Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Biol Chem ; 297(4): 101201, 2021 10.
Article in English | MEDLINE | ID: mdl-34537244

ABSTRACT

Different forms of photoreceptor degeneration cause blindness. Retinal degeneration-3 protein (RD3) deficiency in photoreceptors leads to recessive congenital blindness. We proposed that aberrant activation of the retinal membrane guanylyl cyclase (RetGC) by its calcium-sensor proteins (guanylyl cyclase-activating protein [GCAP]) causes this retinal degeneration and that RD3 protects photoreceptors by preventing such activation. We here present in vivo evidence that RD3 protects photoreceptors by suppressing activation of both RetGC1 and RetGC2 isozymes. We further suggested that insufficient inhibition of RetGC by RD3 could contribute to some dominant forms of retinal degeneration. The R838S substitution in RetGC1 that causes autosomal-dominant cone-rod dystrophy 6, not only impedes deceleration of RetGC1 activity by Ca2+GCAPs but also elevates this isozyme's resistance to inhibition by RD3. We found that RD3 prolongs the survival of photoreceptors in transgenic mice harboring human R838S RetGC1 (R838S+). Overexpression of GFP-tagged human RD3 did not improve the calcium sensitivity of cGMP production in R838S+ retinas but slowed the progression of retinal blindness and photoreceptor degeneration. Fluorescence of the GFP-tagged RD3 in the retina only partially overlapped with immunofluorescence of RetGC1 or GCAP1, indicating that RD3 separates from the enzyme before the RetGC1:GCAP1 complex is formed in the photoreceptor outer segment. Most importantly, our in vivo results indicate that, in addition to the abnormal Ca2+ sensitivity of R838S RetGC1 in the outer segment, the mutated RetGC1 becomes resistant to inhibition by RD3 in a different cellular compartment(s) and suggest that RD3 overexpression could be utilized to reduce the severity of cone-rod dystrophy 6 pathology.


Subject(s)
Guanylate Cyclase/metabolism , Nuclear Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Receptors, Cell Surface/metabolism , Animals , Guanylate Cyclase/genetics , Guanylate Cyclase-Activating Proteins/genetics , Guanylate Cyclase-Activating Proteins/metabolism , HEK293 Cells , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Knockout , Mutation , Nuclear Proteins/genetics , Receptors, Cell Surface/genetics , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism
2.
J Biol Chem ; 296: 100362, 2021.
Article in English | MEDLINE | ID: mdl-33539922

ABSTRACT

Retinal degeneration-3 protein (RD3) deficiency causes photoreceptor dysfunction and rapid degeneration in the rd3 mouse strain and in human Leber's congenital amaurosis, a congenital retinal dystrophy that results in early vision loss. However, the mechanisms responsible for photoreceptor death remain unclear. Here, we tested two hypothesized biochemical events that may underlie photoreceptor death: (i) the failure to prevent aberrant activation of retinal guanylyl cyclase (RetGC) by calcium-sensor proteins (GCAPs) versus (ii) the reduction of GMP phosphorylation rate, preventing its recycling to GDP/GTP. We found that GMP converts to GDP/GTP in the photoreceptor fraction of the retina ∼24-fold faster in WT mice and ∼400-fold faster in rd3 mice than GTP conversion to cGMP by RetGC. Adding purified RD3 to the retinal extracts inhibited RetGC 4-fold but did not affect GMP phosphorylation in wildtype or rd3 retinas. RD3-deficient photoreceptors rapidly degenerated in rd3 mice that were reared in constant darkness to prevent light-activated GTP consumption via RetGC and phosphodiesterase 6. In contrast, rd3 degeneration was alleviated by deletion of GCAPs. After 2.5 months, only ∼40% of photoreceptors remained in rd3/rd3 retinas. Deletion of GCAP1 or GCAP2 alone preserved 68% and 57% of photoreceptors, respectively, whereas deletion of GCAP1 and GCAP2 together preserved 86%. Taken together, our in vitro and in vivo results support the hypothesis that RD3 prevents photoreceptor death primarily by suppressing activation of RetGC by both GCAP1 and GCAP2 but do not support the hypothesis that RD3 plays a significant role in GMP recycling.


Subject(s)
Guanylate Cyclase/metabolism , Nuclear Proteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Amino Acid Substitution , Animals , Calcium/metabolism , Cyclic GMP/metabolism , Female , Guanosine Monophosphate/metabolism , Guanylate Cyclase/physiology , Guanylate Cyclase-Activating Proteins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation, Missense , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Photoreceptor Cells, Vertebrate/physiology , Protein Binding , Retina/metabolism , Retinal Degeneration/metabolism , Retinal Rod Photoreceptor Cells/metabolism
3.
J Biol Chem ; 295(31): 10781-10793, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32493772

ABSTRACT

Retinal degeneration-3 (RD3) protein protects photoreceptors from degeneration by preventing retinal guanylyl cyclase (RetGC) activation via calcium-sensing guanylyl cyclase-activating proteins (GCAP), and RD3 truncation causes severe congenital blindness in humans and other animals. The three-dimensional structure of RD3 has recently been established, but the molecular mechanisms of its inhibitory binding to RetGC remain unclear. Here, we report the results of probing 133 surface-exposed residues in RD3 by single substitutions and deletions to identify side chains that are critical for the inhibitory binding of RD3 to RetGC. We tested the effects of these substitutions and deletions in vitro by reconstituting purified RD3 variants with GCAP1-activated human RetGC1. Although the vast majority of the surface-exposed residues tolerated substitutions without loss of RD3's inhibitory activity, substitutions in two distinct narrow clusters located on the opposite sides of the molecule effectively suppressed RD3 binding to the cyclase. The first surface-exposed cluster included residues adjacent to Leu63 in the loop connecting helices 1 and 2. The second cluster surrounded Arg101 on a surface of helix 3. Single substitutions in those two clusters drastically, i.e. up to 245-fold, reduced the IC50 for the cyclase inhibition. Inactivation of the two binding sites completely disabled binding of RD3 to RetGC1 in living HEK293 cells. In contrast, deletion of 49 C-terminal residues did not affect the apparent affinity of RD3 for RetGC. Our findings identify the functional interface on RD3 required for its inhibitory binding to RetGC, a process essential for protecting photoreceptors from degeneration.


Subject(s)
Eye Proteins/metabolism , Guanylate Cyclase/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Substitution , Animals , Cattle , Eye Proteins/genetics , Guanylate Cyclase/genetics , Guanylate Cyclase-Activating Proteins/genetics , Guanylate Cyclase-Activating Proteins/metabolism , HEK293 Cells , Humans , Mutation, Missense , Protein Binding , Receptors, Cell Surface/genetics
4.
J Biol Chem ; 295(52): 18301-18315, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33109612

ABSTRACT

Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber's congenital amaurosis (LCA1), and dominant cone-rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer-6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB.


Subject(s)
Calcium/metabolism , Cone-Rod Dystrophies/genetics , Eye Proteins/metabolism , Guanylate Cyclase/metabolism , Mutation , Night Blindness/genetics , Receptors, Cell Surface/metabolism , Amino Acid Substitution , Eye Proteins/chemistry , Eye Proteins/genetics , Guanylate Cyclase/chemistry , Guanylate Cyclase/genetics , HEK293 Cells , Humans , Protein Conformation , Protein Multimerization , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics
5.
J Biol Chem ; 294(37): 13729-13739, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31346032

ABSTRACT

Deficiency of RD3 (retinal degeneration 3) protein causes recessive blindness and photoreceptor degeneration in humans and in the rd3 mouse strain, but the disease mechanism is unclear. Here, we present evidence that RD3 protects photoreceptors from degeneration by competing with guanylyl cyclase-activating proteins (GCAPs), which are calcium sensor proteins for retinal membrane guanylyl cyclase (RetGC). RetGC activity in rd3/rd3 retinas was drastically reduced but stimulated by the endogenous GCAPs at low Ca2+ concentrations. RetGC activity completely failed to accelerate in rd3/rd3GCAPs-/- hybrid photoreceptors, whose photoresponses remained drastically suppressed compared with the WT. However, ∼70% of the hybrid rd3/rd3GCAPs-/- photoreceptors survived past 6 months, in stark contrast to <5% in the nonhybrid rd3/rd3 retinas. GFP-tagged human RD3 inhibited GCAP-dependent activation of RetGC in vitro similarly to the untagged RD3. When transgenically expressed in rd3/rd3 mouse retinas under control of the rhodopsin promoter, the RD3GFP construct increased RetGC levels to near normal levels, restored dark-adapted photoresponses, and rescued rods from degeneration. The fluorescence of RD3GFP in rd3/rd3RD3GFP+ retinas was mostly restricted to the rod photoreceptor inner segments, whereas GCAP1 immunofluorescence was concentrated predominantly in the outer segment. However, RD3GFP became distributed to the outer segments when bred into a GCAPs-/- genetic background. These results support the hypothesis that an essential biological function of RD3 is competition with GCAPs that inhibits premature cyclase activation in the inner segment. Our findings also indicate that the fast rate of degeneration in RD3-deficient photoreceptors results from the lack of this inhibition.


Subject(s)
Guanylate Cyclase/metabolism , Nuclear Proteins/metabolism , Receptors, Calcium-Sensing/metabolism , Amino Acid Substitution , Animals , Blindness/genetics , Calcium/metabolism , Disease Models, Animal , Eye Abnormalities/genetics , Female , Guanylate Cyclase/physiology , Guanylate Cyclase-Activating Proteins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense , Nuclear Proteins/physiology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/physiology , Protein Binding/genetics , Receptors, Cell Surface/metabolism , Retina/metabolism , Retinal Degeneration/genetics , Retinal Rod Photoreceptor Cells/metabolism
6.
J Biol Chem ; 294(10): 3476-3488, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30622141

ABSTRACT

The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.


Subject(s)
Calcium/metabolism , Cone-Rod Dystrophies/genetics , Guanylate Cyclase-Activating Proteins/genetics , Guanylate Cyclase-Activating Proteins/metabolism , Guanylate Cyclase/metabolism , Mutation , Retina/enzymology , Cell Death/genetics , Cone-Rod Dystrophies/enzymology , Cone-Rod Dystrophies/metabolism , Cone-Rod Dystrophies/pathology , Guanylate Cyclase-Activating Proteins/chemistry , Humans , Models, Molecular , Protein Conformation, alpha-Helical , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/pathology
7.
Adv Exp Med Biol ; 854: 253-8, 2016.
Article in English | MEDLINE | ID: mdl-26427419

ABSTRACT

GUCY2D encodes retinal guanylate cylase-1 (retGC1), a protein that plays a pivotal role in the recovery phase of phototransduction. Mutations in GUCY2D are associated with a leading cause of recessive Leber congenital amaurosis (LCA1). Patients present within the first year of life with aberrant or unrecordable electroretinogram (ERG), nystagmus and a relatively normal fundus. Aside from abnormalities in the outer segments of foveal cones and, in some patients, foveal cone loss, LCA1 patients retain normal retinal laminar architecture suggesting they may be good candidates for gene replacement therapy. Several animal models of LCA1, both naturally occurring and engineered, have been characterized and provide valuable tools for translational studies. This mini-review will summarize the phenotypes of these models and describe how each has been instrumental in proof of concept studies to develop a gene replacement therapy for GUCY2D-LCA1.


Subject(s)
Genetic Predisposition to Disease/genetics , Guanylate Cyclase/genetics , Leber Congenital Amaurosis/genetics , Mutation , Receptors, Cell Surface/genetics , Animals , Disease Models, Animal , Genetic Therapy/methods , Humans , Leber Congenital Amaurosis/pathology , Leber Congenital Amaurosis/therapy , Rod Cell Outer Segment/metabolism , Rod Cell Outer Segment/pathology
8.
Mol Ther Methods Clin Dev ; 28: 129-145, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36654798

ABSTRACT

Mutations in GUCY2D are associated with severe early-onset retinal dystrophy, Leber congenital amaurosis type 1 (LCA1), a leading cause of blindness in children. Despite a high degree of visual disturbance stemming from photoreceptor dysfunction, patients with LCA1 largely retain normal photoreceptor structure, suggesting that they are good candidates for gene replacement therapy. The purpose of this study was to conduct the preclinical and IND-enabling experiments required to support clinical application of AAV5-hGRK1-GUCY2D in patients harboring biallelic recessive mutations in GUCY2D. Preclinical studies were conducted in mice to evaluate the effect of vector manufacturing platforms and transgene species on the therapeutic response. Dose-ranging studies were conducted in cynomolgus monkeys to establish the minimum dose required for efficient photoreceptor transduction. Good laboratory practice (GLP) studies evaluated systemic biodistribution in rats and toxicology in non-human primates (NHPs). These results expanded our knowledge of dose response for an AAV5-vectored transgene under control of the human rhodopsin kinase (hGRK1) promoter in NHPs with respect to photoreceptor transduction and safety and, in combination with the rat biodistribution and mouse efficacy studies, informed the design of a first-in-human clinical study in patients with LCA1.

9.
Biomol NMR Assign ; 13(1): 201-205, 2019 04.
Article in English | MEDLINE | ID: mdl-30706384

ABSTRACT

Retinal membrane guanylyl cyclase (RetGC) in photoreceptor rod and cone cells is regulated by a family of guanylyl cyclase activating proteins (GCAP1-7). GCAP5 is expressed in zebrafish photoreceptors and promotes Ca2+-dependent regulation of RetGC enzymatic activity that regulates visual phototransduction. We report NMR chemical shift assignments of the Ca2+-free activator form of GCAP5 (BMRB No. 27705).


Subject(s)
Guanylate Cyclase-Activating Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Retina/metabolism , Zebrafish Proteins/chemistry , Zebrafish/metabolism , Amino Acid Sequence , Animals , Protein Structure, Secondary
10.
Biomol NMR Assign ; 12(1): 167-170, 2018 04.
Article in English | MEDLINE | ID: mdl-29327102

ABSTRACT

Retinal degeneration 3 protein (RD3) binds to retinal membrane guanylyl cyclase (RetGC) and suppresses the basal activity of RetGC in photoreceptor cells that opposes the allosteric activation of the cyclase by GCAP proteins. Mutations in RD3 that disrupt its inhibition of RetGC are implicated in human retinal degenerative disorders. Here we report both backbone and sidechain NMR assignments for the RD3 protein (BMRB accession no. 27305).


Subject(s)
Eye Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Humans
11.
Front Mol Neurosci ; 7: 43, 2014.
Article in English | MEDLINE | ID: mdl-24860425

ABSTRACT

Vertebrate species possess two retinal guanylate cyclases (retGC1 and retGC2) and at least two guanylate cyclase activating proteins (GCAPs), GCAP1 and GCAP2. GCAPs function as Ca(2+) sensors that regulate the activity of guanylate cyclases. Together, these proteins regulate cGMP and Ca(2+) levels within the outer segments of rod and cone photoreceptors. Mutations in GUCY2D, the gene that encodes retGC1, are a leading cause of the most severe form of early onset retinal dystrophy, Leber congenital amaurosis (LCA1). These mutations, which reduce or abolish the ability of retGC1 to replenish cGMP in photoreceptors, are thought to lead to the biochemical equivalent of chronic light exposure in these cells. In spite of this, the majority of LCA1 patients retain normal photoreceptor laminar architecture aside from foveal cone outer segment abnormalities, suggesting they may be good candidates for gene replacement therapy. Work began in the 1980s to characterize multiple animal models of retGC1 deficiency. 34 years later, all models have been used in proof of concept gene replacement studies toward the goal of developing a therapy to treat GUCY2D-LCA1. Here we use the results of these studies as well as those of recent clinical studies to address specific questions relating to clinical application of a gene therapy for treatment of LCA1.

12.
Invest Ophthalmol Vis Sci ; 55(3): 1930-40, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24557353

ABSTRACT

PURPOSE: We characterized and modeled changes in visual performance associated with a Tyr99Cys mutation in guanylate cyclase-activating protein-1 (GCAP1) in four family members aged between 39 and 55 years old. Guanylate cyclase and its activating protein are molecules in the visual transduction pathway that restore cyclic GMP (cGMP) following its light-activated hydrolysis. The mutation causes an excess of cGMP in the dark and results in progressive photoreceptor loss. METHODS: L-cone temporal acuity was measured as a function of target irradiance, and L-cone temporal contrast sensitivity was measured as a function of temporal frequency. RESULTS: All four mutant GCAP1 family members showed sensitivity or acuity losses relative to normal observers. The data for the youngest family member are consistent with an abnormal speeding up of the visual response relative to that in normals, but those for the older members showed a progressively higher-frequency sensitivity loss consistent with a slowing down of their response. CONCLUSIONS: The speeding up of the visual response in the youngest observer is consistent with the Tyr99Cys mutation that results in the more rapid replacement of cGMP after light exposure and, thus, in a reduction of temporal integration and relative improvement in high-frequency sensitivity compared to normals. The high-frequency losses in the older observers are consistent with their vision being limited by the interposition of some sluggish process. This might result from some residual or malfunctioning molecular process limiting transduction within damaged photoreceptors or from an active or passive postreceptoral reorganization caused by the paucity of functioning photoreceptors.


Subject(s)
DNA/genetics , Guanylate Cyclase-Activating Proteins/genetics , Mutation , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Adaptation, Ocular , Animals , DNA Mutational Analysis , Electrophoresis, Polyacrylamide Gel , Electroretinography , Guanylate Cyclase-Activating Proteins/metabolism , Humans , Mice , Mice, Mutant Strains , Pedigree , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL