Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Toxicol Appl Pharmacol ; 484: 116870, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395364

ABSTRACT

The development of refractory status epilepticus (SE) following sarin intoxication presents a therapeutic challenge. Here, we evaluated the efficacy of delayed combined double or triple treatment in reducing abnormal epileptiform seizure activity (ESA) and the ensuing long-term neuronal insult. SE was induced in rats by exposure to 1.2 LD50 sarin followed by treatment with atropine and TMB4 (TA) 1 min later. Double treatment with ketamine and midazolam or triple treatment with ketamine, midazolam and levetiracetam was administered 30 min post-exposure, and the results were compared to those of single treatment with midazolam alone or triple treatment with ketamine, midazolam, and valproate, which was previously shown to ameliorate this neurological insult. Toxicity and electrocorticogram activity were monitored during the first week, and behavioral evaluations were performed 2 weeks post-exposure, followed by biochemical and immunohistopathological analyses. Both double and triple treatment reduced mortality and enhanced weight recovery compared to TA-only treatment. Triple treatment and, to a lesser extent, double treatment significantly ameliorated the ESA duration. Compared to the TA-only or the TA+ midazolam treatment, both double and triple treatment reduced the sarin-induced increase in the neuroinflammatory marker PGE2 and the brain damage marker TSPO and decreased gliosis, astrocytosis and neuronal damage. Finally, both double and triple treatment prevented a change in behavior, as measured in the open field test. No significant difference was observed between the efficacies of the two triple treatments, and both triple combinations completely prevented brain injury (no differences from the naïve rats). Delayed double and, to a greater extent, triple treatment may serve as an efficacious delayed therapy, preventing brain insult propagation following sarin-induced refractory SE.


Subject(s)
Brain Injuries , Ketamine , Nerve Agents , Status Epilepticus , Rats , Animals , Sarin/toxicity , Nerve Agents/toxicity , Midazolam/pharmacology , Midazolam/therapeutic use , Rats, Sprague-Dawley , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Cholinergic Agents/adverse effects , Brain Injuries/chemically induced
2.
Molecules ; 29(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893448

ABSTRACT

Epilepsy is a prevalent neurological disorder characterized by recurrent seizures. Validamycin A (VA) is an antibiotic fungicide that inhibits trehalase activity and is widely used for crop protection in agriculture. In this study, we identified a novel function of VA as a potential anti-seizure medication in a zebrafish epilepsy model. Electroencephalogram (EEG) analysis demonstrated that VA reduced pentylenetetrazol (PTZ)-induced seizures in the brains of larval and adult zebrafish. Moreover, VA reduced PTZ-induced irregular movement in a behavioral assessment of adult zebrafish. The developmental toxicity test showed no observable anatomical alteration when the zebrafish larvae were treated with VA up to 10 µM within the effective range. The median lethal dose of VA in adult zebrafish was > 14,000 mg/kg. These results imply that VA does not demonstrate observable toxicity in zebrafish at concentrations effective for generating anti-seizure activity in the EEG and alleviating abnormal behavior in the PTZ-induced epileptic model. Furthermore, the effectiveness of VA was comparable to that of valproic acid. These results indicate that VA may have a potentially safer anti-seizure profile than valproic acid, thus offering promising prospects for its application in agriculture and medicine.


Subject(s)
Anticonvulsants , Disease Models, Animal , Epilepsy , Pentylenetetrazole , Zebrafish , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Pentylenetetrazole/adverse effects , Epilepsy/drug therapy , Epilepsy/chemically induced , Seizures/drug therapy , Seizures/chemically induced , Electroencephalography , Valproic Acid/pharmacology , Larva/drug effects , Brain/drug effects , Brain/pathology , Inositol/analogs & derivatives
3.
Toxicol Appl Pharmacol ; 464: 116437, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36849019

ABSTRACT

Recently a novel humanized mouse strain has been successfully generated, in which serum carboxylesterase (CES) knock out (KO) mice (Es1-/-) were further genetically modified by knocking in (KI), or adding, the gene that encodes the human form of acetylcholinesterase (AChE). The resulting human AChE KI and serum CES KO (or KIKO) mouse strain should not only exhibit organophosphorus nerve agent (NA) intoxication in a manner more similar to humans, but also display AChE-specific treatment responses more closely mimicking those of humans to facilitate data translation to pre-clinic trials. In this study, we utilized the KIKO mouse to develop a seizure model for NA medical countermeasure investigation, and then applied it to evaluate the anticonvulsant and neuroprotectant (A/N) efficacy of a specific A1 adenosine receptor (A1AR) agonist, N-bicyclo-(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), which has been shown in a rat seizure model to be a potent A/N compound. Male mice surgically implanted with cortical electroencephalographic (EEG) electrodes a week earlier were pretreated with HI-6 and challenged with various doses (26 to 47 µg/kg, SC) of soman (GD) to determine a minimum effective dose (MED) that induced sustained status epilepticus (SSE) activity in 100% of animals while causing minimum lethality at 24 h. The GD dose selected was then used to investigate the MED doses of ENBA when given either immediately following SSE initiation (similar to wartime military first aid application) or at 15 min after ongoing SSE seizure activity (applicable to civilian chemical attack emergency triage). The selected GD dose of 33 µg/kg (1.4 x LD50) generated SSE in 100% of KIKO mice and produced only 30% mortality. ENBA at a dose as little as 10 mg/kg, IP, caused isoelectric EEG activity within minutes after administration in naïve un-exposed KIKO mice. The MED doses of ENBA to terminate GD-induced SSE activity were determined to be 10 and 15 mg/kg when treatment was given at the time of SSE onset and when seizure activity was ongoing for 15 min, respectively. These doses were much lower than in the non-genetically modified rat model, which required an ENBA dose of 60 mg/kg to terminate SSE in 100% GD-exposed rats. At MED doses, all mice survived for 24 h, and no neuropathology was observed when the SSE was stopped. The findings confirmed that ENBA is a potent A/N for both immediate and delayed (i.e., dual purposed) therapy to victims of NA exposure and serves as a promising neuroprotective antidotal and adjunctive medical countermeasure candidate for pre-clinical research and development for human application.


Subject(s)
Nerve Agents , Neuroprotective Agents , Soman , Status Epilepticus , Animals , Male , Mice , Rats , Acetylcholinesterase , Anticonvulsants/adverse effects , Nerve Agents/toxicity , Neuroprotective Agents/adverse effects , Organophosphorus Compounds/therapeutic use , Purinergic P1 Receptor Agonists/adverse effects , Receptors, Purinergic P1 , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Soman/toxicity , Soman/therapeutic use , Status Epilepticus/chemically induced
4.
Toxicol Appl Pharmacol ; 416: 115466, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33631229

ABSTRACT

Soman, an organophosphorus (OP) compound, disrupts nervous system function through inactivation of acetylcholinesterase (AChE), the enzyme that breaks down acetylcholine at synapses. Left untreated, a state of prolonged seizure activity (status epilepticus, SE) is induced, causing widespread neuronal damage and associated cognitive and behavioral impairments. Previous research demonstrated that therapeutic stimulation of A1 adenosine receptors (A1ARs) can prevent or terminate soman-induced seizure. This study examined the ability of three potent A1AR agonists to provide neuroprotection and, ultimately, prevent observable cognitive and behavioral deficits following exposure to soman. Sprague Dawley rats were challenged with a seizure-inducing dose of soman (1.2 x LD50) and treated 1 min later with one of the following A1AR agonists: (6)-Cyclopentyladenosine (CPA), 2-Chloro-N6-cyclopentyladenosine (CCPA) or N-bicyclo(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (cdENBA). An active avoidance shuttle box task was used to evaluate locomotor responses to aversive stimuli at 3, 7 and 14 days post-exposure. Animals treated with CPA, CCPA or cdENBA demonstrated a higher number of avoidance responses and a faster reaction to the aversive stimulus than the soman/saline control group across all three sessions. Findings suggest that A1AR agonism is a promising neuroprotective countermeasure, capable of preventing the long-term deficits in learning and memory that are characteristic of soman intoxication.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacology , Anticonvulsants/pharmacology , Brain/drug effects , Neuroprotective Agents/pharmacology , Organophosphate Poisoning/prevention & control , Receptor, Adenosine A1/drug effects , Seizures/prevention & control , Soman , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Deoxyadenosines/pharmacology , Disease Models, Animal , Male , Organophosphate Poisoning/etiology , Organophosphate Poisoning/metabolism , Organophosphate Poisoning/physiopathology , Rats, Sprague-Dawley , Receptor, Adenosine A1/metabolism , Seizures/chemically induced , Seizures/metabolism , Seizures/pathology
5.
Epilepsia ; 62(12): 3076-3090, 2021 12.
Article in English | MEDLINE | ID: mdl-34625953

ABSTRACT

OBJECTIVES: Benzodiazepines are the standard of care for the management of sustained seizure emergencies, including status epilepticus (SE) and seizure clusters. Seizure clusters are a variably defined seizure emergency wherein a patient has multiple seizures above a baseline rate, with intervening periods of recovery, distinguishing clusters from SE. Although these seizure emergencies are phenotypically distinct, the precise pathophysiological and mechanistic differences between SE and seizure clusters are understudied. Emergency-specific preclinical models may differentiate the behavioral and pathological mechanisms that are acutely associated with seizure emergencies and seizure termination to better manage these events. METHODS: Herein we characterize a novel model of sustained seizure emergency induced in CF-1 mice through the combined administration of high-dose phenytoin (PHT; 50 mg/kg, i.p.) and pentylenetetrazol (PTZ; 100 mg/kg, s.c.). RESULTS: We presently describe a mouse model of sustained seizure emergency that is pathologically, pharmacologically, and behaviorally distinct from SE. Acute administration of PHT 1 h prior to PTZ led to significantly more mice with unremitting continuous seizure activity (CSA; 73.4%) vs vehicle-pretreated mice (13.8%; p < .0001). CSA was sensitive to lorazepam and valproic acid when administered at seizure onset and 30 minutes later. Carbamazepine worsened seizure control and post-CSA survival. Mice in CSA exhibited electroencephalography (EEG) patterns distinct from kainic acid-induced SE and PTZ alone, clearly differentiating CSA from SE and PTZ-induced myoclonic seizures. Neuropathological assessment by Fluoro-Jade C staining of brains collected 24 h post-CSA revealed no neurodegeneration in any mouse that underwent CSA, whereas there was widespread neuronal death in brains from KA-SE mice. Finally, immunohistochemistry revealed acute seizure-induced astrogliosis (glial fibrillary acid protein; GFAP) in hippocampal structures, whereas hippocampal neuronal nuclei (NeuN) protein expression was only reduced in KA-SE mice. SIGNIFICANCE: We present a novel mouse model on which to further elucidate the mechanistic differences between sustained seizure emergencies (ie, SE and seizure clusters) to improve clinical interventions and define mechanisms of seizure termination.


Subject(s)
Emergencies , Status Epilepticus , Animals , Disease Models, Animal , Electroencephalography , Glial Fibrillary Acidic Protein , Humans , Kainic Acid , Mice , Pentylenetetrazole/toxicity , Seizures/chemically induced , Seizures/drug therapy , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy
6.
Epilepsia ; 62(10): 2485-2495, 2021 10.
Article in English | MEDLINE | ID: mdl-34418086

ABSTRACT

OBJECTIVE: A Phase 3 open-label safety study (NCT02721069) evaluated long-term safety of diazepam nasal spray (Valtoco) in patients with epilepsy and frequent seizure clusters. METHODS: Patients were 6-65 years old with diagnosed epilepsy and seizure clusters despite stable antiseizure medications. The treatment period was 12 months, with study visits at Day 30 and every 60 days thereafter, after which patients could elect to continue. Doses were based on age and weight. Seizure and treatment information was recorded in diaries. Treatment-emergent adverse events (TEAEs), nasal irritation, and olfactory changes were recorded. RESULTS: Of 163 patients in the safety population, 117 (71.8%) completed the study. Duration of exposure was ≥12 months for 81.6% of patients. There was one death (sudden unexpected death in epilepsy) and one withdrawal owing to a TEAE (major depression), both considered unlikely to be related to treatment. Diazepam nasal spray was administered 4390 times for 3853 seizure clusters, with 485 clusters treated with a second dose within 24 h; 53.4% of patients had monthly average usage of one to two doses, 41.7% two to five doses, and 4.9% more than five doses. No serious TEAEs were considered to be treatment related. TEAEs possibly or probably related to treatment (n = 30) were most commonly nasal discomfort (6.1%); headache (2.5%); and dysgeusia, epistaxis, and somnolence (1.8% each). Only 13 patients (7.9%) showed nasal irritation, and there were no relevant olfactory changes. The safety profile of diazepam nasal spray was generally similar across subgroups based on age, monthly usage, concomitant benzodiazepine therapy, or seasonal allergy/rhinitis. SIGNIFICANCE: In this large open-label safety study, the safety profile of diazepam nasal spray was consistent with the established profile of rectal diazepam, and the high retention rate supports effectiveness in this population. A second dose was used in only 12.6% of seizure clusters.


Subject(s)
Epilepsy, Generalized , Epilepsy , Olfaction Disorders , Administration, Intranasal , Adolescent , Adult , Aged , Anticonvulsants/adverse effects , Brain Damage, Chronic , Child , Death, Sudden , Diazepam/adverse effects , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy, Generalized/drug therapy , Humans , Middle Aged , Nasal Sprays , Seizures/chemically induced , Seizures/drug therapy , Treatment Outcome , Young Adult
7.
Metab Brain Dis ; 35(3): 441-449, 2020 03.
Article in English | MEDLINE | ID: mdl-31691144

ABSTRACT

Prolonged febrile seizures are usually modelled in animals using hyperthermia as an inducer. In this study, a modified simple febrile seizure model using a combination of lipopolysaccharide (LPS) and kainic acid (KA) was used to develop a prolonged febrile seizure animal model, which we used to assess effects on the expression of the sodium- potassium-chloride cotransporter 1 (NKCC1) and potassium-chloride cotransporter 2 (KCC2) and their possible role in seizure exacerbation. At post-natal day (PND) 14, rat pups were divided into a saline (S), simple febrile seizure (FSA-), prolonged febrile seizure (FSB-), saline A (SA+) and saline B (SB+) groups. SA+ and SB+ groups received different concentrations of KA (1.75 mg/kg, 1.83 µg/kg respectively) but no LPS. Changes in temperature, seizure activity and duration were recorded. Gene and protein expression of NKCC1, KCC2 and KCC2 phosphorylated serine (KCC2 ser) 940 were measured 1 h post seizure termination and on PND 15 using RT- PCR and western blot. There was an initial increase in temperature that was immediately followed by a temperature decrease and an increase in seizure severity and duration in the FSB- group. There was a decrease in KCC2 ser 940 protein expression. NKCC1 protein expression was increased in both FS groups suggesting decreased GABA receptor functionality. Therefore, the novel FSB- model resulted in more severe and sustained seizure activity by altering cotransporter gene and protein expression. This suggests that this model can be used to mimic prolonged febrile seizures and hence can be used to investigate the physiological changes accompanying this condition.


Subject(s)
Hippocampus/metabolism , Seizures, Febrile/metabolism , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Animals , Body Temperature/physiology , Disease Models, Animal , Kainic Acid , Lipopolysaccharides , Phosphorylation , Rats , Rats, Sprague-Dawley , Seizures, Febrile/chemically induced , K Cl- Cotransporters
8.
Epilepsy Behav ; 95: 43-50, 2019 06.
Article in English | MEDLINE | ID: mdl-31026781

ABSTRACT

Epilepsy is one of the most common neurological disorders that severely affect life quality of many people worldwide. Ion transport in the neuronal membrane, inhibitory-excitatory mechanisms, and regulatory modulator systems have been implicated in the pathogenesis of epilepsy. A bidirectional communication is proposed between brain and gut where the brain modulates the gastrointestinal tract, and the gut can affect brain function and behavior. The gut microbiome takes an important role in health and disease where dysbiosis is involved in several neurological disorders. Probiotics as living microorganisms are beneficial to humans and animals when adequately administered. In the present work, we evaluated the effect of a probiotic bacteria mixture on seizure activity, cognitive function, and gamma-aminobutyric acid (GABA), nitric oxide (NO), malondealdehyde (MDA), and total antioxidant capacity (TAC) level of the brain tissue in the pentylenetetrazole (PTZ)-induced kindled rats. The Racine score and performance in water maze were considered as indices of the epileptic severity and the spatial learning and memory, respectively. We found that the probiotic supplementation substantially reduces seizure severity so that almost no probiotic-treated animals showed full kindling. The oral bacteriotherapy partially improved the spatial learning and memory in the kindled rats. The intervention decreased NO and MDA and increased TAC concentration of the brain. The probiotic treatment also increased the inhibitory neurotransmitter GABA. Our findings are the first preclinical report to show positive effect of probiotic bacteria on seizure-induced neurological disorders. Further investigation is required to answer the questions raised about the probable mechanisms involved.


Subject(s)
Cognition , Learning , Probiotics/therapeutic use , Seizures/therapy , Animals , Biomarkers/metabolism , Brain/metabolism , Convulsants , Gastrointestinal Microbiome , Kindling, Neurologic , Male , Pentylenetetrazole , Rats , Rats, Wistar , Seizures/chemically induced , Seizures/metabolism , Seizures/psychology
9.
Toxicol Mech Methods ; 29(5): 322-333, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30558458

ABSTRACT

The efficacy of anticonvulsant therapies to stop seizure activities following organophosphorus nerve agents (NAs) has been documented as being time-dependent. We utilized the guinea pig NA-seizure model to compare the effectiveness of phencynonate (PCH) and scopolamine (SCP) when given at the early (at time of seizure onset) or late (40 min after seizure onset) phase of seizure progression. PCH possesses both anticholinergic and anti-NMDA activities, while SCP is a purely anti-muscarinic compound. Animals with cortical electrodes were pretreated with pyridostigmine bromide 30 min prior to exposure to a 2.0 x LD50 subcutaneous dose of a NA (GA, GB, GD, GF, VR, or VX), followed one min later with atropine sulfate and 2-PAM. At either early or late phase, animals were treated with either PCH or SCP and the 24-h anticonvulsant ED50 doses were determined. When administered at seizure onset, PCH, and SCP were both effective at terminating seizure activity against all NAs, with ED50 values for SCP generally being lower. At the 40 min time, ED50 values were obtained following GA, GD, GF, and VR challenges for SCP, but ED50 value was obtained only following GD for PCH, indicating a superior efficacy of SCP. When seizure activity was controlled, a significant improvement in weight loss, neuropathology, and survival was observed, regardless of treatment or NA. Overall, these results demonstrate the differing efficacies of these two similarly structured anticholinergic compounds with delayed administration and warrant further investigation into the timing and mechanisms of the seizure maintenance phase in different animal models.


Subject(s)
Anticonvulsants/pharmacology , Aza Compounds/pharmacology , Brain/drug effects , Glycolates/pharmacology , Nerve Agents/toxicity , Organophosphorus Compounds/toxicity , Scopolamine/pharmacology , Seizures/prevention & control , Age of Onset , Animals , Anticonvulsants/administration & dosage , Aza Compounds/administration & dosage , Brain/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Glycolates/administration & dosage , Guinea Pigs , Lethal Dose 50 , Male , Scopolamine/administration & dosage , Seizures/chemically induced , Seizures/pathology
10.
J Pediatr ; 187: 18-25.e2, 2017 08.
Article in English | MEDLINE | ID: mdl-28366355

ABSTRACT

OBJECTIVE: To investigate the frequency and characteristics of electrographic seizures in preterm infants in the early postnatal period. STUDY DESIGN: Infants <32 weeks gestational age (GA) (n = 120) were enrolled for continuous multichannel electroencephalography (EEG) recording initiated as soon as possible after birth and continued for approximately up to 72 hours of age. Electrographic seizures were identified visually, annotated, and analyzed. Quantitative descriptors of the temporal evolution of seizures, including total seizure burden, seizure duration, and maximum seizure burden, were calculated. RESULTS: Median GA was 28.9 weeks (IQR, 26.6-30.3 weeks) and median birth weight was 1125 g (IQR, 848-1440 g). Six infants (5%; 95% CI, 1.9-10.6%) had electrographic seizures. Median total seizure burden, seizure duration, and maximum seizure burden were 40.3 minutes (IQR, 5.0-117.5 minutes), 49.6 seconds (IQR, 43.4-76.6 seconds), and 10.8 minutes/hour (IQR, 1.6-20.2 minutes/hour), respectively. Seizure burden was highest in 2 infants with significant abnormalities on neuroimaging. CONCLUSION: Electrographic seizures are infrequent within the first few days of birth in very preterm infants. Seizures in this population are difficult to detect accurately without continuous multichannel EEG monitoring.


Subject(s)
Electroencephalography/methods , Seizures/diagnosis , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Male , Monitoring, Physiologic/methods
11.
Neuroimage ; 125: 1142-1154, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26220742

ABSTRACT

Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5-10min compared to approximately 1-2h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated.


Subject(s)
Brain/physiopathology , Models, Neurological , Seizures/physiopathology , Bayes Theorem , Electroencephalography , Humans
12.
Neurochem Res ; 41(5): 1035-41, 2016 May.
Article in English | MEDLINE | ID: mdl-26646003

ABSTRACT

Physical exercise and vitamins such as ascorbic acid (ASC) have been recognized as an effective strategy in neuroprotection and neurorehabilitatioin. However, there is a need to find an efficient treatment regimen that includes ASC and low-intensity exercise to diminish the risk of overtraining and nutritional treatment by attenuating oxidative stress. In the present study, we investigated the combined effect of low-intensity physical exercise (EX) and ASC on kainic acid (KA)-induced seizure activity and oxidative stress in mice. The mice were randomly assigned into groups as follows: "KA only" (n = 11), "ASC + KA" (n = 11), "Ex + KA" (n = 11), "ASC + Ex + KA" (n = 11). In the present study, low intensity of swimming training period lasted 8 weeks and consisted of 30-min sessions daily (three times per week) without tail weighting. Although no preventive effect of low-intensity exercise or ASC on KA seizure occurrence was evident, there was a decrease of seizure activity, seizure development (latency to first seizures), and mortality in "ASC + Ex + KA" compared to "ASC + KA", "Ex + KA", and "KA only" group. In addition, a preventive synergistic coordination of low-intensity exercise and ASC was evident in glutathione peroxidase and superoxide dismutase activity compared to separate treatment. These results suggest that low-intensity exercise and ASC treatment have preventive effects on seizure activity and development with alternation of oxidative status.


Subject(s)
Ascorbic Acid/pharmacology , Kainic Acid , Oxidative Stress , Physical Conditioning, Animal , Seizures/prevention & control , Animals , Male , Mice, Inbred ICR , Seizures/chemically induced , Seizures/physiopathology
13.
Acta Paediatr ; 103(9): 922-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24813556

ABSTRACT

AIM: The aim of this study was to measure the brain activity of preterm infants treated with caffeine citrate and doxapram for preterm apnoea, using amplitude-integrated electroencephalography (aEEG), to identify any adverse effects on cerebral function. METHODS: We analysed the aEEG tracings of 13 preterm infants <30 weeks of gestation before, during and after doxapram treatment, with regard to background activity (percentages of continuous and discontinuous patterns), occurrence of sleep-wake cycling and appearance of electrographic seizure activity. They were also compared with 61 controls without doxapram treatment. RESULTS: During doxapram treatment, aEEG tracings showed an increase in continuous background activity (19 ± 30% before treatment, 38 ± 35% during treatment) and a decrease in discontinuous patterns. In addition, they showed more frequent electrographic seizure activity (0% before treatment, 15 ± 37% during treatment) and less frequent sleep-wake cycling (92 ± 27% before treatment, 85 ± 37% during treatment) could be observed. These results were confirmed when compared to the control group. CONCLUSION: Doxapram treatment influences aEEG in preterm infants, showing higher percentages of continuous activity as well as more electrographic seizure activity and less sleep-wake cycling. It should, therefore, be used with caution in very preterm infants.


Subject(s)
Brain/drug effects , Brain/physiology , Doxapram/pharmacology , Electroencephalography/drug effects , Electroencephalography/methods , Respiratory System Agents/pharmacology , Apnea/drug therapy , Doxapram/therapeutic use , Female , Gestational Age , Humans , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/drug therapy , Male , Respiratory System Agents/therapeutic use , Retrospective Studies
14.
Neuropharmacology ; 253: 109966, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677446

ABSTRACT

Organophosphorus nerve agents, such as soman (GD), produce excitotoxic effects resulting in sustained status epilepticus (SSE) and brain damage. Previous work shows that neuronal inhibitory effects of A1 adenosine receptor (A1AR) agonists, such as N6- Bicyclo (2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (Cl-ENBA), suppresses GD-induced SSE and improves neuropathology. Some other physiologic effects of these agonists are hypothermia, hypotension, and sedation. Hypothermia may also shield the brain from injury by slowing down chemical insults, lessening inflammation, and contributing to improved neurological outcomes. Therefore, we attempted to isolate the hypothermic effect from ENBA by assessing the neuroprotective efficacy of direct surface body cooling in a rat GD-induced SSE model, and comparing the effects on seizure termination, neuropathology, and survival. Male rats implanted with a body temperature (Tb) transponder and electroencephalographic (EEG) electrodes were primed with asoxime (HI-6), exposed to GD 30 min later, and then treated with Cl-ENBA or had Tb lowered directly via body cooling at 30 min after the onset of seizure activity. Afterwards, they were either allowed to develop hypothermia as expected, or received thermal support to maintain normothermic Tb for a period of 6-h. Neuropathology was assessed at 24 h. Regardless of Cl-ENBA or surface cooling, all hypothermic GD-exposed groups had significantly improved 24-h survival compared to rats with normothermic Tb (81% vs. 39%, p < 0.001). Cl-ENBA offered neuroprotection independently of hypothermic Tb. While hypothermia enhanced the overall efficacy of Cl-ENBA by improving survival outcomes, body cooling didn't reduce seizure activity or neuropathology following GD-induced SSE.


Subject(s)
Adenosine A1 Receptor Agonists , Hypothermia, Induced , Rats, Sprague-Dawley , Seizures , Soman , Animals , Male , Adenosine A1 Receptor Agonists/pharmacology , Soman/toxicity , Hypothermia, Induced/methods , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Rats , Adenosine/analogs & derivatives , Adenosine/pharmacology , Body Temperature/drug effects , Brain/drug effects , Brain/pathology , Electroencephalography , Disease Models, Animal
15.
Cureus ; 16(5): e60094, 2024 May.
Article in English | MEDLINE | ID: mdl-38860067

ABSTRACT

Lamotrigine, a widely utilized broad-spectrum anticonvulsant, is commonly prescribed for epilepsy management and bipolar mood disorders. Despite its extensive clinical usage, instances of lamotrigine overdose are underreported. Here, we present a case involving acute encephalopathy and seizure onset following an intentional lamotrigine overdose. This case underscores the importance of recognizing the potential clinical manifestations of lamotrigine toxicity, such as encephalopathy and seizures, emphasizing the necessity for vigilant management of patients receiving this medication.

16.
Epilepsy Behav ; 29(2): 275-80, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24012504

ABSTRACT

Population-based studies suggest that seizure incidence is highest during the first year of life, and early-life seizures frequently result in the development of epilepsy and behavioral alterations later in life. The early-life insults like status epilepticus often lead to epileptogenesis, a process in which initial brain injury triggers cascades of molecular, cellular, and network changes and eventually spontaneous seizures. Caffeic acid phenethyl ester is an active component of propolis obtained from honeybees and has neuroprotective properties. The aim of this study was to investigate whether caffeic acid phenethyl ester exerts neuroprotective effects on the developing rat brain after status epilepticus. Twenty-one dams reared Wistar male rats, and 21-day-old rats were divided into three groups: control group, pentylenetetrazole-induced status epilepticus group, and caffeic acid phenethyl ester-treated group. Status epilepticus was induced on the first day of experiment. Caffeic acid phenethyl ester injections (30 mg/kg intraperitoneally) started 40 min after the tonic phase of status epilepticus was reached, and the injections of caffeic acid phenethyl ester were repeated over 5 days. Rats were sacrificed, and brain tissues were collected on the 5th day of experiment after the last injection of caffeic acid phenethyl ester. Apoptotic cell death was evaluated. Histopathological examination showed that caffeic acid phenethyl ester significantly preserved the number of neurons in the CA1, CA3, and dentate gyrus regions of the hippocampus and the prefrontal cortex. It also diminished apoptosis in the hippocampus and the prefrontal cortex. In conclusion, this experimental study suggests that caffeic acid phenethyl ester administration may be neuroprotective in status epilepticus in the developing rat brain.


Subject(s)
Apoptosis/drug effects , Brain , Caffeic Acids/therapeutic use , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Phenylethyl Alcohol/analogs & derivatives , Status Epilepticus/pathology , Analysis of Variance , Animals , Animals, Newborn , Brain/drug effects , Brain/growth & development , Brain/pathology , Caspase 3/metabolism , Convulsants/toxicity , Disease Models, Animal , In Situ Nick-End Labeling , Male , Pentylenetetrazole/toxicity , Phenylethyl Alcohol/therapeutic use , Rats , Rats, Wistar , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy
17.
Clin Neurophysiol ; 156: 106-112, 2023 12.
Article in English | MEDLINE | ID: mdl-37918221

ABSTRACT

OBJECTIVE: We studied the relationship between the clinical course of Panayiotopoulos syndrome (PS) and high-frequency oscillations (HFOs) captured during interictal scalp electroencephalography (EEG) to determine the feasibility of using HFOs to detect seizure activity in PS. METHODS: We analyzed the interictal scalp EEGs of 18 children with PS. Age parameters, seizure frequencies, and antiepileptic drugs were compared between the HFO-positive (HFOPG) and HFO-negative (HFONG) groups. RESULTS: Thirteen patients (72.2%) had HFOs while five patients (27.8%) had no HFOs in 194 interictal EEG records. We found no statistically significant differences in the mean age of epilepsy onset and last seizure, seizure frequency, or frequency of status epilepticus. However, the seizure activity period of the HFOPG was significantly longer than that of the HFONG. Patients with an HFO duration longer than 2 years were intractable to treatment. In most cases, seizures did not occur in the absence of HFOs, even when the spikes remained. CONCLUSIONS: HFOs are related to the seizure activity period in patients with PS. SIGNIFICANCE: We propose that HFOs are a biomarker of epileptogenicity and an indicator for drug reduction because seizures did not occur if HFOs disappeared even if the spikes remained.


Subject(s)
Epilepsies, Partial , Epilepsy , Child , Humans , Scalp , Epilepsies, Partial/diagnosis , Electroencephalography , Seizures/diagnosis , Epilepsy/diagnosis
18.
Cureus ; 15(7): e41473, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37546063

ABSTRACT

We present a case involving an 87-year-old woman who had a hyperkalemic emergency. This condition was further complicated by complete heart block (CHB) and seizure-like activity. This case emphasizes the challenge of differentiating between seizures and convulsive syncope. Achieving an accurate diagnosis is essential for determining the appropriate medical treatment. This case report highlights the various symptoms and complications associated with hyperkalemia, emphasizing the importance of conducting a thorough examination to explore other potential causes. Additionally, it emphasizes the usefulness of the head-upright tilt test (HUTT) as a method to differentiate convulsive syncope from seizures, particularly in cases involving vagal stimulation.

19.
Cureus ; 14(9): e28866, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36225406

ABSTRACT

Wernicke's encephalopathy (WE) is an underdiagnosed entity. A seizure can be the main manifestation of WE even without cortical involvement. This is a case report of a 45-year-old female patient with a past medical history of depression and poor oral intake who presented with a single episode of unwitnessed seizure and three days of unsteady gait and vertigo. She then had two episodes of seizure, focal and then generalized tonic. Her physical examination was remarkable for lethargy and bilateral gaze-induced horizontal nystagmus with a rotational component and change in direction. Magnetic resonance imaging (MRI) of the brain with contrast showed non-enhancing bilateral symmetrical fluid-attenuated inversion recovery (FLAIR) hyperintensities in the medial thalami and tectum. Vitamin B1 level was found to be low. Lumbar puncture (LP) was unyielding. She was loaded with high-dose thiamine replacement. After a few days, a neurological examination revealed improvement with unilateral nystagmus with less lethargy. The valproate that was started initially was eventually discontinued during follow-up after the resolution of neurological deficits. Interestingly, baseline echocardiography showed heart failure with reduced ejection fraction at 40% with clinical euvolemia. It was believed to be secondary to beriberi.

20.
Prog Neurobiol ; 217: 102335, 2022 10.
Article in English | MEDLINE | ID: mdl-35931355

ABSTRACT

The infiltration of immune cells is observed in the epileptogenic zone; however, the relationship between epilepsy and regulatory T cells (Tregs) remains only partially understood. We aimed to investigate brain-infiltrating Tregs to reveal their underlying role in epilepsy. We analyzed the infiltration of Tregs in the epileptogenic zones from patients with epilepsy and a pilocarpine-induced temporal lobe epilepsy (TLE) model. Next, we evaluated the effects of brain Treg depletion on neuroinflammation, neuronal loss, oxidative stress, seizure activity and behavioral changes in the pilocarpine model. We also explored the impact of Treg expansion in the brain on seizure activity. There were a large number of Tregs in the epileptogenic zones of human and experimental epilepsy. The number of brain Tregs was negatively correlated with the frequency of seizures in patients with epilepsy. Our further findings demonstrated that brain Treg depletion promoted astrocytosis, microgliosis, inflammatory cytokine production, oxidative stress, and neuronal loss in the hippocampus after status epilepticus (SE). Moreover, brain Treg depletion increased seizure activity and contributed to behavioral impairments in experimental chronic TLE. Interestingly, intracerebroventricular injection of CCL20 amplified Tregs in brain tissue, thereby inhibiting seizure activity. Taken together, our study highlights the therapeutic potential of regulating Tregs in epileptic brain tissue.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Animals , Brain , Disease Models, Animal , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Hippocampus , Humans , Pilocarpine/adverse effects , Seizures/chemically induced , T-Lymphocytes, Regulatory
SELECTION OF CITATIONS
SEARCH DETAIL