Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Brain Behav Immun ; 54: 38-44, 2016 May.
Article in English | MEDLINE | ID: mdl-26674997

ABSTRACT

BACKGROUND: In a previous study, we found an up-regulated inflammatory monocyte gene expression profile in major depressive disorder (MDD) patients aged ⩾ 28 years and a down-regulated inflammatory gene expression profile in MDD patients aged<28 years. In the same sample of patients, we aimed to investigate immune dysregulation in the lymphocyte arm of the immune system, particularly in the context of the described monocyte (de-)activation states. METHODS: From deep frozen leukocytes, circulating percentages of monocytes, lymphocytes, B, T, and natural killer (NK) cells, and various functional subsets of T and T helper (Th) cells (Th1, Th2, Th17, and natural T regulatory cells) were measured in N=50 MDD patients and N=58 age- and gender-matched healthy controls (HC). In addition, serum levels of interleukin (IL)-6, sCD25, IL-7, IL-3, SCF, IGF-BP2, and EGF were evaluated. RESULTS: MDD patients were in general characterized by an impaired maturation of Th2 cells, Th17 cells, and NK cells and by decreased serum levels of IL-7 and sCD25. MDD patients aged ⩾ 28 years additionally exhibited decreased percentages of CD4(+)CD25(high)FoxP3(+) T regulatory cells, next to signs of the above described partial T cell defects. Natural T regulatory cells were inversely associated with the pro-inflammatory state of the monocytes (r=-.311; p=.034) that characterized this patient subgroup. CONCLUSIONS: Deficiencies of the NK and T (regulatory) cell system and inflammatory monocyte immune activation co-occur as partly interrelated phenomena within the same MDD patients.


Subject(s)
Depressive Disorder, Major/immunology , Killer Cells, Natural/immunology , Monocytes/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Adult , Case-Control Studies , Cytokines/metabolism , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Female , Humans , Killer Cells, Natural/pathology , Lymphocyte Activation , Male , Middle Aged , Monocytes/pathology , T-Lymphocytes, Regulatory/pathology , Th17 Cells/pathology , Th2 Cells/pathology
2.
Brain Behav Immun ; 44: 48-56, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25150007

ABSTRACT

Increased inflammatory activation might only be present in a subgroup of depressed individuals in which immune processes are especially relevant to disease development. We aimed to analyze demographic, depression, and trauma characteristics of major depressive disorder (MDD) patients with regard to inflammatory monocyte gene expression. Fifty-six naturalistically treated MDD patients (32 ± 12 years) and 57 healthy controls (HC; 31 ± 11 years) were analyzed by the Inventory of Depressive Symptomatology (IDS) and by the Childhood Trauma Questionnaire (CTQ). We determined the expression of 38 inflammatory and immune activation genes including the glucocorticoid receptor (GR)α and GRß genes in purified CD14(+) monocytes using quantitative-polymerase chain reaction (RT-qPCR). Monocyte gene expression was age-dependent, particularly in MDD patients. Increased monocyte gene expression and decreased GRα/ß ratio were only present in MDD patients aged ⩾ 28 years. Post hoc analyses of monocyte immune activation in patients <28 years showed two subgroups: a subgroup with a severe course of depression (recurrent type, onset <15 years) - additionally characterized by panic/arousal symptoms and childhood trauma - that had a monocyte gene expression similar to HC, and a second subgroup with a milder course of the disorder (73% first episode depression, onset ⩾15 years) - additionally characterized by the absence of panic symptoms - that exhibited a strongly reduced inflammatory monocyte activation compared to HC. In conclusion, monocyte immune activation was not uniformly raised in MDD patients but was increased only in patients of 28 years and older.


Subject(s)
Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Gene Expression , Inflammation/genetics , Monocytes/physiology , Adult , Age Factors , Depressive Disorder, Major/complications , Female , Humans , Inflammation/complications , Male , Middle Aged , Receptors, Glucocorticoid/genetics , Young Adult
3.
Brain Behav Immun Health ; 26: 100551, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36405425

ABSTRACT

Immune dysregulation has been reported in schizophrenia spectrum disorders (SSD). In the past decade, several trials using anti-inflammatory agents for treatment of SSD have been completed, with so far limited success. One such anti-inflammatory agent used is simvastatin. A recent, large-scale, randomized controlled trial with simvastatin augmentation failed to show improvement in the predefined primary outcome. However, baseline inflammatory profiles were not taken into account. Here we employed a data-driven clustering approach to investigate whether patients with an inflammatory monocyte gene signature respond better to add-on simvastatin treatment than those without such a signature, over a treatment period of 2 years. In 61 patients (60 randomized, 1:1 placebo:simvastatin) and healthy controls, a previously validated monocyte gene expression signature was assessed using quantitative polymerase chain reaction. Resulting delta cycle threshold values were used to identify patient clusters. Two major patient clusters with either up- or downregulated pro-inflammatory factors were detected. Linear mixed models showed a significant three-way interaction between the inflammatory cluster, treatment, and time for psychotic symptoms. Only patients treated with simvastatin who were in the inflammatory group, showed a consistent improvement: symptom severity gradually decreased after 3 months and reached significance after 12 and 24 months compared to baseline (p.adj<0.05). The effects were small, and overall between-group effects were not significant. Here, we show that patient stratification based on inflammatory gene expression might be useful to select appropriate treatment augmentation for patients with SSD, highlighting the need for precision medicine approaches. Our findings corroborate the results of the primary analyses, showing that in the overall group, simvastatin was not effective; however, at the individual level the treatment might make a difference.

SELECTION OF CITATIONS
SEARCH DETAIL