Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 53(6): 1168-1181.e7, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326766

ABSTRACT

Viruses have evolved multiple strategies to evade elimination by the immune system. Here we examined the contribution of host long noncoding RNAs (lncRNAs) in viral immune evasion. By functional screening of lncRNAs whose expression decreased upon viral infection of macrophages, we identified a lncRNA (lncRNA-GM, Gene Symbol: AK189470.1) that promoted type I interferon (IFN-I) production and inhibited viral replication. Deficiency of lncRNA-GM in mice increased susceptibility to viral infection and impaired IFN-I production. Mechanistically, lncRNA-GM bound to glutathione S-transferase M1 (GSTM1) and blocked GSTM1 interaction with the kinase TBK1, reducing GSTM1-mediated S-glutathionylation of TBK1. Decreased S-glutathionylation enhanced TBK1 activity and downstream production of antiviral mediators. Viral infection reprogrammed intracellular glutathione metabolism and furthermore, an oxidized glutathione mimetic could inhibit TBK1 activity and promote viral replication. Our findings reveal regulation of TBK1 by S-glutathionylation and provide insight into the viral mediated metabolic changes that impact innate immunity and viral evasion.


Subject(s)
Glutathione/metabolism , Immune Evasion , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/metabolism , Animals , Glutathione Transferase/metabolism , Humans , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , RNA, Long Noncoding/genetics , Signal Transduction , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Replication
2.
Infect Immun ; 92(3): e0042223, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38289071

ABSTRACT

Listeria monocytogenes (Lm) is a Gram-positive facultative intracellular pathogen that leads a biphasic lifecycle, transitioning its metabolism and selectively inducing virulence genes when it encounters mammalian hosts. Virulence gene expression is controlled by the master virulence regulator PrfA, which is allosterically activated by the host- and bacterially derived glutathione (GSH). The amino acid cysteine is the rate-limiting substrate for GSH synthesis in bacteria and is essential for bacterial growth. Unlike many bacteria, Lm is auxotrophic for cysteine and must import exogenous cysteine for growth and virulence. GSH is enriched in the host cytoplasm, and previous work suggests that Lm utilizes exogenous GSH for PrfA activation. Despite these observations, the import mechanism(s) for GSH remains elusive. Analysis of known GSH importers predicted a homologous importer in Lm comprised of the Ctp ABC transporter and the OppDF ATPases of the Opp oligopeptide importer. Here, we demonstrated that the Ctp complex is a high-affinity GSH/GSSG importer that is required for Lm growth at physiologically relevant concentrations. Furthermore, we demonstrated that OppDF is required for GSH/GSSG import in an Opp-independent manner. These data support a model where Ctp and OppDF form a unique complex for GSH/GSSG import that supports growth and pathogenesis. In addition, we show that Lm utilizes the inorganic sulfur sources thiosulfate and H2S for growth in a CysK-dependent manner in the absence of other cysteine sources. These findings suggest a pathoadaptive role for partial cysteine auxotrophy in Lm, where locally high GSH/GSSG or inorganic sulfur concentrations may signal arrival to distinct host niches.


Subject(s)
Listeria monocytogenes , Animals , Cysteine/metabolism , Glutathione Disulfide/genetics , Glutathione Disulfide/metabolism , Sulfur Compounds/metabolism , Glutathione , Sulfur/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Mammals
3.
Neurochem Res ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105899

ABSTRACT

Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.

4.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38279310

ABSTRACT

Mitochondria are critical for providing energy to maintain cell viability. Oxidative phosphorylation involves the transfer of electrons from energy substrates to oxygen to produce adenosine triphosphate. Mitochondria also regulate cell proliferation, metastasis, and deterioration. The flow of electrons in the mitochondrial respiratory chain generates reactive oxygen species (ROS), which are harmful to cells at high levels. Oxidative stress caused by ROS accumulation has been associated with an increased risk of cancer, and cardiovascular and liver diseases. Glutathione (GSH) is an abundant cellular antioxidant that is primarily synthesized in the cytoplasm and delivered to the mitochondria. Mitochondrial glutathione (mGSH) metabolizes hydrogen peroxide within the mitochondria. A long-term imbalance in the ratio of mitochondrial ROS to mGSH can cause cell dysfunction, apoptosis, necroptosis, and ferroptosis, which may lead to disease. This study aimed to review the physiological functions, anabolism, variations in organ tissue accumulation, and delivery of GSH to the mitochondria and the relationships between mGSH levels, the GSH/GSH disulfide (GSSG) ratio, programmed cell death, and ferroptosis. We also discuss diseases caused by mGSH deficiency and related therapeutics.


Subject(s)
Glutathione , Mitochondria , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Mitochondria/metabolism , Oxidative Stress/physiology , Homeostasis , Oxidation-Reduction
5.
Plant Cell Environ ; 46(2): 518-548, 2023 02.
Article in English | MEDLINE | ID: mdl-36377315

ABSTRACT

In plants, glyoxalase enzymes are activated under stress conditions to mitigate the toxic effects of hyperaccumulated methylglyoxal (MG), a highly reactive carbonyl compound. Until recently, a glutathione-dependent bi-enzymatic pathway involving glyoxalase I (GLYI) and glyoxalase II (GLYII) was considered the primary MG-detoxification system. Recently, a new glutathione-independent glyoxalase III (GLYIII) mediated direct route was also reported in plants. However, the physiological significance of this new pathway remains to be elucidated across plant species. This study identified the full complement of 22 glyoxalases in tomato. Based on their strong induction under multiple abiotic stresses, SlGLYI4, SlGLYII2 and SlGLYIII2 were selected candidates for further functional characterisation. Stress-inducible overexpression of both glutathione-dependent (SlGLYI4 + SlGLYII2) and independent (SlGLYIII2) pathways led to enhanced tolerance in both sets of transgenic plants under abiotic stresses. However, SlGLYIII2 overexpression (OE) plants outperformed the SlGLYI4 + SlGLYII2 OE counterparts for their stress tolerance under abiotic stresses. Further, knockdown of SlGLYIII2 resulted in plants with exacerbated stress responses than those silenced for both SlGLYI4 and SlGLYII2. The superior performance of SlGLYIII2 OE tomato plants for better growth and yield under salt and osmotic treatments could be attributed to better GSH/GSSG ratio, lower reactive oxygen species levels, and enhanced antioxidant potential, indicating a prominent role of GLYIII MG-detoxification pathway in abiotic stress mitigation in this species.


Subject(s)
Lactoylglutathione Lyase , Solanum lycopersicum , Solanum lycopersicum/genetics , Osmotic Pressure , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Sodium Chloride/pharmacology , Glutathione/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological , Plant Proteins/genetics , Plant Proteins/metabolism , Pyruvaldehyde/metabolism
6.
Bioorg Med Chem Lett ; 92: 129406, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37423504

ABSTRACT

Gamma-glutamyl transferase 1 (GGT1) is a critical enzyme involved in the hydrolysis and/or transfer of gamma-glutamyl groups of glutathione, which helps maintain cysteine levels in plasma. In this study, we synthesized L-ABBA analogs to investigate their inhibitory effect on GGT1 hydrolysis and transpeptidase activity, with the goal of defining the pharmacophore of L-ABBA. Our structure-activity relationship (SAR) study revealed that an α-COO- and α-NH3+ group, as well as a two-CH2 unit distance between α-C and boronic acid, are essential for the activity. The addition of an R (alkyl) group at the α-C reduced the activity of GGT1 inhibition, with L-ABBA being the most potent inhibitor among the analogs. Next, we investigated the impact of L-ABBA on plasma levels of cysteine and GSH species, with the expectation of observing reduced cysteine levels and enhanced GSH levels due to its GGT1 inhibition. We administered L-ABBA intraperitoneally and determined the plasma levels of cysteine, cystine, GSH, and GSSG using LCMS. Our results showed time- and dose-dependent L-ABBA changes in total plasma cysteine and GSH levels. This study is the first to demonstrate the regulation of plasma thiol species upon GGT1 inhibition, with plasma cystine levels reduced by up to âˆ¼ 75 % with L-ABBA (0.3 mg/dose). Cancer cells are highly dependent on the uptake of cysteine from plasma for maintaining high levels of intracellular glutathione. Thus, our findings suggest that GGT1 inhibitors, such as L-ABBA, have the potential to be used in GSH reduction thereby inducing oxidative stress in cancer cells and reducing their resistance to many chemotherapeutic agents.

7.
Physiol Mol Biol Plants ; 29(5): 663-678, 2023 May.
Article in English | MEDLINE | ID: mdl-37363417

ABSTRACT

Engineered nickel oxide nanoparticle (NiO-NP) can inflict significant damages on exposed plants, even though very little is known about the modus operandi. The present study investigated effects of NiO-NP on the crucial stress alleviation mechanism Ascorbate-Glutathione Cycle (Asa-GSH cycle) in the model plant Allium cepa. Cellular contents of reduced glutathione (GSH) and oxidised glutathione (GSSG), was disturbed upon NiO-NP exposure. The ratio of GSH to GSSG changed from 20:1 in NC to 4:1 in roots exposed to 125 mg L-1 NiO-NP. Even the lowest treatments of NiO-NP (10 mg L-1) increased ascorbic acid (2.9-folds) and cysteine contents (1.6-folds). Enzymes like glutathione reductase, ascorbate peroxidase, glutathione peroxidase and glutathione-S-transferase also showed altered activities in the affected tissues. Further, intracellular methylglyoxal, a harbinger of ROS (Reactive oxygen species), increased significantly (~ 26 to 65-fold) across different concentrations NiO-NP. Intracellular H2O2 (hydrogen peroxide) and ROS levels increased with NiO-NP doses, as did electrolytic leakage from damaged cells. The present work indicated that multiple pathways were compromised in NiO-NP affected plants and this information can bolster our general understanding of the actual mechanism of its toxicity on living cells, and help formulate strategies to thwart ecological pollution. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01314-8.

8.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080234

ABSTRACT

Sulodexide (SDX), a purified glycosaminoglycan mixture used to treat vascular diseases, has been reported to exert endothelial protective effects against ischemic injury. However, the mechanisms underlying these effects remain to be fully elucidated. The emerging evidence indicated that a relatively high intracellular concentration of reduced glutathione (GSH) and a maintenance of the redox environment participate in the endothelial cell survival during ischemia. Therefore, the aim of the present study was to examine the hypothesis that SDX alleviates oxygen-glucose deprivation (OGD)-induced human umbilical endothelial cells' (HUVECs) injury, which serves as the in vitro model of ischemia, by affecting the redox state of the GSH: glutathione disulfide (GSSG) pool. The cellular GSH, GSSG and total glutathione (tGSH) concentrations were measured by colorimetric method and the redox potential (ΔEh) of the GSSG/2GSH couple was calculated, using the Nernst equation. Furthermore, the levels of the glutamate-cysteine ligase catalytic subunit (GCLc) and the glutathione synthetase (GSS) proteins, a key enzyme for de novo GSH synthesis, were determined using enzyme-linked immunoassay (ELISA). We demonstrated that the SDX treatment in OGD conditions significantly elevated the intracellular GSH, enhanced the GSH:GSSG ratio, shifting the redox potential to a more pro-reducing status. Furthermore, SDX increased the levels of both GCLc and GSS. The results show that SDX protects the human endothelial cells against ischemic stress by affecting the GSH levels and cellular redox state. These changes suggest that the reduction in the ischemia-induced vascular endothelial cell injury through repressing apoptosis and oxidative stress associated with SDX treatment may be due to an increase in GSH synthesis and modulation of the GSH redox system.


Subject(s)
Endothelial Cells , Glucose , Endothelium/metabolism , Glucose/metabolism , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glycosaminoglycans/metabolism , Glycosaminoglycans/pharmacology , Humans , Ischemia/metabolism , Oxidation-Reduction , Oxidative Stress , Oxygen/metabolism
9.
Neurochem Res ; 46(11): 2923-2935, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34260002

ABSTRACT

3,4-Dihydroxyphenyl ethanol, known as hydroxytyrosol (HTy), is a phenylpropanoid found in diverse vegetable species. Several studies have demonstrated that HTy is a potent antioxidant. Thus, our study is aimed to evaluate the antioxidant effect of HTy and its derivatives, hydroxytyrosol acetate (HTyA) and nitrohydroxytyrosol (HTyN), in a model of oxidative stress induced by 1-methyl-4-phenylpyridinium (MPP+) in rats. Rats were administered intravenously (i.v.) in the tail with 1 mL saline solution or polyphenol compound (1.5 mg/kg) 5 min before intrastriatal infusion of 10 µg MPP+/8 µL. We found that rats injured with MPP+, pretreatment with HTy, HTyA or HTyN significantly decreased ipsilateral turns. This result was consistent with a significant preservation of striatal dopamine levels and decreased lipid fluorescence products (LFP), a marker of oxidative stress. Brain GSH/GSSG ratio, from rats pretreated with HTy or HTyN showed a significant preservation of that marker, decreased as a consequence of MPP+-induced oxidative damage. These results show an antioxidant effect of HTy, HTyA and HTyN in the MPP+ model of Parkinson's disease in the rat.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Acetates/administration & dosage , Antioxidants/administration & dosage , Catechols/administration & dosage , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Phenylethyl Alcohol/analogs & derivatives , Administration, Intravenous , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Parkinsonian Disorders/prevention & control , Phenylethyl Alcohol/administration & dosage , Rats , Rats, Wistar , Treatment Outcome
10.
Int J Mol Sci ; 22(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201191

ABSTRACT

The role of oxidative stress (OS) in cancer is a matter of great interest due to the implication of reactive oxygen species (ROS) and their oxidation products in the initiation of tumorigenesis, its progression, and metastatic dissemination. Great efforts have been made to identify the mechanisms of ROS-induced carcinogenesis; however, the validation of OS byproducts as potential tumor markers (TMs) remains to be established. This interventional study included a total of 80 colorectal cancer (CRC) patients and 60 controls. By measuring reduced glutathione (GSH), its oxidized form (GSSG), and the glutathione redox state in terms of the GSSG/GSH ratio in the serum of CRC patients, we identified significant changes as compared to healthy subjects. These findings are compatible with the effectiveness of glutathione as a TM. The thiol redox state showed a significant increase towards oxidation in the CRC group and correlated significantly with both the tumor state and the clinical evolution. The sensitivity and specificity of serum glutathione levels are far above those of the classical TMs CEA and CA19.9. We conclude that the GSSG/GSH ratio is a simple assay which could be validated as a novel clinical TM for the diagnosis and monitoring of CRC.


Subject(s)
Biomarkers, Tumor/metabolism , Colorectal Neoplasms/pathology , Glutathione/chemistry , Glutathione/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Aged , Case-Control Studies , Colorectal Neoplasms/metabolism , Female , Humans , Male , Middle Aged , Oxidation-Reduction
11.
Neurochem Res ; 45(10): 2442-2455, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32789798

ABSTRACT

ß-lapachone (ß-lap) is reduced in tumor cells by the enzyme NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1) to a labile hydroquinone which spontaneously reoxidises to ß-lap, thereby generating reactive oxygen species (ROS) and oxidative stress. To test for the consequences of an acute exposure of brain cells to ß-lap, cultured primary rat astrocytes were incubated with ß-lap for up to 4 h. The presence of ß-lap in concentrations of up to 10 µM had no detectable adverse consequences, while higher concentrations of ß-lap compromised the cell viability and the metabolism of astrocytes in a concentration- and time-dependent manner with half-maximal effects observed for around 15 µM ß-lap after a 4 h incubation. Exposure of astrocytes to ß-lap caused already within 5 min a severe increase in the cellular production of ROS as well as a rapid oxidation of glutathione (GSH) to glutathione disulfide (GSSG). The transient cellular accumulation of GSSG was followed by GSSG export. The ß-lap-induced ROS production and GSSG accumulation were completely prevented in the presence of the NQO1 inhibitor dicoumarol. In addition, application of dicoumarol to ß-lap-exposed astrocytes caused rapid regeneration of the normal high cellular GSH to GSSG ratio. These results demonstrate that application of ß-lap to cultured astrocytes causes acute oxidative stress that depends on the activity of NQO1. The sequential application of ß-lap and dicoumarol to rapidly induce and terminate oxidative stress, respectively, is a suitable experimental paradigm to study consequences of a defined period of acute oxidative stress in NQO1-expressing cells.


Subject(s)
Astrocytes/drug effects , Dicumarol/pharmacology , Enzyme Inhibitors/pharmacology , Naphthoquinones/adverse effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Animals , Cell Survival/drug effects , Glutathione/chemistry , Glutathione/metabolism , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , Oxidation-Reduction , Rats, Wistar , Reactive Oxygen Species/metabolism
12.
Mol Biol Rep ; 47(1): 337-351, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31650383

ABSTRACT

An imbalance in the redox state, increased levels of lipid precursors and overactivation of de novo lipogenesis determine the development of fibrosis during nonalcoholic steatohepatitis (NASH). We evaluated the modulation of NADPH-producing enzymes associated with the antifibrotic, antioxidant and antilipemic effects of nicotinamide (NAM) in a model of NASH induced by excess fructose consumption. Male rats were provided drinking water containing 40% fructose for 16 weeks. During the last 12 weeks of fructose administration, water containing NAM was provided to some of the rats for 5 h/day. The biochemical profiles and the ghrelin, leptin, lipoperoxidation and TNF-α levels in serum and the glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and NADP+-dependent isocitric dehydrogenase (IDP) levels, the reduced/oxidized glutathione (GSH/GSSG) and reduced/oxidized nicotinamide adenine dinucleotide (phosphate) (NAD(P)H/NAD(P)+) ratios, and the levels of various lipogenic and fibrotic markers in the liver were evaluated. The results showed that hepatic fibrosis induced by fructose consumption was associated with weight gain, hunger-satiety system dysregulation, hyperinsulinemia, dyslipidemia, lipoperoxidation and inflammation. Moreover, increased levels of hepatic G6PD and ME activity and expression, the NAD(P)H/NAD(P)+ ratios, and GSSG concentration and increased expression of lipogenic and fibrotic markers were detected, and these alterations were attenuated by NAM administration. Specifically, NAM diminished the activity and expression of G6PD and ME, and this effect was associated with a decrease in the NADPH/NADP+ ratios, increased GSH levels and decreased lipoperoxidation and inflammation, ameliorating fibrosis and NASH development. NAM reduces liver steatosis and fibrosis by regulating redox homeostasis through a G6PD- and ME-dependent mechanism.


Subject(s)
Fatty Liver/metabolism , Fatty Liver/prevention & control , Niacinamide/pharmacology , Animals , Antioxidants/metabolism , Fructose/adverse effects , Fructose/metabolism , Glucose/metabolism , Glutathione/metabolism , Homeostasis , Lipid Metabolism/physiology , Lipids/biosynthesis , Lipogenesis/physiology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Male , NAD/metabolism , NADP/metabolism , Niacinamide/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxidation-Reduction/drug effects , Rats , Rats, Sprague-Dawley
13.
Appl Microbiol Biotechnol ; 104(24): 10555-10570, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33175244

ABSTRACT

Glutathione peroxidase (GPX) is one of the most important antioxidant enzymes for maintaining reactive oxygen species (ROS) homeostasis. Although studies on fungi have suggested many important physiological functions of GPX, few studies have examined the role of this enzyme in Basidiomycetes, particularly its functions in fruiting body developmental processes. In the present study, GPX-silenced (GPxi) strains were obtained by using RNA interference. The GPxi strains of Hypsizygus marmoreus showed defects in mycelial growth and fruiting body development. In addition, the results indicated essential roles of GPX in controlling ROS homeostasis by regulating intracellular H2O2 levels, maintaining GSH/GSSG balance, and promoting antioxidant enzyme activity. Furthermore, lignocellulose enzyme activity levels were reduced and the mitochondrial phenotype and mitochondrial complex activity levels were changed in the H. marmoreus GPxi strains, possibly in response to impediments to mycelial growth and fruiting body development. These findings indicate that ROS homeostasis has a complex influence on growth, fruiting body development, GSH/GSSG balance, and carbon metabolism in H. marmoreus.Key points• ROS balance, energy metabolism, fruiting development.


Subject(s)
Glutathione , Hydrogen Peroxide , Agaricales , Glutathione Peroxidase/genetics , Homeostasis , Reactive Oxygen Species
14.
Proc Natl Acad Sci U S A ; 114(24): E4724-E4733, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28559343

ABSTRACT

We explore the enzymatic mechanism of the reduction of glutathione disulfide (GSSG) by the reduced a domain of human protein disulfide isomerase (hPDI) with atomistic resolution. We use classical molecular dynamics and hybrid quantum mechanics/molecular mechanics calculations at the mPW1N/6-311+G(2d,2p):FF99SB//mPW1N/6-31G(d):FF99SB level. The reaction proceeds in two stages: (i) a thiol-disulfide exchange through nucleophilic attack of the Cys53-thiolate to the GSSG-disulfide followed by the deprotonation of Cys56-thiol by Glu47-carboxylate and (ii) a second thiol-disulfide exchange between the Cys56-thiolate and the mixed disulfide intermediate formed in the first step. The Gibbs activation energy for the first stage was 18.7 kcal·mol-1, and for the second stage, it was 7.2 kcal·mol-1, in excellent agreement with the experimental barrier (17.6 kcal·mol-1). Our results also suggest that the catalysis by protein disulfide isomerase (PDI) and thiol-disulfide exchange is mostly enthalpy-driven (entropy changes below 2 kcal·mol-1 at all stages of the reaction). Hydrogen bonds formed between the backbone of His55 and Cys56 and the Cys56-thiol result in an increase in the Gibbs energy barrier of the first thiol-disulfide exchange. The solvent plays a key role in stabilizing the leaving glutathione thiolate formed. This role is not exclusively electrostatic, because an explicit inclusion of several water molecules at the density-functional theory level is a requisite to form the mixed disulfide intermediate. In the intramolecular oxidation of PDI, a transition state is only observed if hydrogen bond donors are nearby the mixed disulfide intermediate, which emphasizes that the thermochemistry of thiol-disulfide exchange in PDI is influenced by the presence of hydrogen bond donors.


Subject(s)
Glutathione Disulfide/metabolism , Protein Disulfide-Isomerases/metabolism , Biocatalysis , Glutathione Disulfide/chemistry , Humans , Models, Molecular , Molecular Dynamics Simulation , Oxidation-Reduction , Protein Disulfide-Isomerases/chemistry , Protein Domains , Protein Folding , Protein Structure, Tertiary
15.
Biomed Chromatogr ; 34(9): e4854, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32302415

ABSTRACT

Endogenous glutathione (GSH) and glutathione disulfide (GSSG) status is highly sensitive to oxidative conditions and have broad application as a surrogate indicator of redox status in vivo. Established methods for GSH and GSSG quantification in whole blood display limited utility in human plasma, where GSH and GSSG levels are ~3-4 orders of magnitude below those observed in whole blood. This study presents simplified sample processing and analytical LC-MS/MS approaches exhibiting the sensitivity and accuracy required to measure GSH and GSSG concentrations in human plasma samples, which after 5-fold dilution to suppress matrix interferences range from 200 to 500 nm (GSH) and 5-30 nm (GSSG). The utility of the methods reported herein is demonstrated by assay performance and validation parameters which indicate good sensitivity [lower limits of quantitation of 4.99 nm (GSH) and 3.65 nm (GSSG), and high assay precision (intra-assay CVs 3.6 and 1.9%, and inter-assay CVs of 7.0 and 2.8% for GSH and GSSG, respectively). These methods also exhibited exceptional recovery of analyte-spiked plasma samples (98.0 ± 7.64% for GSH and 98.5 ± 12.7% for GSSG). Good sample stability at -80°C was evident for GSH for up to 55 weeks and GSSG for up to 46 weeks, with average CVs <15 and <10%, respectively.


Subject(s)
Chromatography, Liquid/methods , Glutathione Disulfide/blood , Tandem Mass Spectrometry/methods , Glutathione/blood , Humans , Limit of Detection , Linear Models , Reproducibility of Results
16.
Int J Mol Sci ; 21(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143095

ABSTRACT

S-glutathionylation, the post-translational modification forming mixed disulfides between protein reactive thiols and glutathione, regulates redox-based signaling events in the cell and serves as a protective mechanism against oxidative damage. S-glutathionylation alters protein function, interactions, and localization across physiological processes, and its aberrant function is implicated in various human diseases. In this review, we discuss the current understanding of the molecular mechanisms of S-glutathionylation and describe the changing levels of expression of S-glutathionylation in the context of aging, cancer, cardiovascular, and liver diseases.


Subject(s)
Glutathione/metabolism , Oxidative Stress , Protein Processing, Post-Translational , Proteins/chemistry , Proteins/metabolism , Animals , Humans , Oxidation-Reduction , Signal Transduction
17.
Molecules ; 25(18)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933160

ABSTRACT

BACKGROUND: Maintenance of the ratio of glutathione in the reduced (GSH) and oxidised (GSSG) state in cells is important in redox control, signal transduction and gene regulation, factors that are altered in many diseases. The accurate and reliable determination of GSH and GSSG simultaneously is a useful tool for oxidative stress determination. Measurement is limited primarily to the underestimation of GSH and overestimation GSSG as a result of auto-oxidation of GSH. The aim of this study was to overcome this limitation and develop, optimise and validate a reverse-phase high performance liquid chromatographic (HPLC) assay of GSH and GSSG for the determination of oxidant status in cardiac and chronic kidney diseases. METHODS: Fluorescence detection of the derivative, glutathione-O-pthaldialdehyde (OPA) adduct was used. The assay was validated by measuring the stability of glutathione and glutathione-OPA adduct under conditions that could affect the reproducibility including reaction time and temperature. Linearity, concentration range, limit of detection (LOD), limit of quantification (LOQ), recovery and extraction efficiency and selectivity of the method were assessed. RESULTS: There was excellent linearity for GSH (r2 = 0.998) and GSSG (r2 = 0.996) over concentration ranges of 0.1 µM-4 mM and 0.2 µM-0.4 mM respectively. The extraction of GSH from tissues was consistent and precise. The limit of detection for GSH and GSSG were 0.34 µM and 0.26 µM respectively whilst their limits of quantification were 1.14 µM and 0.88 µM respectively. CONCLUSION: These data validate a method for the simultaneous measurement of GSH and GSSG in samples extracted from biological tissues and offer a simple determination of redox status in clinical samples.


Subject(s)
Glutathione/analysis , Glutathione/metabolism , Oxidative Stress , Tissue Extracts/analysis , Tissue Extracts/metabolism , Animals , Arginine/chemistry , Bone and Bones , Chromatography, High Pressure Liquid/methods , Heart , Hydrogen Peroxide/chemistry , Kidney , Limit of Detection , Liver , Male , Oxidation-Reduction , Rats, Sprague-Dawley , Reactive Oxygen Species/chemistry , Reproducibility of Results , o-Phthalaldehyde/chemistry
18.
Neurochem Res ; 44(5): 1167-1181, 2019 May.
Article in English | MEDLINE | ID: mdl-30806880

ABSTRACT

Menadione (2-methyl-1,4-naphthoquinone) is a synthetic derivative of vitamin K that allows rapid redox cycling in cells and thereby generates reactive oxygen species (ROS). To test for the consequences of a treatment of brain astrocytes with menadione, we incubated primary astrocyte cultures with this compound. Incubation with menadione in concentrations of up to 30 µM did not affect cell viability. In contrast, exposure of astrocytes to 100 µM menadione caused a time-dependent impairment of cellular metabolism and cell functions as demonstrated by impaired glycolytic lactate production and strong increases in the activity of extracellular lactate dehydrogenase and in the number of propidium iodide-positive cells within 4 h of incubation. In addition, already 5 min after exposure of astrocytes to menadione a concentration-dependent increase in the number of ROS-positive cells as well as a concentration-dependent and transient accumulation of cellular glutathione disulfide (GSSG) were observed. The rapid intracellular GSSG accumulation was followed by an export of GSSG that was prevented in the presence of MK571, an inhibitor of the multidrug resistance protein 1 (Mrp1). Menadione-induced glutathione (GSH) oxidation and ROS formation were found accelerated after glucose-deprivation, while the presence of dicoumarol, an inhibitor of the menadione-reducing enzyme NQO1, did not affect the menadione-dependent GSSG accumulation. Our study demonstrates that menadione rapidly depletes cultured astrocytes of GSH via ROS-induced oxidation to GSSG that is subsequently exported via Mrp1.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , Astrocytes/drug effects , Brain/drug effects , Glutathione Disulfide/drug effects , Vitamin K 3/pharmacology , Animals , Astrocytes/metabolism , Brain/metabolism , Cell Survival/drug effects , Cells, Cultured , Glutathione/drug effects , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glycolysis/drug effects , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Rats, Wistar
19.
Neurochem Res ; 44(2): 333-346, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30443714

ABSTRACT

Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH-bimane-conjugate (GS-B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS-B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , Astrocytes/drug effects , Cell Survival/drug effects , Dicumarol/pharmacology , Propionates/pharmacology , Quinolines/pharmacology , ATP Binding Cassette Transporter, Subfamily B/drug effects , Animals , Animals, Newborn , Astrocytes/metabolism , Cells, Cultured , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Rats, Wistar
20.
Biomarkers ; 24(7): 666-676, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31368361

ABSTRACT

Synergy occurs when chemicals give pronounced effect on combination in contrast to their individual effect. The objective of this study was to investigate the synergistic effect of pesticides carbaryl (C) and methyl parathion (MP) on oxidative stress biomarkers viz catalase (CAT), glutathione reductase (GSSG-R) including different enzymes like lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and acetyl cholinesterase (AChE) in different tissues of carps Catla catla. Fishes were exposed to 6.25 mg/L of MP and 2.3 mg/L of C in mixture (one-third of LC50 value). CAT and GSSG-R were studied in gills, brain, liver and muscle of carp were found to be elevated significantly (p < 0.005). LDH activity increased significantly (p < 0.005) in synergistic group, there was a seven-fold (748%) increase in LDH activity in muscle compared to individual studies with same pesticides. Contrary to LDH, sudden decrease in SDH activity was accounted. Significant (p < 0.005) decrease in AChE activity after initial 24 h was remarkable addressing to the shift in neurotransmission pathway in organism. Significant increase was observed in activity of CAT and GSSG-R in all tissues compared to control fishes in individual as well as synergistic (MP + C) group suggesting that CAT and GSSG-R can be a potential biomarker of oxidative stress when studied in combination.


Subject(s)
Catalase/metabolism , Glutathione Reductase/metabolism , Pesticides/toxicity , Animals , Biomarkers/metabolism , Carbaryl/toxicity , Carps , Drug Synergism , Fishes , Methyl Parathion/toxicity , Oxidative Stress/drug effects , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL