Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591239

ABSTRACT

BACKGROUND: Borna disease virus 1 (BoDV-1) causes rare but severe zoonotic infections in humans, presenting as severe encephalitis. The case-fatality risk is very high and no effective countermeasures have been established so far. An immunopathology is presumed, while data on immune responses in humans are limited. Evidence of a role of the complement system in various neurological disorders and central nervous viral infections is increasing and specific inhibitors are available as therapeutic options. METHODS: In this study, we investigated factors of the complement system in the cerebrospinal fluid (CSF) of patients with BoDV-1 infections (n = 17) in comparison to non-inflammatory control CSF samples (n = 11), using a bead-based multiplex assay. In addition, immunohistochemistry was performed using post-mortem brain tissue samples. RESULTS: We found an intrathecal elevation of complement factors of all complement pathways and an active cascade during human BoDV-1 infections. The increase of certain complement factors such as C1q was persistent and C3 complement deposits were detected in post-mortem brain sections. Intrathecal complement levels were negatively correlated with survival. CONCLUSION: Further investigations are warranted to clarify, whether targeting the complement cascade by specific inhibitors might be beneficial for patients suffering from severe BoDV-1 encephalitis.

2.
Magn Reson Med ; 92(1): 57-68, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38308151

ABSTRACT

PURPOSE: To investigate the effect of inhaled oxygen level on dynamic glucose enhanced (DGE) MRI in mouse brain tissue and CSF at 3 T. METHODS: DGE data of brain tissue and CSF from mice under normoxia or hyperoxia were acquired in independent and interleaved experiments using on-resonance variable delay multi-pulse (onVDMP) MRI. A bolus of 0.15 mL filtered 50% D-glucose was injected through the tail vein over 1 min during DGE acquisition. MRS was acquired before and after DGE experiments to confirm the presence of D-glucose. RESULTS: A significantly higher DGE effect under normoxia than under hyperoxia was observed in brain tissue (p = 0.0001 and p = 0.0002 for independent and interleaved experiments, respectively), but not in CSF (p > 0.3). This difference is attributed to the increased baseline MR tissue signal under hyperoxia induced by a shortened T1 and an increased BOLD effect. When switching from hyperoxia to normoxia without glucose injection, a signal change of ˜3.0% was found in brain tissue and a signal change of ˜1.5% was found in CSF. CONCLUSIONS: DGE signal was significantly lower under hyperoxia than that under normoxia in brain tissue, but not in CSF. The reason is that DGE effect size of brain tissue is affected by the baseline signal, which could be influenced by T1 change and BOLD effect. Therefore, DGE experiments in which the oxygenation level is changed from baseline need to be interpreted carefully.


Subject(s)
Brain , Glucose , Hyperoxia , Magnetic Resonance Imaging , Oxygen , Animals , Mice , Magnetic Resonance Imaging/methods , Glucose/metabolism , Oxygen/metabolism , Brain/diagnostic imaging , Brain/metabolism , Hyperoxia/diagnostic imaging , Administration, Inhalation , Male , Mice, Inbred C57BL
3.
J Autoimmun ; 146: 103234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663202

ABSTRACT

Narcolepsy is a rare cause of hypersomnolence and may be associated or not with cataplexy, i.e. sudden muscle weakness. These forms are designated narcolepsy-type 1 (NT1) and -type 2 (NT2), respectively. Notable characteristics of narcolepsy are that most patients carry the HLA-DQB1*06:02 allele and NT1-patients have strongly decreased levels of hypocretin-1 (synonym orexin-A) in the cerebrospinal fluid (CSF). The pathogenesis of narcolepsy is still not completely understood but the strong HLA-bias and increased frequencies of CD4+ T cells reactive to hypocretin in the peripheral blood suggest autoimmune processes in the hypothalamus. Here we analyzed the transcriptomes of CSF-cells from twelve NT1 and two NT2 patients by single cell RNAseq (scRNAseq). As controls, we used CSF cells from patients with multiple sclerosis, radiologically isolated syndrome, and idiopathic intracranial hypertension. From 27,255 CSF cells, we identified 20 clusters of different cell types and found significant differences in three CD4+ T cell and one monocyte clusters between narcolepsy and multiple sclerosis patients. Over 1000 genes were differentially regulated between patients with NT1 and other diseases. Surprisingly, the most strongly upregulated genes in narcolepsy patients as compared to controls were coding for the genome-encoded MTRNR2L12 and MTRNR2L8 peptides, which are homologous to the mitochondria-encoded HUMANIN peptide that is known playing a role in other neurological diseases including Alzheimer's disease.


Subject(s)
Narcolepsy , Single-Cell Analysis , Transcriptome , Humans , Narcolepsy/genetics , Narcolepsy/cerebrospinal fluid , Male , Female , Adult , Orexins/cerebrospinal fluid , Orexins/genetics , Gene Expression Profiling , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HLA-DQ beta-Chains/genetics , Middle Aged , Young Adult
4.
J Vasc Surg ; 80(1): 11-19, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614137

ABSTRACT

BACKGROUND: Endovascular techniques have transformed the management of thoracoabdominal aortic aneurysms (TAAAs). However, spinal cord ischemia (SCI) remains a prevalent and devastating complication. Prophylactic drainage of cerebrospinal fluid (CSF) is among the proposed strategies for prevention of SCI. Although prophylactic CSF drainage is widely used and conceptually attractive, prophylactic CSF drains have not been demonstrated to definitively prevent the occurrence nor mitigate the severity of SCI in endovascular TAAA repair. Whether or not outcomes of prophylactic drains are superior to therapeutic drains remains unknown. This pilot study was performed to determine the feasibility of a randomized clinical trial designed to investigate the role of prophylactic vs therapeutic CSF drains in the prevention of SCI in patients undergoing endovascular TAAA repair using branched and fenestrated endovascular aortic repair (FBEVAR). METHODS: This was a prospective multicenter randomized pilot clinical trial conducted at The University of Alabama at Birmingham and The University of Massachusetts. Twenty patients were enrolled and randomized to either the prophylactic drainage or therapeutic drainage groups, prior to undergoing FBEVAR for extensive TAAAs and arch aortic aneurysms. This was a pilot feasibility study that was not powered to detect statistical differences in clinical outcomes. The primary outcome was feasibility of randomization and compliance with a shared lumbar drain protocol. Secondary outcomes included rate of drain complications and SCI. RESULTS: Twenty patients were enrolled and successfully randomized, without any crossovers, to either the control cohort (n = 10), without prophylactic drains, or the experimental cohort (n = 10), with prophylactic drains. There were no differences in age, comorbidities, or history of prior aortic surgery across the cohorts. All patients were treated with FBEVAR. Aneurysm classifications were as follows: Extent I (10%), Extent II (50%), Extent III (35%), and Extent IV (5%). The average length of aortic coverage was 207 ± 21.6 mm. The length of aortic coverage did not vary across cohorts, nor did procedural times or blood loss volume. Compliance with the SCI prevention protocol was 100% across both groups. Within the prophylactic drain cohort, one patient experienced an adverse event related to lumbar drain placement, manifested as an epidural hematoma requiring laminectomy, without neurologic deficit (n = 1/10; 10%). There was one SCI event (n = 1/20; 5%), which occurred in the prophylactic drain cohort on postoperative day 9 following an episode of hypotension related to a gastrointestinal bleed. CONCLUSIONS: The role of prophylactic CSF drains for the prevention of SCI following endovascular TAAA repair is a topic of ongoing research, with many current practices based on expert opinion and experience, rather than rigorous scientific data. This study demonstrates the feasibility of a multicenter randomized clinical trial to evaluate the role of prophylactic vs therapeutic CSF drains in the prevention of SCI in patients undergoing endovascular TAAA repair.


Subject(s)
Aortic Aneurysm, Thoracic , Blood Vessel Prosthesis Implantation , Drainage , Endovascular Procedures , Feasibility Studies , Spinal Cord Ischemia , Humans , Aortic Aneurysm, Thoracic/surgery , Pilot Projects , Endovascular Procedures/adverse effects , Drainage/adverse effects , Drainage/instrumentation , Male , Prospective Studies , Female , Aged , Treatment Outcome , Blood Vessel Prosthesis Implantation/adverse effects , Spinal Cord Ischemia/prevention & control , Spinal Cord Ischemia/etiology , Middle Aged , Time Factors , Aortic Aneurysm, Thoracoabdominal
5.
Metabolomics ; 20(2): 33, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427142

ABSTRACT

INTRODUCTION:  Because cerebrospinal fluid (CSF) samples are difficult to obtain for paediatric HIV, few studies have attempted to profile neurometabolic dysregulation. AIM AND OBJECTIVE: The aim of this exploratory study was to profile the neurometabolic state of CSF from a South African paediatric cohort using GCxGC-TOF/MS. The study included 54 paediatric cases (< 12 years), 42 HIV-negative controls and 12 HIV-positive individuals. RESULTS: The results revealed distinct metabolic alterations in the HIV-infected cohort. In the PLS-DA model, 18 metabolites significantly discriminated between HIV-infected and control groups. In addition, fold-change analysis, Mann-Whitney U tests, and effect size measurements verified these findings. Notably, lactose, myo-inositol, and glycerol, although not significant by p-value alone, demonstrated practical significance based on the effect size. CONCLUSIONS: This study provided valuable insights on the impact of HIV on metabolic pathways, including damage to the gut and blood-brain barrier, disruption of bioenergetics processes, gliosis, and a potential marker for antiretroviral therapy. Nevertheless, the study recognized certain constraints, notably a limited sample size and the absence of a validation cohort. Despite these limitations, the rarity of the study's focus on paediatric HIV research underscores the significance and unique contributions of its findings.


Subject(s)
HIV Infections , Metabolomics , Humans , Child , South Africa , Metabolome
6.
Eur J Clin Microbiol Infect Dis ; 43(5): 863-873, 2024 May.
Article in English | MEDLINE | ID: mdl-38438704

ABSTRACT

PURPOSE: Investigation of undiagnosed cases of infectious neurological diseases, especially in the paediatric population, remains a challenge. This study aimed to enhance understanding of viruses in CSF from children with clinically diagnosed meningitis and/or encephalitis (M/ME) of unknown aetiology using shotgun sequencing enhanced by hybrid capture (HCSS). METHODS: A single-centre prospective study was conducted at Sant Joan de Déu University Hospital, Barcelona, involving 40 M/ME episodes of unknown aetiology, recruited from May 2021 to July 2022. All participants had previously tested negative with the FilmArray Meningitis/Encephalitis Panel. HCSS was used to detect viral nucleic acid in the patients' CSF. Sequencing was performed on Illumina NovaSeq platform. Raw sequence data were analysed using CZ ID metagenomics and PikaVirus bioinformatics pipelines. RESULTS: Forty episodes of M/ME of unknown aetiology in 39 children were analysed by HCSS. A significant viral detection in 30 CSF samples was obtained, including six parechovirus A, three enterovirus ACD, four polyomavirus 5, three HHV-7, two BKV, one HSV-1, one VZV, two CMV, one EBV, one influenza A virus, one rhinovirus, and 13 HERV-K113 detections. Of these, one sample with BKV, three with HHV-7, one with EBV, and all HERV-K113 were confirmed by specific PCR. The requirement for Intensive Care Unit admission was associated with HCSS detections. CONCLUSION: This study highlights HCSS as a powerful tool for the investigation of undiagnosed cases of M/ME. Data generated must be carefully analysed and reasonable precautions must be taken before establishing association of clinical features with unexpected or novel virus findings.


Subject(s)
Metagenomics , Viruses , Humans , Child, Preschool , Prospective Studies , Female , Male , Child , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Infant , Metagenomics/methods , Encephalitis/virology , Encephalitis/cerebrospinal fluid , Encephalitis/diagnosis , Cerebrospinal Fluid/virology , Meningitis, Viral/virology , Meningitis, Viral/cerebrospinal fluid , Meningitis, Viral/diagnosis , Adolescent , High-Throughput Nucleotide Sequencing , Spain , Meningitis/virology , Meningitis/cerebrospinal fluid , Meningitis/diagnosis , Encephalitis, Viral/virology , Encephalitis, Viral/cerebrospinal fluid , Encephalitis, Viral/diagnosis
7.
BMC Neurol ; 24(1): 35, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243235

ABSTRACT

BACKGROUND: The relationship between cerebrospinal fluid pressure (CSFP) and cognition has received little research attention. The purpose of this study was to explore the relationship between CSFP and cognition in patients with Alzheimer's disease (AD) and patients with Lewy body dementia (LBD). METHOD: We included 178 participants, including 137 patients with AD and 41 patients with LBD (including dementia with Lewy bodies (DLBs) and Parkinson's disease dementia (PDD)). CSFP was measured by lumbar puncture, and a patient-reported history and laboratory test data were collected. Logistic and linear regression analyses were used to evaluate the associations between CSFP and cognition, the cerebrospinal fluid (CSF) / serum albumin ratio (Qalb), and CSF biomarkers of AD. RESULTS: The mean age of the included patients was 63.58 ± 8.77 years old, and the mean CSFP was 121 ± 33.72 mmH2O. A total of 76.9% of the patients had a CSFP distribution of [90-170) mmH2O, 46 patients (25.8%) had severe dementia, 83 patients (46.6%) had moderate dementia, 28 patients (15.7%) had mild dementia, and 21 patients (11.8%) had mild cognitive impairment (MCI) (including 16 patients with MCI due to AD and 5 patients with MCI due to LBD). In all patients (p value < 0.001) and in patients with AD (p value = 0.01), the mean cerebrospinal fluid pressure (CSFP) was higher in patients with MCI than in patients with dementia. In multivariate analysis, in all patients (OR: 6.37, 95% confidential interval (CI): 1.76-23.04, p = 0.005) and patients with AD (odds ratio (OR): 5.43, 95% CI: 1.41-20.87, p = 0.005), a CSFP in the lowest quartile ([50-90) mmH2O) was associated with a higher level of severe dementia than a CSFP in the highest quartile ([170-210) mmH2O). In addition, there was a significant linear correlation between CSFP and the Mini-Mental State Examination (MMSE) score in all patients with dementia (r = 0.43, p = 0.04, Durbin-Watson test (D-W test) = 0.75). CONCLUSION: In patients with AD, the mean cerebrospinal fluid pressure was higher in patients with MCI than in patients with dementia, and the decrease in CSFP was related to a more serious dementia level. However, no such relationship was found in patients with LBD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia , Lewy Body Disease , Parkinson Disease , Humans , Middle Aged , Aged , Alzheimer Disease/cerebrospinal fluid , Dementia/complications , Lewy Body Disease/complications , tau Proteins/cerebrospinal fluid , Parkinson Disease/complications , Cognition , Cognitive Dysfunction/diagnosis , Biomarkers/cerebrospinal fluid , Cerebrospinal Fluid Pressure , Amyloid beta-Peptides/cerebrospinal fluid
8.
Acta Paediatr ; 113(7): 1630-1636, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38591428

ABSTRACT

AIM: To describe the aetiology and clinical characteristics of acute peripheral facial palsy (PFP) in children and investigate the utility of the European Federation of Neurological Societies (EFNS) criteria for diagnosing Borrelia-related PFP (BPFP) based on cerebrospinal fluid (CSF) testing and the Centers for Disease Control and Prevention (CDC) criteria based on serology. METHODS: We retrospectively identified children aged <18 years diagnosed with acute PFP between 2014 and 2020. We used the EFNS criteria as the gold standard and the CDC criteria for diagnosing BPFP. RESULTS: Out of 257 children with PFP, 93 (36%) fulfilled the EFNS or CDC criteria for BPFP. We found a discrepancy between the EFNS criteria with CSF testing and the CDC without CSF testing in 27 (14%) of the 190 children with available data. Of the 37 children with PFP and ≥2 symptoms of fever, fatigue, nausea/vomiting or meningeal symptoms, 31 (84%) fulfilled the EFNS criteria for BPFP. CONCLUSION: Borrelia is a common cause of PFF in children, and its prevalence is higher in children with systemic symptoms. Also, CSF testing did not have decisive management implications in most cases. Therefore, clinical evaluation and Borrelia serology could be the initial steps in the diagnosis of PFP in children.


Subject(s)
Facial Paralysis , Humans , Child , Female , Retrospective Studies , Male , Facial Paralysis/etiology , Facial Paralysis/diagnosis , Facial Paralysis/microbiology , Child, Preschool , Adolescent , Borrelia/isolation & purification , Infant
9.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928000

ABSTRACT

Neurological damage is the pathological substrate of permanent disability in various neurodegenerative disorders. Early detection of this damage, including its identification and quantification, is critical to preventing the disease's progression in the brain. Tau, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL), as brain protein biomarkers, have the potential to improve diagnostic accuracy, disease monitoring, prognostic assessment, and treatment efficacy. These biomarkers are released into the cerebrospinal fluid (CSF) and blood proportionally to the degree of neuron and astrocyte damage in different neurological disorders, including stroke, traumatic brain injury, multiple sclerosis, neurodegenerative dementia, and Parkinson's disease. Here, we review how Tau, GFAP, and NfL biomarkers are detected in CSF and blood as crucial diagnostic tools, as well as the levels of these biomarkers used for differentiating a range of neurological diseases and monitoring disease progression. We also discuss a biosensor approach that allows for the real-time detection of multiple biomarkers in various neurodegenerative diseases. This combined detection system of brain protein biomarkers holds significant promise for developing more specific and accurate clinical tools that can identify the type and stage of human neurological diseases with greater precision.


Subject(s)
Biomarkers , Glial Fibrillary Acidic Protein , Neurodegenerative Diseases , Neurofilament Proteins , tau Proteins , Humans , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Glial Fibrillary Acidic Protein/blood , tau Proteins/cerebrospinal fluid , tau Proteins/blood , Neurodegenerative Diseases/cerebrospinal fluid , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/blood , Brain/metabolism , Brain/pathology
10.
J Vasc Surg ; 77(6): 1578-1587, 2023 06.
Article in English | MEDLINE | ID: mdl-37059239

ABSTRACT

OBJECTIVE: Spinal cord ischemia (SCI) is a well-known complication of thoracoabdominal aortic aneurysm repair and is associated with profound morbidity and mortality. The purpose of this study was to describe predictors for the development of SCI, as well as outcomes for patients who develop SCI, after branched/fenestrated endovascular aortic repair in a large cohort of centers with adjudicated physician-sponsored investigational device exemption studies. METHODS: We used a pooled dataset from nine US Aortic Research Consortium centers involved in investigational device exemption trials for treatment of suprarenal and thoracoabdominal aortic aneurysms. SCI was defined as new transient weakness (paraparesis) or permanent paraplegia after repair without other potential neurological etiologies. Multivariable analysis was performed to identify predictors of SCI, and life-table analysis and Kaplan-Meier methodologies were used to evaluate survival differences. RESULTS: A total of 1681 patients underwent branched/fenestrated endovascular aortic repair from 2005 to 2020. The overall rate of SCI was 7.1% (3.0% transient and 4.1% permanent). Predictors of SCI on multivariable analysis were Crawford Extent I, II, and III distribution of aortic disease (odds ratio [OR], 4.79; 95% confidence interval [CI], 4.77-4.81; P < .001), age ≥70 years (OR, 1.64; 95% CI, 1.63-1.64; P = .029), packed red blood cell transfusion (OR, 2.00; 95% CI, 1.99-2.00; P = .001), and a history of peripheral vascular disease (OR, 1.65; 95% CI, 1.64-1.65; P = .034). The median survival was significantly worse for patients with any degree of SCI compared with those without SCI (any SCI, 40.4 vs no SCI, 60.3 months; log-rank P < .001), and also worse in those with a permanent deficit (24.1 months) vs those with a transient deficit (62.4 months) (log-rank P < .001). The 1-year survival for patients who developed no SCI was 90.8%, compared with 73.9% in patients who developed any SCI. When stratified by degree of deficit, survival was 84.8% at 1 year for those who developed paraparesis and 66.2% for those who developed permanent deficits. CONCLUSIONS: The overall rates of any SCI at 7.1% and permanent deficit at 4.1% observed in this study compare favorably with those reported in contemporary literature. Our findings confirm that increased length of aortic disease is associated with SCI and those with Crawford Extent I to III thoracoabdominal aortic aneurysms are at highest risk. The long-term impact on patient mortality underscores the importance of preventive measures and rapid implementation of rescue protocols if and when deficits develop.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Aneurysm, Thoracoabdominal , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Spinal Cord Injuries , Spinal Cord Ischemia , Humans , Aged , Blood Vessel Prosthesis/adverse effects , Endovascular Aneurysm Repair , Stents/adverse effects , Aortic Aneurysm, Thoracic/surgery , Risk Factors , Spinal Cord Injuries/etiology
11.
Brain Behav Immun ; 113: 104-123, 2023 10.
Article in English | MEDLINE | ID: mdl-37393058

ABSTRACT

Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior. Herein, we demonstrate that the delivery of SCFAs directly into the brain disrupts social novelty through distinct neuronal populations. We are the first to observe that infusion of SCFAs into the lateral ventricle disrupted social novelty in microbiome-depleted mice without affecting brain inflammatory responses. The deficit in social novelty can be recapitulated by activating calcium/calmodulin-dependent protein kinase II (CaMKII)-labeled neurons in the bed nucleus of the stria terminalis (BNST). Conversely, chemogenetic silencing of the CaMKII-labeled neurons and pharmacological inhibition of fatty acid oxidation in the BNST reversed the SCFAs-induced deficit in social novelty. Our findings suggest that microbial metabolites impact social novelty through a distinct neuron population in the BNST.


Subject(s)
Septal Nuclei , Mice , Animals , Septal Nuclei/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Neurons/metabolism , Signal Transduction , Social Behavior
12.
J Sleep Res ; : e14108, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38035770

ABSTRACT

Sleep disturbances are prevalent in Alzheimer's disease (AD), affecting individuals during its early stages. We investigated associations between subjective sleep measures and cerebrospinal fluid (CSF) biomarkers of AD in adults with mild cognitive symptoms from the European Prevention of Alzheimer's Dementia Longitudinal Cohort Study, considering the influence of memory performance. A total of 442 participants aged >50 years with a Clinical Dementia Rating (CDR) score of 0.5 completed the Pittsburgh Sleep Quality Index questionnaire and underwent neuropsychological assessment, magnetic resonance imaging acquisition, and CSF sampling. We analysed the relationship of sleep quality with CSF AD biomarkers and cognitive performance in separated multivariate linear regression models, adjusting for covariates. Poorer cross-sectional sleep quality was associated with lower CSF levels of phosphorylated tau and total tau alongside better immediate and delayed memory performance. After adjustment for delayed memory scores, associations between CSF biomarkers and sleep quality became non-significant, and further analysis revealed that memory performance mediated this relationship. In post hoc analyses, poorer subjective sleep quality was associated with lesser hippocampal atrophy, with memory performance also mediating this association. In conclusion, worse subjective sleep quality is associated with less altered AD biomarkers in adults with mild cognitive symptoms (CDR score 0.5). These results could be explained by a systematic recall bias affecting subjective sleep assessment in individuals with incipient memory impairment. Caution should therefore be exercised when interpreting subjective sleep quality measures in memory-impaired populations, emphasising the importance of complementing subjective measures with objective assessments.

13.
Cell Mol Life Sci ; 79(6): 304, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35589983

ABSTRACT

The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.


Subject(s)
Central Nervous System , Choroid Plexus , Animals , Brain , Choroid Plexus/physiology , Epithelial Cells , Mice
14.
Neurol Sci ; 44(2): 573-585, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36227385

ABSTRACT

BACKGROUND: Previous studies investigated CSF levels of α-synuclein (α-syn), amyloid-ß (Aß1-42), total tau (t-tau), and phosphorylated tau (p-tau) with clinical progression of Parkinson's disease (PD). However, there is limited data on the association between CSF biomarkers and dopamine uptake status in PD. AIM: In the current study, we aim to investigate the longitudinal association between striatal dopaminergic neuronal loss assessed by dopamine active transporter single photon emission computerized tomography (DaTSCAN) imaging with CSF α-syn, t-tau, p-tau, and Aß1-42. METHODS: A total of 413 early-stage PD patients and 187 healthy controls (HCs) from the PPMI. Striatal binding ratios (SBRs) of DaTSCAN images in caudate and putamen nuclei were calculated. We investigated the cross-sectional and longitudinal association between CSF biomarkers and dopamine uptake using partial correlation models adjusted for the effect of age, sex, and years of education over 24 months of follow-up. RESULTS: The level of CSF α-syn, Aß1-42, t-tau, and p-tau was significantly higher in HCs compared to PD groups at any time point. We found that higher CSF α-syn was associated with a higher SBR score in the left caudate at baseline (P = 0.038) and after 12 months (P = 0.012) in PD patients. Moreover, SBR scores in the left caudate and CSF Aß1-42 were positively correlated at baseline (P = 0.021), 12 months (P = 0.006), and 24 months (P = 0.014) in patients with PD. Our findings demonstrated that change in CSF Aß1-42 was positively correlated with change in SBR score in the left caudate after 24 months in the PD group (P = 0.043). CONCLUSION: We found that cross-sectional levels of α-syn and Aß1-42 could reflect the degree of dopaminergic neuron loss in the left caudate nucleus. Interestingly, longitudinal changes in CSF Aß1-42 could predict the severity of left caudal dopaminergic neuron loss throughout the disease. This suggested that Aß pathology might precede dopaminergic loss in striatal nuclei in this case left caudate and subsequently cognitive impairment in PD patients, although future studies are needed to confirm our results and expand the understanding of the pathophysiology of cognitive dysfunction in PD.


Subject(s)
Parkinson Disease , Humans , alpha-Synuclein , Amyloid beta-Peptides/cerebrospinal fluid , Dopamine Plasma Membrane Transport Proteins , Cross-Sectional Studies , Dopamine , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
15.
Neurol Sci ; 44(5): 1679-1685, 2023 May.
Article in English | MEDLINE | ID: mdl-36646859

ABSTRACT

BACKGROUND: We analysed the relationship between cerebrospinal fluid (CSF)/serum albumin quotient (Q-Alb) and phenotype in a large cohort of patients with amyotrophic lateral sclerosis (ALS). METHODS: Three hundred twenty-eight single-centre consecutive patients with ALS were evaluated for Q-Alb, basic epidemiological and clinical data, motor phenotype, cognitive/behavioural impairment, clinical staging, clinical and neurophysiological indexes of upper (UMN) and lower motor neuron (LMN) dysfunction, and presence of ALS gene mutations. RESULTS: Q-Alb did not correlate with age but was independently associated with sex, with male patients having higher levels than female ones; the site of onset was not independently associated with Q-Alb. Q-Alb was not associated with motor phenotype, cognitive/behavioural impairment, disease stage, progression rate, survival, or genetic mutations. Among measures of UMN and LMN dysfunction, Q-Alb only had a weak positive correlation with an electromyography-based index of active limb denervation. CONCLUSION: Previous work has documented increased Q-Alb in ALS compared to unaffected individuals. This, together with the absence of associations with nearly all ALS phenotypic features in our cohort, suggests dysfunction of the blood-CSF barrier as a shared, phenotype-independent element in ALS pathophysiology. However, correlation with the active denervation index could point to barrier dysfunction as a local driver of LMN degeneration.


Subject(s)
Amyotrophic Lateral Sclerosis , Male , Female , Humans , Amyotrophic Lateral Sclerosis/genetics , Retrospective Studies , Motor Neurons , Serum Albumin , Phenotype
16.
Neurol Sci ; 44(2): 709-713, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36441343

ABSTRACT

BACKGROUND: The cerebrospinal fluid (CSF)/serum albumin quotient (Q-Alb) is a marker of the blood-CSF barrier (BCSFB) and possibly of the blood-brain barrier (BBB). The latter is known to be altered in Alzheimer's disease (AD) based on neuropathological and neuroimaging studies. Following investigations performed on clinically diagnosed cohorts, we aimed at comparing Q-Alb in cognitively impaired patients with neurochemical demonstration of AD pathophysiology and neurological disease controls (NDCs). METHODS: We evaluated N = 144 AD patients (MCI, N = 43; AD dementia - ADD, N = 101) and N = 132 NDCs. AD patients were all A + according to the A/T/N framework and were neurochemically classified based on T and N parameters. RESULTS: Q-Alb did not significantly differ between AD patients and NDCs. Moreover, it was not associated with disease stage (MCI vs. ADD), MMSE score, or CSF AD biomarkers. DISCUSSION: Our study indicates that BCSFB dysfunction is not a specific feature of AD. When interpreting Q-Alb as a marker of the BBB, the lack of difference from NDCs might be due to BBB dysfunction widely occurring in other neurological, non-degenerative, conditions or - more probably - to low sensitivity of this biochemical parameter towards subtle BBB alterations causing leakage of molecules smaller than albumin. Furthermore, Q-Alb is not associated with the degree of global cognitive deterioration in AD, nor with CSF AD neurochemical biomarkers.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Nervous System Diseases , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier/metabolism , Retrospective Studies , Serum Albumin/metabolism , tau Proteins/cerebrospinal fluid
17.
J Trop Pediatr ; 69(6)2023 10 05.
Article in English | MEDLINE | ID: mdl-37805828

ABSTRACT

This prospective cross-sectional study evaluated the diagnostic and prognostic role of cerebrospinal fluid (CSF) tumor necrosis factor-alpha (TNF-α) in children with cerebral malaria (CM) and its role in the differentiation of CM from non-cerebral severe malaria. CSF TNF-α was measured using a human TNF-α enzyme-linked immunosorbent assay kit of 39 cases of CM and 19 cases of non-cerebral severe malaria. CSF TNF-α levels were significantly higher in CM (p < 0.001). Based on the receiver operating characteristics curve, a cutoff value of CSF TNF-α was 5.7 pg/ml for diagnosis of CM with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 87.2%, 94.7%, 97.1% and 78.3% respectively. The cutoff value of CSF TNF-α was 13.7 pg/ml for predicting adverse outcomes in CM with sensitivity, specificity, PPV and NPV of 100%, 96.8%, 88.9% and 100%, respectively. However, the cutoff value of CSF TNF-α was 4.96 pg/ml for predicting adverse outcomes in non-cerebral severe malaria with a sensitivity, specificity, PPV and NPV of 100%, 94.1%, 88.9% and 100% respectively. So, CSF TNF-α is an excellent biomarker and can be used as a diagnostic and prognostic tool. More studies are needed to establish CSF TNF-α as a predictor of neurological sequelae.


Subject(s)
Malaria, Cerebral , Tumor Necrosis Factor-alpha , Humans , Child , Tumor Necrosis Factor-alpha/cerebrospinal fluid , Malaria, Cerebral/diagnosis , Malaria, Cerebral/cerebrospinal fluid , Prospective Studies , Cross-Sectional Studies , ROC Curve
18.
Alzheimers Dement ; 19(11): 4828-4840, 2023 11.
Article in English | MEDLINE | ID: mdl-37023079

ABSTRACT

INTRODUCTION: Extracellular vesicles (EVs) may propagate and modulate Alzheimer's disease (AD) pathology. We aimed to comprehensively characterize the proteome of cerebrospinal fluid (CSF) EVs to identify proteins and pathways altered in AD. METHODS: CSF EVs were isolated by ultracentrifugation (Cohort 1) or Vn96 peptide (Cohort 2) from non-neurodegenerative controls (n = 15, 16) and AD patients (n = 22, 20, respectively). EVs were subjected to untargeted quantitative mass spectrometry-based proteomics. Results were validated by enzyme-linked immunosorbent assay (ELISA) in Cohorts 3 and 4, consisting of controls (n = 16, n = 43, (Cohort3, Cohort4)), and patients with AD (n = 24, n = 100). RESULTS: We found > 30 differentially expressed proteins in AD CSF EVs involved in immune-regulation. Increase of C1q levels in AD compared to non-demented controls was validated by ELISA (∼ 1.5 fold, p (Cohort 3) = 0.03, p (Cohort 4) = 0.005). DISCUSSION: EVs may be utilized as a potential biomarker and may play a so far unprecedented role in immune-regulation in AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Extracellular Vesicles , Humans , Alzheimer Disease/pathology , Complement C1q , Proteomics , Amyloid beta-Peptides/metabolism , Peptide Fragments/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Extracellular Vesicles/metabolism , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid
19.
Alzheimers Dement ; 19(7): 2923-2932, 2023 07.
Article in English | MEDLINE | ID: mdl-36640138

ABSTRACT

BACKGROUND: Comparisons of late-onset Alzheimer's disease (LOAD) and autosomal dominant AD (ADAD) are confounded by age. METHODS: We compared biomarkers from cerebrospinal fluid (CSF), magnetic resonance imaging, and amyloid imaging with Pittsburgh Compound-B (PiB) across four groups of 387 cognitively normal participants, 42 to 65 years of age, in the Dominantly Inherited Alzheimer Network (DIAN) and the Adult Children Study (ACS) of LOAD: DIAN mutation carriers (MCs) and non-carriers (NON-MCs), and ACS participants with a positive (FH+) and negative (FH-) family history of LOAD. RESULTS: At baseline, MCs had the lowest age-adjusted level of CSF Aß42 and the highest levels of total and phosphorylated tau-181, and PiB uptake. Longitudinally, MC had similar increase in PiB uptake to FH+, but drastically faster decline in hippocampal volume than others, and was the only group showing cognitive decline. DISCUSSION: Preclinical ADAD and LOAD share many biomarker signatures, but cross-sectional and longitudinal differences may exist.


Subject(s)
Alzheimer Disease , Adult , Humans , Middle Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognition , Cross-Sectional Studies , Parents , Positron-Emission Tomography
20.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982604

ABSTRACT

The brain's extracellular matrix (ECM) is assumed to undergo rearrangements in Alzheimer's disease (AD). Here, we investigated changes of key components of the hyaluronan-based ECM in independent samples of post-mortem brains (N = 19), cerebrospinal fluids (CSF; N = 70), and RNAseq data (N = 107; from The Aging, Dementia and TBI Study) of AD patients and non-demented controls. Group comparisons and correlation analyses of major ECM components in soluble and synaptosomal fractions from frontal, temporal cortex, and hippocampus of control, low-grade, and high-grade AD brains revealed a reduction in brevican in temporal cortex soluble and frontal cortex synaptosomal fractions in AD. In contrast, neurocan, aggrecan and the link protein HAPLN1 were up-regulated in soluble cortical fractions. In comparison, RNAseq data showed no correlation between aggrecan and brevican expression levels and Braak or CERAD stages, but for hippocampal expression of HAPLN1, neurocan and the brevican-interaction partner tenascin-R negative correlations with Braak stages were detected. CSF levels of brevican and neurocan in patients positively correlated with age, total tau, p-Tau, neurofilament-L and Aß1-40. Negative correlations were detected with the Aß ratio and the IgG index. Altogether, our study reveals spatially segregated molecular rearrangements of the ECM in AD brains at RNA or protein levels, which may contribute to the pathogenic process.


Subject(s)
Alzheimer Disease , Neurocan , Humans , Brevican/metabolism , Aggrecans/metabolism , Neurocan/cerebrospinal fluid , Alzheimer Disease/metabolism , Extracellular Matrix/metabolism , Brain/metabolism , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL