates phosphorylation of the PKR/eIF2α pathway and induces SG formation by targeting G3BP1, initiating the antiviral response to suppress IBV replication in Vero cells. The results suggest that baicalin is a promising candidate drug to treat or prevent IBV infection.RESEARCH HIGHLIGHTS Baicalin inhibits IBV replication by reducing IBV N protein and mRNA.Baicalin disturbs multiple stages of the IBV life cycle.Baicalin activates PKR/eIF2α pathway and induces stress granule formation to exert anti-IBV response.


Subject(s)
Infectious bronchitis virus , Poultry Diseases , Chlorocebus aethiops , Animals , Antiviral Agents/pharmacology , Vero Cells , RNA Recognition Motif Proteins/metabolism , DNA Helicases/metabolism , DNA Helicases/pharmacology , Poly-ADP-Ribose Binding Proteins , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/pharmacology , Poultry Diseases/drug therapy , Flavonoids/pharmacology , RNA, Messenger , Virus Replication
20.
Nano Lett ; 21(19): 8166-8174, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34553939

ABSTRACT

Reconstructing the surface-electronic-structure of catalysts for efficient electrocatalytic activity is crucial but still under intense exploration. Herein, we introduce a double-cation gradient etching technique to manipulate the electronic structure of perovskite LaCoO3. With the gradient dissolution of cations, the surface was reconstructed, and the perovskite/spinel heterostructure V-LCO/Co3O4 (V-LCO refers to LaCoO3 with La and Co vacancies) can be realized. Its surface-electronic-structure is effectively regulated due to the heterogeneous interface effect and abundant vacancies, resulting in a significantly enhanced activity for oxygen evolution reaction (OER). The V-LCO/Co3O4 exhibits low electrochemical activation energy and 2 orders of magnitude higher carrier concentrations (1.36 × 1021 cm-3) compared with LCO (6.03 × 1019 cm-3). Density functional theory (DFT) calculation unveils that the directional reconstruction of surface-electronic-structure enables the d-band center of V-LCO/Co3O4 to a moderate position, endowing perfect adsorption strength for oxo groups and thus promoting the electrocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL