Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Publication year range
1.
Mol Cell ; 84(1): 142-155, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38118452

ABSTRACT

Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.


Subject(s)
JNK Mitogen-Activated Protein Kinases , MAP Kinase Kinase Kinases , Animals , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Signal Transduction , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Mammals/metabolism
2.
Mol Cell ; 81(16): 3275-3293.e12, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34245671

ABSTRACT

Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.


Subject(s)
Golgi Matrix Proteins/genetics , Proteome/genetics , Proteomics , Stress, Physiological/genetics , Extracellular Matrix/genetics , Golgi Apparatus/genetics , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Membrane Proteins/genetics , Protein Transport/genetics , Signal Transduction/genetics
3.
J Biol Chem ; 300(6): 107296, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641064

ABSTRACT

The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked ß-N-actylglucosamine (O-GlcNAc) is an essential posttranslational modification that is common in metozoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis. Acute elevation of O-GlcNAc before or after injury reduces apoptosis and necrosis, suggesting that injury-induced changes in O-GlcNAcylation regulate cell fate decisions. However, prolonged elevation or reduction in O-GlcNAc leads to a maladaptive response and is associated with pathologies such as hypertrophy and heart failure. In this review, we discuss the impact of O-GlcNAc in both acute and prolonged models of injury with a focus on the heart and biological mechanisms that underpin cell survival.


Subject(s)
Heart Diseases , Humans , Glycosylation , Animals , Heart Diseases/metabolism , Heart Diseases/pathology , Cytoprotection , Protein Processing, Post-Translational , Acetylglucosamine/metabolism
4.
Mol Syst Biol ; 19(2): e11147, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36573354

ABSTRACT

Tissue dissociation, a crucial step in single-cell sample preparation, can alter the transcriptional state of a sample through the intrinsic cellular stress response. Here we demonstrate a general approach for measuring transcriptional response during sample preparation. In our method, transcripts made during dissociation are labeled for later identification upon sequencing. We found general as well as cell-type-specific dissociation response programs in zebrafish larvae, and we observed sample-to-sample variation in the dissociation response of mouse cardiomyocytes despite well-controlled experimental conditions. Finally, we showed that dissociation of the mouse hippocampus can lead to the artificial activation of microglia. In summary, our approach facilitates experimental optimization of dissociation procedures as well as computational removal of transcriptional perturbation response.


Subject(s)
RNA , Transcriptome , Mice , Animals , Zebrafish/genetics , Sequence Analysis, RNA/methods , Microglia , Single-Cell Analysis , Gene Expression Profiling/methods
5.
J Exp Biol ; 227(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38736357

ABSTRACT

Recent global declines in bee health have elevated the need for a more complete understanding of the cellular stress mechanisms employed by diverse bee species. We recently uncovered the biomarker lethal (2) essential for life [l(2)efl] genes as part of a shared transcriptional program in response to a number of cell stressors in the western honey bee (Apis mellifera). Here, we describe another shared stress-responsive gene, glycine N-methyltransferase (Gnmt), which is known as a key metabolic switch controlling cellular methylation reactions. We observed Gnmt induction by both abiotic and biotic stressors. We also found increased levels of the GNMT reaction product sarcosine in the midgut after stress, linking metabolic changes with the observed changes in gene regulation. Prior to this study, Gnmt upregulation had not been associated with cellular stress responses in other organisms. To determine whether this novel stress-responsive gene would behave similarly in other bee species, we first characterized the cellular response to endoplasmic reticulum (ER) stress in lab-reared adults of the solitary alfalfa leafcutting bee (Megachile rotundata) and compared this with age-matched honey bees. The novel stress gene Gnmt was induced in addition to a number of canonical gene targets induced in both bee species upon unfolded protein response (UPR) activation, suggesting that stress-induced regulation of cellular methylation reactions is a common feature of bees. Therefore, this study suggests that the honey bee can serve as an important model for bee biology more broadly, although studies on diverse bee species will be required to fully understand global declines in bee populations.


Subject(s)
Glycine N-Methyltransferase , Animals , Bees/genetics , Bees/physiology , Methylation , Glycine N-Methyltransferase/genetics , Glycine N-Methyltransferase/metabolism , Endoplasmic Reticulum Stress , Stress, Physiological/genetics , Gene Expression Regulation , Transcription, Genetic , Species Specificity , Insect Proteins/metabolism , Insect Proteins/genetics
6.
Exp Cell Res ; 424(1): 113504, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36736606

ABSTRACT

FET proteins (FUS, EWS, and TAF15) share a common domain organization, bind RNA/DNA, and perform similarly multifunctional roles in the regulation of gene expression. Of the FET proteins, however, only EWS appears to have a distinct property in the cellular stress response. Therefore, we focused on the relationship between hyperosmotic stress response and post-translational modifications of the FET proteins. We confirmed that the hyperosmotic stress-dependent translocation from the nucleus to the cytoplasm and the cellular granule formation of FET proteins, and that EWS is less likely to partition into cellular granules in the cytoplasm than FUS or TAF15. The domain involved in the less partitioning property of EWS was found to be its low-complexity domain (LCD). Chemoenzymatic labeling analysis of O-linked ß-N-acetylglucosamine (O-GlcNAc) residues revealed that O-GlcNAc glycosylation occurs frequently in the LCD of EWS. A correlation was observed between the glycosylation of EWS and the less partitioning property under the hyperosmotic stress. These results suggest that among the FET proteins, only EWS has acquired the unique property through O-GlcNAc glycosylation. The glycosylation may play an essential role in regulating physiological functions of EWS, such as transcriptional activity, in addition to the property in cellular stress response.


Subject(s)
Cytoplasmic Granules , Protein Processing, Post-Translational , Glycosylation , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Cytoplasmic Granules/metabolism , Cytoplasm/metabolism , Acetylglucosamine/metabolism
7.
Prep Biochem Biotechnol ; 54(5): 709-719, 2024 May.
Article in English | MEDLINE | ID: mdl-38692288

ABSTRACT

Identification of a single genetic target for microbial strain improvement is difficult due to the complexity of the genetic regulatory network. Hence, a more practical approach is to identify bottlenecks in the regulatory networks that control critical metabolic pathways. The present work focuses on enhancing cellular physiology by increasing the metabolic flux through the central carbon metabolic pathway. Global regulator cra (catabolite repressor activator), a DNA-binding transcriptional dual regulator was selected for the study as it controls the expression of a large number of operons that modulate central carbon metabolism. To upregulate the activity of central carbon metabolism, the cra gene was co-expressed using a plasmid-based system. Co-expression of cra led to a 17% increase in the production of model recombinant protein L-Asparaginase-II. A pulse addition of 0.36% of glycerol every two hours post-induction, further increased the production of L-Asparaginase-II by 35% as compared to the control strain expressing only recombinant protein. This work exemplifies that upregulating the activity of central carbon metabolism by tuning the expression of regulatory genes like cra can relieve the host from cellular stress and thereby promote the growth as well as expression of recombinant hosts.


Subject(s)
Asparaginase , Escherichia coli , Recombinant Proteins , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Glycerol/metabolism , Gene Expression Regulation, Bacterial
8.
J Therm Biol ; 113: 103527, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37055131

ABSTRACT

Physiological stress patterns of marine organisms in their natural habitats are considerably complex in space and time. These patterns can eventually contribute in the shaping of fish' thermal limits under natural conditions. In the view of the knowledge gap regarding red porgy's thermal physiology, in combination with the characterization of the Mediterranean Sea as a climate change ''hotspot'', the aim of the present study was to investigate this species biochemical responses to constantly changing field conditions. To achieve this goal, Heat Shock Response (HSR), MAPKs pathway, autophagy, apoptosis, lipid peroxidation and antioxidant defense were estimated and exhibited a seasonal pattern. In general, all the examined biochemical indicators expressed high levels parallel to the increasing seawater temperature in spring, although several bio-indicators have shown increased levels when fish were cold-acclimatized. Similar to other sparids, the observed patterns of physiological responses in red porgy may support the concept of eurythermy.


Subject(s)
Antioxidants , Perciformes , Animals , Antioxidants/metabolism , Perciformes/physiology , Stress, Physiological , Heat-Shock Response/physiology , Fishes/metabolism
9.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Article in English | MEDLINE | ID: mdl-35258607

ABSTRACT

Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.


Subject(s)
Adaptation, Physiological , Selection, Genetic , Acclimatization , Adaptation, Physiological/genetics , Biological Evolution , DNA Transposable Elements , Evolution, Molecular , Phenotype
10.
J Exp Biol ; 225(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36326068

ABSTRACT

The maternal match hypothesis predicts that maternal exposure to a stressor may help prepare offspring to cope with the same disturbance in later life. Although there is support for this hypothesis, the signals involved in non-genetic inheritance are unclear. In this study, we tested how adult zebrafish exposure to diel cycles of thermal stress (27-36°C), hypoxia (20-85% dissolved oxygen) or the combined treatment affects maternal and embryonic levels of cortisol and heat shock proteins (HSPs). While parental exposure to the thermal, hypoxic or combined treatment for 2 weeks did not affect whole-body cortisol levels, the combined exposure increased ovarian cortisol levels by 4-fold and reduced embryonic cortisol content by 60%. The combined treatment also elicited 3- and 19-fold increases in embryo transcripts involved in cortisol breakdown (11bhsd2) and export (abcb4), respectively. The thermal stress and combined exposure also elicited marked increases in ovary and embryo hsp70a (20- to 45-fold) and HSP70 (3- to 7-fold), and smaller increases in ovary and embryo hsp90aa and hsp47 (2- to 4-fold) and in embryo HSP90 and HSP47 (2- to 6-fold). In contrast, except for increases in ovary hsp90aa (2-fold) and embryo HSP90 (3-fold), the hypoxia treatment had little effect on HSP expression and transfer. Overall, while the embryonic deposition of HSPs largely paralleled the ovarian cellular stress response, the inverse relationship between ovary and embryo cortisol levels suggests the existence of barriers against cortisol deposition in response to environmental stressors. We conclude that the endocrine and cellular stress responses make stressor-specific and distinct contributions to non-genetic inheritance.


Subject(s)
Heat-Shock Proteins , Zebrafish , Animals , Female , Zebrafish/metabolism , Hydrocortisone/metabolism , HSP70 Heat-Shock Proteins , Hypoxia , HSP90 Heat-Shock Proteins
11.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742979

ABSTRACT

The cellular environment modifies cellular phenotypes, in particular, the stress response phenotype, which easily exhibits high phenotypic heterogeneity due to the common characteristics of its regulatory networks. The aim of this work is to quantify and interpret the impact of collagen type I, a major component of the cellular environment, on the phenotypic heterogeneity of the cellular response. Our approach combines in an original way the monitoring of the response of a single cell and the mathematical modeling of the network. After a detailed statistical description of the phenotypic heterogeneity of the cellular response, the mathematical modeling explains how the observed changes can be explained by an induced increase in the average expression of a central protein of the regulatory network. The predictions of the data-driven model are fully consistent with the biochemical measurements performed. The framework presented here is also a new general methodology to study phenotypic heterogeneity, although we focus here on the response to proteotoxic stress in HeLa cells.


Subject(s)
HeLa Cells , Humans , Phenotype
12.
Phys Biol ; 18(4)2021 06 15.
Article in English | MEDLINE | ID: mdl-34156353

ABSTRACT

A common signature of cell adaptation to stress is the improved resistance upon priming by prior stress exposure. In the context of hyperthermia, priming or preconditioning with sublethal heat shock can be a useful tool to confer thermotolerance and competitive advantage to cells. In the present study, we develop a data-driven modeling framework that is simple and generic enough to capture a broad set of adaptation behaviors to heat stress at both molecular and cellular levels. The model recovers the main features of thermotolerance and clarifies the tradeoff principles which maximize the thermotolerance effect. It therefore provides an effective predictive tool to design preconditioning and fractionation hyperthermia protocols for therapeutic purpose.


Subject(s)
Cell Physiological Phenomena , Heat-Shock Response/physiology , Models, Biological , Thermotolerance/physiology
13.
J Neural Transm (Vienna) ; 128(4): 483-498, 2021 04.
Article in English | MEDLINE | ID: mdl-33386558

ABSTRACT

Dystonia is a clinically, genetically, and biologically heterogeneous hyperkinetic movement disorder caused by the dysfunctional activity of neural circuits involved in motor control. Our understanding of the molecular mechanisms underlying dystonia pathogenesis has tremendously grown thanks to the accelerated discovery of genes associated with monogenic dystonias (DYT-genes). Genetic discoveries, together with the development of a growing number of cellular and animal models of genetic defects responsible for dystonia, are allowing the identification of several areas of functional convergence among the protein products of multiple DYT-genes. Furthermore, unexpected functional links are being discovered in the downstream pathogenic molecular mechanisms of DYT-genes that were thought to be unrelated based on their primary molecular functions. Examples of these advances are the recognition that multiple DYT-genes are involved in (1) endoplasmic reticulum function and regulation of the integrated stress response (ISR) through Eukaryotic initiation factor 2 alpha signaling; (2) gene transcription modulation during neurodevelopment; (3) pre-and post-synaptic nigrostriatal dopaminergic signaling; and (4) presynaptic neurotransmitter vesicle release. More recently, genetic defects in the endo-lysosomal and autophagy pathways have also been implicated in the molecular pathophysiology of dystonia, suggesting the existence of mechanistic overlap with other movement disorders, such as Parkinson's disease. Importantly, the recognition that multiple DYT-genes coalesce in shared biological pathways is a crucial advance in our understanding of dystonias and will aid in the development of more effective therapeutic strategies by targeting these convergent molecular pathways.


Subject(s)
Dystonia , Dystonic Disorders , Parkinson Disease , Animals , Dystonia/genetics , Dystonic Disorders/genetics , Recognition, Psychology , Synaptic Transmission
14.
J Exp Biol ; 224(Pt 6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33536302

ABSTRACT

The periwinkle snail Echinolittorina malaccana, for which the upper lethal temperature is near 55°C, is one of the most heat-tolerant eukaryotes known. We conducted a multi-level investigation - including cardiac physiology, enzyme activity, and targeted and untargeted metabolomic analyses - that elucidated a spectrum of adaptations to extreme heat in this organism. All systems examined showed heat intensity-dependent responses. Under moderate heat stress (37-45°C), the snail depressed cardiac activity and entered a state of metabolic depression. The global metabolomic and enzymatic analyses revealed production of metabolites characteristic of oxygen-independent pathways of ATP generation (lactate and succinate) in the depressed metabolic state, which suggests that anaerobic metabolism was the main energy supply pathway under heat stress (37-52°C). The metabolomic analyses also revealed alterations in glycerophospholipid metabolism under extreme heat stress (52°C), which likely reflected adaptive changes to maintain membrane structure. Small-molecular-mass organic osmolytes (glycine betaine, choline and carnitine) showed complex changes in concentration that were consistent with a role of these protein-stabilizing solutes in protection of the proteome under heat stress. This thermophilic species can thus deploy a wide array of adaptive strategies to acclimatize to extremely high temperatures.


Subject(s)
Metabolomics , Snails , Adaptation, Physiological , Animals , Heat-Shock Response , Hot Temperature , Temperature
15.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R264-R281, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32609539

ABSTRACT

Long-term exposure of Mytilus galloprovincialis to temperatures beyond 26°C triggers mussel mortality. The present study aimed to integratively illustrate the correlation between intermediary metabolism, hsp gene expression, and oxidative stress-related proteins in long-term thermally stressed Mytilus galloprovincialis and whether they are affected by thermal stress magnitude and duration. We accordingly evaluated the gene expression profiles, in the posterior adductor muscle (PAM) and the mantle, concerning heat shock protein 70 and 90 (hsp70 and hsp90), and the antioxidant defense indicators Mn-SOD, Cu/Zn-SOD, catalase, glutathione S-transferase, and the metallothioneins mt-10 and mt-20. Moreover, we determined antioxidant enzyme activities, oxidative stress through lipid peroxidation, and activities of intermediary metabolism enzymes. The pattern of changes in relative mRNA expression levels indicate that mussels are able to sense thermal stress even when exposed to 22°C and before mussel mortality is initiated. Data indicate a close correlation between the magnitude and duration of thermal stress with lipid peroxidation levels and changes in the activity of antioxidant enzymes and the enzymes of intermediary metabolism. The gene expression and increase in the activities of antioxidant enzymes support a scenario, according to which exposure to 24°C might trigger reactive oxygen species (ROS) production, which is closely correlated with anaerobic metabolism under hypometabolic conditions. Increase and maintenance of oxidative stress in conjunction with energy balance disturbance seem to trigger mussel mortality after long-term exposure at temperatures beyond 26°C. Eventually, in the context of preparation for oxidative stress, certain hypotheses and models are suggested, integrating the several steps of cellular stress response.


Subject(s)
Heat-Shock Proteins/metabolism , Mytilus/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Animals , Antioxidants/metabolism , Gene Expression/physiology , Lipid Peroxidation/physiology , Mice , Stress, Physiological/physiology
16.
Microb Cell Fact ; 19(1): 227, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33308214

ABSTRACT

BACKGROUND: A cellular stress response (CSR) is triggered upon recombinant protein synthesis which acts as a global feedback regulator of protein expression. To remove this key regulatory bottleneck, we had previously proposed that genes that are up-regulated post induction could be part of the signaling pathways which activate the CSR. Knocking out some of these genes which were non-essential and belonged to the bottom of the E. coli regulatory network had provided higher expression of GFP and L-asparaginase. RESULTS: We chose the best performing double knockout E. coli BW25113ΔelaAΔcysW and demonstrated its ability to enhance the expression of the toxic Rubella E1 glycoprotein by 2.5-fold by tagging it with sfGFP at the C-terminal end to better quantify expression levels. Transcriptomic analysis of this hyper-expressing mutant showed that a significantly lower proportion of genes got down-regulated post induction, which included genes for transcription, translation, protein folding and sorting, ribosome biogenesis, carbon metabolism, amino acid and ATP synthesis. This down-regulation which is a typical feature of the CSR was clearly blocked in the double knockout strain leading to its enhanced expression capability. Finally, we supplemented the expression of substrate uptake genes glpK and glpD whose down-regulation was not prevented in the double knockout, thus ameliorating almost all the negative effects of the CSR and obtained a further doubling in recombinant protein yields. CONCLUSION: The study validated the hypothesis that these up-regulated genes act as signaling messengers which activate the CSR and thus, despite having no casual connection with recombinant protein synthesis, can improve cellular health and protein expression capabilities. Combining gene knockouts with supplementing the expression of key down-regulated genes can counter the harmful effects of CSR and help in the design of a truly superior host platform for recombinant protein expression.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering , Recombinant Fusion Proteins/biosynthesis , Asparaginase/genetics , Asparaginase/metabolism , Down-Regulation , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Genes, Bacterial , Glycerol Kinase/genetics , Glycerol Kinase/metabolism , Glycerolphosphate Dehydrogenase/genetics , Glycerolphosphate Dehydrogenase/metabolism , Signal Transduction , Stress, Physiological , Up-Regulation , Viral Envelope Proteins/biosynthesis , Viral Envelope Proteins/genetics
17.
Microb Cell Fact ; 19(1): 148, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32703203

ABSTRACT

BACKGROUND: The expression of recombinant proteins triggers a stress response which downregulates key metabolic pathway genes leading to a decline in cellular health and feedback inhibition of both growth and protein expression. Instead of individually upregulating these downregulated genes or improving transcription rates by better vector design, an innovative strategy would be to block this stress response thereby ensuring a sustained level of protein expression. RESULTS: We postulated that the genes which are commonly up-regulated post induction may play the role of signalling messengers in mounting the cellular stress response. We identified those genes which have no known downstream regulatees and created knock outs which were then tested for GFP expression. Many of these knock outs showed significantly higher expression levels which was also sustained for longer periods. The highest product yield (Yp/x) was observed in a BW25113ΔcysJ knock out (Yp/x 0.57) and BW25113ΔelaA (Yp/x 0.49), whereas the Yp/x of the control W3110 strain was 0.08 and BW25113 was 0.16. Double knock out combinations were then created from the ten best performing single knock outs leading to a further enhancement in expression levels. Out of 45 double knock outs created, BW25113ΔelaAΔyhbC (Yp/x 0.7) and BW25113ΔcysJΔyhbC (Yp/x 0.64) showed the highest increase in product yield compared to the single gene mutant strains. We confirmed the improved performance of these knock outs by testing and obtaining higher levels of recombinant asparaginase expression, a system better suited for analysing sustained expression since it gets exported to the extracellular medium. CONCLUSION: Creating key knock outs to block the CSR and enhance expression is a radically different strategy that can be synergistically combined with traditional methods of improving protein yields thus helping in the design of superior host platforms for protein expression.


Subject(s)
Asparaginase/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Knockout Techniques/methods , Asparaginase/genetics , Escherichia coli Proteins/genetics , Fermentation , Gene Expression Regulation, Bacterial , Genes, Bacterial , Green Fluorescent Proteins/biosynthesis , Metabolic Networks and Pathways/genetics , Recombinant Proteins/biosynthesis , Signal Transduction/genetics , Stress, Physiological , Up-Regulation
18.
Planta ; 250(2): 445-462, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31055624

ABSTRACT

MAIN CONCLUSION: Abscisic acid is involved in the drought response of Ilex paraguariensis. Acclimation includes root growth stimulation, stomatal closure, osmotic adjustment, photoprotection, and regulation of nonstructural carbohydrates and amino acid metabolisms. Ilex paraguariensis (yerba mate) is cultivated in the subtropical region of South America, where the occurrence of drought episodes limit yield. To explore the mechanisms that allow I. paraguariensis to overcome dehydration, we investigated (1) how gene expression varied between water-stressed and non-stressed plants and (2) in what way the modulation of gene expression was linked to physiological status and metabolite composition. A total of 4920 differentially expressed transcripts were obtained through RNA-Seq after water deprivation. Drought induced the expression of several transcripts involved in the ABA-signalling pathway. Stomatal closure and leaf osmotic adjustments were promoted to minimize water loss, and these responses were accompanied by a high transcriptional remodeling of stress perception, signalling and transcriptional regulation, the photoprotective and antioxidant systems, and other stress-responsive genes. Simultaneously, significant changes in metabolite contents were detected. Glutamine, phenylalanine, isomaltose, fucose, and malate levels were shown to be positively correlated with dehydration. Principal component analysis showed differences in the metabolic profiles of control and stressed leaves. These results provide a comprehensive overview of how I. paraguariensis responds to dehydration at transcriptional and metabolomic levels and provide further characterization of the molecular mechanisms associated with drought response in perennial subtropical species.


Subject(s)
Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Ilex paraguariensis/physiology , Metabolome , Plant Growth Regulators/metabolism , Transcriptome , Acclimatization , Dehydration , Droughts , Gene Expression Profiling , Ilex paraguariensis/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/physiology , Stress, Physiological
19.
Arch Toxicol ; 93(10): 2895-2911, 2019 10.
Article in English | MEDLINE | ID: mdl-31552476

ABSTRACT

Adaptive stress response pathways play a key role in the switch between adaptation and adversity, and are important in drug-induced liver injury. Previously, we have established an HepG2 fluorescent protein reporter platform to monitor adaptive stress response activation following drug treatment. HepG2 cells are often used in high-throughput primary toxicity screening, but metabolizing capacity in these cells is low and repeated dose toxicity testing inherently difficult. Here, we applied our bacterial artificial chromosome-based GFP reporter cell lines representing Nrf2 activation (Srxn1-GFP and NQO1-GFP), unfolded protein response (BiP-GFP and Chop-GFP), and DNA damage response (p21-GFP and Btg2-GFP) as long-term differentiated 3D liver-like spheroid cultures. All HepG2 GFP reporter lines differentiated into 3D spheroids similar to wild-type HepG2 cells. We systematically optimized the automated imaging and quantification of GFP reporter activity in individual spheroids using high-throughput confocal microscopy with a reference set of DILI compounds that activate these three stress response pathways at the transcriptional level in primary human hepatocytes. A panel of 33 compounds with established DILI liability was further tested in these six 3D GFP reporters in single 48 h treatment or 6 day daily repeated treatment. Strongest stress response activation was observed after 6-day repeated treatment, with the BiP and Srxn1-GFP reporters being most responsive and identified particular severe-DILI-onset compounds. Compounds that showed no GFP reporter activation in two-dimensional (2D) monolayer demonstrated GFP reporter stress response activation in 3D spheroids. Our data indicate that the application of BAC-GFP HepG2 cellular stress reporters in differentiated 3D spheroids is a promising strategy for mechanism-based identification of compounds with liability for DILI.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Hepatocytes/drug effects , Spheroids, Cellular/drug effects , Cell Differentiation , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , DNA Damage/drug effects , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Hep G2 Cells , Hepatocytes/pathology , High-Throughput Screening Assays/methods , Humans , Microscopy, Confocal/methods , Spheroids, Cellular/pathology , Stress, Physiological/drug effects
20.
Proc Natl Acad Sci U S A ; 113(42): 11949-11954, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27698114

ABSTRACT

A response to environmental stress is critical to alleviate cellular injury and maintain cellular homeostasis. Eukaryotic initiation factor 2 (eIF2) is a key integrator of cellular stress responses and an important regulator of mRNA translation. Diverse stress signals lead to the phosphorylation of the α subunit of eIF2 (Ser51), resulting in inhibition of global protein synthesis while promoting expression of proteins that mediate cell adaptation to stress. Here we report that eIF2α is instrumental in the control of noxious heat sensation. Mice with decreased eIF2α phosphorylation (eIF2α+/S51A) exhibit reduced responses to noxious heat. Pharmacological attenuation of eIF2α phosphorylation decreases thermal, but not mechanical, pain sensitivity, whereas increasing eIF2α phosphorylation has the opposite effect on thermal nociception. The impact of eIF2α phosphorylation (p-eIF2α) on thermal thresholds is dependent on the transient receptor potential vanilloid 1. Moreover, we show that induction of eIF2α phosphorylation in primary sensory neurons in a chronic inflammation pain model contributes to thermal hypersensitivity. Our results demonstrate that the cellular stress response pathway, mediated via p-eIF2α, represents a mechanism that could be used to alleviate pathological heat sensation.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Nociception , Temperature , Animals , Behavior, Animal , Biomarkers , Calcium/metabolism , Cells, Cultured , Eukaryotic Initiation Factor-2/genetics , Ganglia, Spinal/metabolism , Immunohistochemistry , Mice , Mice, Knockout , Mice, Transgenic , Molecular Imaging , Neurons/metabolism , Pain/etiology , Pain/metabolism , Pain Threshold , Phosphorylation , Signal Transduction , Spinal Cord/metabolism , Stress, Physiological , TRPV Cation Channels/metabolism , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL