Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Biochem Biophys Res Commun ; 692: 149362, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38071891

ABSTRACT

Monoclonal antibodies are utilized for treating many diseases and disorders, as well as for basic research and development. Covalent labeling of mAbs is important for various antibody applications and creating antibody drug conjugates. Labeling at reactive lysine residues using lysine selective reagents is useful, but is non-selective and can interfere with antigen binding and interactions of the Fc antibody region. In this work, using an anti-cocaine mAb (h2E2), we utilized triphenylphosphine-3,3',3″-trisulfonic acid (TPPTS), and demonstrated for the first time reduction of disulfides in an antibody by TPPTS. More importantly, this reduction was very reproducible, limited, and selective, and permitted selective labeling of the antibody with a cysteine reactive fluorescent reagent, resulting in labeling of a few specific cysteines. Similar results were obtained using TCEP-agarose reduction. We demonstrated that both of these selective partial reduction methods gave rise to approximately two labels per mAb, mostly by selective reduction of the heavy chain to light chain disulfide bond, as demonstrated by non-reducing SDS-PAGE protein band analysis. Thus, convenient, reproducible, and selective mAb disulfide reduction was achieved under mild conditions. These labeled, partially reduced mAbs were characterized by differential scanning fluorimetry (DSF), detecting the incorporated fluorescein instead of an exogenously added dye, and for antigen (cocaine) binding by isothermal titration calorimetry (ITC). Both the structure and antigen binding of the mAb was maintained. This novel selective reduction and labeling is generally relevant to modification of antibodies and to future development of conjugated mAbs for experimental and therapeutic purposes.


Subject(s)
Cocaine , Cysteine , Lysine , Antibodies, Monoclonal , Disulfides/chemistry
2.
Int J Mol Sci ; 24(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36768517

ABSTRACT

With aging, human lenses lose the ability to focus on nearby objects due to decreases in accommodative ability, a condition known as presbyopia. An increase in stiffness or decrease in lens elasticity due to protein aggregation and insolubilization are the primary reasons for presbyopia. In this study, we tested aggrelyte-1 (S,N-diacetyl glutathione diethyl ester) for its ability to promote protein solubility and decrease the stiffness of lenses through its dual property of lysine acetylation and disulfide reduction. Treatment of water-insoluble proteins from aged human lenses (58-75 years) with aggrelyte-1 significantly increased the solubility of those proteins. A control compound that did not contain the S-acetyl group (aggrelyte-1C) was substantially less efficient in solubilizing water-insoluble proteins. Aggrelyte-1-treated solubilized protein had significant amounts of acetyllysine, as measured by Western blotting and LC-MS/MS. Aggrelytes increased the protein-free thiol content in the solubilized protein. Aged mouse (7 months) and human (44-66 years) lenses treated with aggrelyte-1 showed reduced stiffness accompanied by higher free thiol and acetyllysine levels compared with those treated with aggrelyte-1C or untreated controls. Our results suggested that aggrelyte-1 reduced lens stiffness through acetylation followed by disulfide reduction. This proof-of-concept study paves the way for developing aggrelyte-1 and related compounds to reverse presbyopia.


Subject(s)
Lens, Crystalline , Presbyopia , Humans , Animals , Mice , Aged , Presbyopia/therapy , Presbyopia/metabolism , Solubility , Chromatography, Liquid , Tandem Mass Spectrometry , Lens, Crystalline/metabolism , Water/metabolism , Disulfides/metabolism
3.
Fish Shellfish Immunol ; 107(Pt A): 385-394, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33141077

ABSTRACT

Glutaredoxins (Grxs) are well-known oxidoreductases involved in a wide range of redox activities in organisms. In this study, two invertebrate Grxs (AbGrx1-like and AbGrx2) from disk abalone were identified and characterized in an effort to gain a deeper understanding into their immune and redox regulatory roles. Both AbGrxs share typical thioredoxin/Grx structures. AbGrx1-like and AbGrx2 were identified as monothiol and diothiol Grxs, respectively. AbGrxs were significantly expressed at the egg and 16-cell stage of early abalone development. Although the expression of both AbGrxs demonstrated similar patterns, the expression of AbGrx1-like was higher than AbGrx2 during development stages. In contrast, AbGrx2 expression was significantly higher than that of AbGrx1-like in adult tissues. Highest AbGrx1-like expression was observed in the hepatopancreas and digestive tract, while highest AbGrx2 expression was found in the gills, followed by the mantle, in healthy adult abalone tissues. The highest expression of AbGrx1-like was observed in the gills at 12 h and 6 h post injection (p.i) of Vibrio parahemolyticus and other stimulants, respectively. The highest expression of AbGrx2 in the gills were observed at 120 h, 6 h, 24 h, and 12 h post injection of V. parahaemolyticus, Listeria monocytogenes, Viral hemorrhagic septicemia virus, and Polyinosinic:polycytidylic acid, respectively. AbGrxs possessed significant 2-hydroxyethyl disulfide (HED) and dehydroascorbate (DHA) reduction activity, but AbGrx2 exhibited higher redox activity than AbGrx1-like. Altogether, our results suggest an important role of AbGrx1-like and AbGrx2 in redox homeostasis, as well as in the invertebrate immune defense system. Our findings will aid the development of new disease management strategies for this economically valuable species.


Subject(s)
Gastropoda/genetics , Gastropoda/immunology , Glutaredoxins/genetics , Glutaredoxins/immunology , Amino Acid Sequence , Animals , Base Sequence , Glutaredoxins/chemistry , Immunity, Innate , Oxidation-Reduction , Protein Structure, Tertiary , Sequence Alignment
4.
Chemistry ; 25(33): 7831-7834, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30958595

ABSTRACT

The activation of CS2 is of interest in a broad range of fields and, more particularly, in the context of creating new C-C bonds. The reaction of the dinuclear ytterbium(II) complex [Yb2 L4 ], 1, [L=(OtBu)3 SiO- ] with carbon disulfide led to the isolation of unprecedented reduction products. In particular, the crystallographic characterization of complex [Yb2 L4 (µ-C2 S2 )], 2, provided the first example of an acetylenedithiolate ligand formed from metal reduction of CS2 . Computational studies indicated that this unprecedented reactivity can be ascribed to the unusual binding mode of CS2 2- in the isolated "key intermediate" [Yb2 L4 (µ-CS2 )], 3, which results from the dinuclear nature of 1.

5.
Biotechnol Bioeng ; 116(7): 1669-1683, 2019 07.
Article in English | MEDLINE | ID: mdl-30883673

ABSTRACT

Monoclonal antibody interchain disulfide bond reduction was observed in a Chinese Hamster Ovary manufacturing process that used single-use technologies. A similar reduction has been reported for processes that involved high mechanical shear recovery unit operations, such as continuous flow centrifugation and when the clarified harvest was stored under low dissolved oxygen (DO) conditions (Trexler-Schmidt et al., 2010. Biotechnology and Bioengineering, 106(3), 452-461). The work described here identifies disposable depth filtration used during cell culture harvest operations as a shear-inducing unit operation causing cell lysis. As a result, reduction of antibody interchain disulfide bonds was observed through the same mechanisms described for continuous flow centrifugation. Small-scale depth-filtration models were developed, and the differential pressure (Δ P) of the primary depth filter was identified as the key factor contributing to cell lysis. Strong correlations of Δ P and cell lysis were generated by measuring the levels of lactate dehydrogenase and thiol in the filtered harvest material. A simple risk mitigation strategy was implemented during manufacturing by providing an air overlay to the headspace of a single-use storage bag to maintain sufficient DO in the clarified harvest. In addition, enzymatic characterization studies determined that thioredoxin reductase and glucose-6-phosphate dehydrogenase are critical enzymes involved in antibody reduction in a nicotinamide adenine dinucleotide phosphate (NADP + )/NADPH-dependent manner.


Subject(s)
Antibodies, Monoclonal , Disulfides/chemistry , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , CHO Cells , Cricetulus , Filtration , Humans , Oxidation-Reduction
6.
Fish Shellfish Immunol ; 90: 40-51, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31015065

ABSTRACT

Glutaredoxins (Grx) are redox enzymes conserved in viruses, eukaryotes, and prokaryotes. In this study, we characterized glutaredoxin 1 (HaGrx1) from big-belly seahorse, Hippocampus abdominalis. In-silico analysis showed that HaGrx1 contained the classical glutaredoxin 1 structure with a CSYC thioredoxin active site motif. According to multiple sequence alignment and phylogenetic reconstruction, HaGrx1 presented the highest homology to the Grx1 ortholog from Hippocampus comes. Transcriptional studies demonstrated the ubiquitous distribution of HaGrx1 transcripts in all the seahorse tissues tested. Significant modulation (p < 0.05) of HaGrx1 transcripts were observed in blood upon stimulation with pathogen-associated molecular patterns and live pathogens. The ß-hydroxyethyl disulfide reduction assay confirmed the antioxidant activity of recombinant HaGrx1. Further, dehydroascorbate reduction and insulin disulfide reduction assays revealed the oxidoreductase activity of HaGrx1. HaGrx1 utilized 1,4-dithiothreitol, l-cysteine, 2-mercaptoethanol, and reduced l-glutathione as reducing agent with different dehydroascorbate reduction activity levels. Altogether, our results suggested a vital role of HaGrx1 in redox homeostasis as well as the host innate immune defense system.


Subject(s)
Fish Diseases/immunology , Gene Expression Regulation/immunology , Glutaredoxins/genetics , Glutaredoxins/immunology , Immunity, Innate/genetics , Smegmamorpha/genetics , Smegmamorpha/immunology , Amino Acid Sequence , Animals , Base Sequence , Edwardsiella tarda/physiology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Glutaredoxins/chemistry , Lipopolysaccharides/pharmacology , Pathogen-Associated Molecular Pattern Molecules , Phylogeny , Poly I-C/pharmacology , Sequence Alignment/veterinary , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Streptococcus iniae/physiology
7.
Traffic ; 17(7): 786-802, 2016 07.
Article in English | MEDLINE | ID: mdl-27020146

ABSTRACT

Proteolysis and the reduction of disulfides, both major components of protein degradation, are profoundly influenced by phagosomal redox conditions in macrophages. We evaluated the activation of phagocytic receptors that are known to influence activation of the phagocyte NADPH oxidase (NOX2), and its effect on phagosomal protein degradation. Population-based and single phagosome analyses of phagosomal chemistries in murine macrophages revealed that activation of NOX2 via the Fcγ receptor (FcγR) during phagocytosis decreased rates of proteolysis and disulfide reduction. Immunoglobulin G (IgG)-stimulated reactive oxygen species (ROS) production and the inhibition of phagosomal proteolysis and disulfide reduction were dependent on NOX2, FcγR and protein kinase C (PKC)/spleen tyrosine kinase (Syk) signaling. In contrast, low levels of ROS production were observed following the phagocytosis of unopsonized beads, which resulted in higher rates of phagosomal proteolysis and disulfide reduction. Phagosomes displayed autonomy with respect to FcγR-mediated differences in NOX2 activation and proteolysis, as phagosomes containing unopsonized cargo retained low NOX2 activation and high proteolysis even in the presence of phagosomes containing IgG-opsonized cargo in the same macrophage. These results show that opsonization of phagocytic cargo results in vastly different phagosomal processing of proteins through the FcγR-triggered, PKC/Syk-dependent local assembly and activation of NOX2.


Subject(s)
Macrophages/metabolism , Membrane Glycoproteins/metabolism , NADPH Oxidases/metabolism , Phagocytosis/physiology , Phagosomes/metabolism , Proteolysis , Receptors, IgG/metabolism , Animals , Disulfides/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Macrophages/enzymology , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2 , NADPH Oxidases/genetics , Oxidation-Reduction , Protein Processing, Post-Translational , Reactive Oxygen Species/metabolism , Receptors, IgG/genetics
8.
Proteins ; 86(8): 817-826, 2018 08.
Article in English | MEDLINE | ID: mdl-29708626

ABSTRACT

The three-dimensional structure of proteins, especially as determined by X-ray crystallography, is critical to the understanding of their function. However, the X-ray exposure may lead to damage that must be recognized and understood to interpret the crystallographic results. This is especially relevant for proteins with transition metal ions that can be oxidized or reduced. The detailed study of proteins in aqueous solution by the technique of pulse radiolysis has provided a wealth of information on the production and fate of radicals that are the same as those produced by X-ray exposure. The results reviewed here illustrate how the products of the interaction of radiation with water or with solutes added to the crystallization medium, and with proteins themselves, are formed, and about their fate. Of particular focus is how electrons are produced and transferred through the polypeptide matrix to redox centers such as metal ions or to specific amino acid residues, for example, disulfides, and how the hydroxyl radicals formed may be converted to reducing equivalents or scavenged.


Subject(s)
Protein Stability/radiation effects , Proteins/chemistry , Amino Acids/chemistry , Disulfides/chemistry , Electrons , Metals/chemistry , Models, Molecular , Oxidation-Reduction , Protein Conformation/radiation effects , X-Rays
9.
Biochem Biophys Res Commun ; 480(4): 752-757, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27983990

ABSTRACT

Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab')2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab')2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications.


Subject(s)
Antibodies/analysis , Antibodies/chemistry , Disulfides/analysis , Disulfides/chemistry , Immunoassay/methods , Immunoglobulin Fab Fragments/analysis , Immunoglobulin Fab Fragments/chemistry , Oxidation-Reduction , Staining and Labeling
10.
Angew Chem Int Ed Engl ; 55(44): 13765-13769, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27699955

ABSTRACT

UV-induced disulfide formation (UV-DF) and disulfide reduction (UV-DR) reactions for surface functionalization and dynamic photopatterning are presented. Both photochemical reactions allow for the spatially and temporally controlled, reversible transition between thiol- and disulfide-functionalized surfaces. The dynamic photopatterning strategy was demonstrated by the UV-induced attachment, exchange, and detachment on thiol-modified substrates.

11.
Nitric Oxide ; 46: 93-101, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25512332

ABSTRACT

The significance of persulfide species in hydrogen sulfide biology is increasingly recognized. However, the molecular mechanisms of their formation remain largely elusive. The obvious pathway of the reduction of biologically abundant disulfide moieties by sulfide was challenged on both thermodynamic and kinetic grounds. Using DTNB (5,5'-dithiobis-(2-nitrobenzoic acid), also known as Ellman's reagent) as a model disulfide we conducted a comprehensive kinetic study for its reaction with sulfide. The bimolecular reaction is relatively fast with a second-order rate constant of 889 ± 12 M(-1)s(-1) at pH = 7.4. pH dependence of the rate law revealed that the reaction proceeds via the bisulfide anion species with an initial nucleophilic thiol-disulfide exchange reaction to give 5-thio-2-nitrobenzoic acid (TNB) and TNB-persulfide with a pH independent second-order rate constant of 1090 ± 12 M(-1)s(-1). However, kinetic studies and stoichiometric analyses in a wide range of reactant ratios together with kinetic simulations revealed that it is a multistep process that proceeds via kinetically driven, practically irreversible reactions along the disulfide → persulfide → inorganic polysulfides axis. The kinetic model postulated here, which is fully consistent with the experimental data, suggests that the TNB-persulfide is further reduced by sulfide with a second-order rate constant in the range of 5 × 10(3) - 5 × 10(4) M(-1)s(-1) at pH 7.4 and eventually yields inorganic polysulfides and TNB. The reactions of cystine and GSSG with sulfide were found to be significantly slower and to occur via more complicated reaction schemes. (1)H NMR studies suggest that these reactions also generate Cys-persulfide and inorganic polysulfide species, but in contrast with DTNB, in consecutive equilibrium processes that are sensitive to changes in the reactant and product ratios. Collectively, our results demonstrate that the reaction of disulfides with sulfide is a highly system specific process from both thermodynamic and kinetic aspects, which together with the considerable steady-state concentrations of the reactants in biological systems signifies physiological relevance.


Subject(s)
Disulfides/chemistry , Hydrogen Sulfide/chemistry , Dithionitrobenzoic Acid/chemistry , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Thermodynamics
12.
Proteins ; 82(4): 607-19, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24123219

ABSTRACT

The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer of reducing equivalents from NADPH to Trx via a tightly NTR-bound flavin. Here, interactions between NTR and Trx are predicted by molecular modelling of the barley NTR:Trx complex (HvNTR2:HvTrxh2) and probed by site directed mutagenesis. Enzyme kinetics analysis reveals mutants in a loop of the flavin adenine dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent on these two residues, suggesting a distinct mode for NTR:Trx recognition. Comparison between the HvNTR2:HvTrxh2 model and the crystal structure of the Escherichia coli NTR:Trx complex reveals major differences in interactions involving the FAD- and NADPH-binding domains as supported by our experiments. Overall, the findings suggest that NTR:Trx interactions in different biological systems are fine-tuned by multiple intermolecular contacts.


Subject(s)
Arabidopsis/enzymology , Escherichia coli/enzymology , Hordeum/enzymology , Thioredoxin-Disulfide Reductase/chemistry , Thioredoxins/chemistry , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , NADP/chemistry , Protein Conformation , Protein Structure, Tertiary , Sequence Alignment
13.
Arch Biochem Biophys ; 564: 164-72, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25255970

ABSTRACT

Three protein disulfide reductases of the thioredoxin superfamily from the industrially important Gram-positive Lactococcus lactis (LlTrxA, LlTrxD and LlNrdH) are compared to the "classical" thioredoxin from Escherichia coli (EcTrx1). LlTrxA resembles EcTrx1 with a WCGPC active site motif and other key residues conserved. By contrast, LlTrxD is more distantly related and contains a WCGDC motif. Bioinformatics analysis suggests that LlTrxD represents a subgroup of thioredoxins from Gram-positive bacteria. LlNrdH is a glutaredoxin-like electron donor for ribonucleotide reductase class Ib. Based on protein-protein equilibria LlTrxA (E°'=-259mV) and LlNrdH (E°'=-238mV) show approximately 10mV higher standard state redox potentials than the corresponding E. coli homologues, while E°' of LlTrxD is -243mV, more similar to glutaredoxin than "classical" thioredoxin. EcTrx1 and LlTrxA have high capacity to reduce insulin disulfides and their exposed active site thiol is alkylated at a similar rate at pH 7.0. LlTrxD on the other hand, is alkylated by iodoacetamide at almost 100 fold higher rate and shows no activity towards insulin disulfides. LlTrxA, LlTrxD and LlNrdH are all efficiently reduced by NADPH dependent thioredoxin reductase (TrxR) from L. lactis and good cross-reactivity towards E. coli TrxR was observed with LlTrxD as the notable exception.


Subject(s)
Bacterial Proteins/chemistry , Lactococcus lactis/enzymology , Thioredoxins/chemistry , Amino Acid Motifs , Bacterial Proteins/metabolism , Catalytic Domain , Escherichia coli , NADP , Oxidation-Reduction , Sequence Homology, Amino Acid , Thioredoxins/metabolism
14.
J Enzyme Inhib Med Chem ; 29(4): 491-4, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23808802

ABSTRACT

The activity of glutathione reductase with an unnatural analog of oxidized glutathione was explored. The analog, L-γ-glutamyl-2-methyl-L-cysteinyl-glycine disulfide, places an additional methyl group on the alpha position of each of the central cysteine residues, which significantly increases steric bulk near the disulfide bond. Glutathione reductase was completely unable to catalyze the sulfur-sulfur bond reduction of the analog. Additionally, enzyme kinetics experiments indicated that the analog acts as a competitive inhibitor of glutathione reductase. Computational studies confirm that the methylated analog fits within the active site of the enzyme but its disulphide bond geometry is altered, preventing reduction by the enzyme. The substitution of (R)-2-methylcysteine in place of natural (R)-cysteine in peptides constitutes a new strategy for stabilizing disulphide bonds from enzyme-catalyzed degradation.


Subject(s)
Glutathione Reductase/metabolism , Glutathione/analogs & derivatives , Glutathione/metabolism , Binding, Competitive/drug effects , Biocatalysis/drug effects , Enzyme Activation/drug effects , Glutathione/chemistry , Glutathione/pharmacology , Glutathione Reductase/antagonists & inhibitors , Humans , Kinetics , Methylation , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Structure-Activity Relationship
15.
Angew Chem Int Ed Engl ; 53(39): 10448-52, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25077455

ABSTRACT

The synthesis, structure, and reactivity of stable homoleptic heterometallic LnL4K2 complexes of divalent lanthanide ions with electron-rich tris(tert-butoxy)siloxide ligands are reported. The [Ln(OSi(OtBu)3)4K2] complexes (Ln=Eu, Yb) are stable at room temperature, but they promote the reduction of azobenzene to yield the KPhNNPh radical anion as well as the reductive cleavage of CS2 to yield CS3(2-) as the major product. The Eu(III) complex of the radical anion PhNNPh is structurally characterized. Moreover, [Yb(OSi(OtBu)3)4K2] can reduce CO2 at room temperature. Release of the reduction products in D2O shows the quantitative formation of both oxalate and carbonate in a 1:2.2 ratio. The bulky siloxide ligands enforce the labile binding of the reduction products providing the opportunity to establish a closed synthetic cycle for the Yb(II)-mediated CO2 reduction. These studies show that the presence of four electron-rich siloxide ligands renders their Eu(II) and Yb(II) complexes highly reactive.

16.
Adv Cancer Res ; 162: 1-44, 2024.
Article in English | MEDLINE | ID: mdl-39069366

ABSTRACT

Cysteine is required for synthesis of glutathione (GSH), coenzyme A, other sulfur-containing metabolites, and most proteins. In most cells, cysteine comes from extracellular disulfide sources including cystine, glutathione-disulfide, and peptides. The thioredoxin reductase-1 (TrxR1)- or glutathione-disulfide reductase (GSR)-driven enzymatic systems can fuel cystine reduction via thioredoxins, glutaredoxins, or other thioredoxin-fold proteins. Free cystine enters cells thorough the cystine-glutamate antiporter, xCT, but systemically, plasma glutathione-disulfide might predominate as a cystine source. Erastin, inhibiting both xCT and voltage-dependent anion channels, induces ferroptotic cell death, so named because this type of cell death is antagonized by iron-chelators. Many cancer cells seem to be predisposed to ferroptosis, which has been proposed as a targetable cancer liability. Ferroptosis is associated with lipid peroxidation and loss of either glutathione peroxidase-4 (GPX4) or ferroptosis suppressor protein-1 (FSP1), which each prevent accumulation of lipid peroxides. It has been suggested that an xCT inhibition-induced cellular cysteine-deficiency lowers GSH levels, starving GPX4 for reducing power and allowing membrane lipid peroxides to accumulate, thereby causing ferroptosis. Aspects of ferroptosis are however not fully understood and need to be further scrutinized, for example that neither disruption of GSH synthesis, loss of GSH, nor disruption of glutathione disulfide reductase (GSR), triggers ferroptosis in animal models. Here we reevaluate the relationships between Erastin, xCT, GPX4, cellular cysteine and GSH, RSL3 or ML162, and ferroptosis. We conclude that, whereas both Cys and ferroptosis are potential liabilities in cancer, their relationship to each other remains insufficiently understood.


Subject(s)
Cysteine , Ferroptosis , Neoplasms , Humans , Cysteine/metabolism , Animals , Neoplasms/metabolism , Neoplasms/pathology , Glutathione/metabolism
17.
Methods Mol Biol ; 2692: 139-152, 2023.
Article in English | MEDLINE | ID: mdl-37365466

ABSTRACT

The phagosome is a redox-active organelle. Numerous reductive and oxidative systems play both direct and indirect roles in phagosomal function. With the advent of newer methodologies to study these redox events in live cells, the details of how redox conditions change within the maturing phagosome, how they are regulated, and how they influence other phagosomal functions can be investigated. In this chapter, we detail phagosome-specific, fluorescence-based assays that measure disulfide reduction and the production of reactive oxygen species in live phagocytes such as macrophages and dendritic cells, in real time.


Subject(s)
Macrophages , Phagosomes , Phagosomes/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Oxidative Stress
18.
Antioxidants (Basel) ; 11(2)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35204259

ABSTRACT

The Trx and Grx systems, two disulfide reductase systems, play critical roles in various cell activities. There are great differences between the thiol redox systems in prokaryotes and mammals. Though fluorescent probes have been widely used to detect these systems in mammalian cells. Very few methods are available to detect rapid changes in the redox systems of prokaryotes. Here we investigated whether Fast-TRFS, a disulfide-containing fluorescent probe utilized in analysis of mammalian thioredoxin reductase, could be used to detect cellular disulfide reducibility in bacteria. Fast-TRFS exhibited good substrate qualities for both bacterial thioredoxin and GSH-glutaredoxin systems in vitro, with Trx system having higher reaction rate. Moreover, the Fast-TRFS was used to detect the disulfide reductase activity in various bacteria and redox-related gene null E. coli. Some glutaredoxin-deficient bacteria had stronger fast disulfide reducibility. The Trx system was shown to be the predominant disulfide reductase for fast disulfide reduction rather than the Grx system. These results demonstrated that Fast-TRFS is a viable probe to detect thiol-dependent disulfide reductases in bacteria. It also indicated that cellular disulfide reduction could be classified into fast and slow reaction, which are predominantly catalyzed by E. coli Trx and Grx system, respectively.

19.
Antioxidants (Basel) ; 10(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34829714

ABSTRACT

Thioredoxin (Trx), a ubiquitous protein showing disulfide reductase activity, plays critical roles in cellular redox control and oxidative stress response. Trx is a member of the Trx system, comprising Trx, Trx reductase (TrxR), and a cognate reductant (generally reduced nicotinamide adenine dinucleotide phosphate, NADPH). Bacterial Trx1 contains only the Trx-fold domain, in which the active site CXXC motif that is critical for the disulfide reduction activity is located. Bacterial Trx2 contains an N-terminal extension, which forms a zinc-finger domain, including two additional CXXC motifs. The multi-stress resistant bacterium Deinococcus radiodurans encodes both Trx1 (DrTrx1) and Trx2 (DrTrx2), which act as members of the enzymatic antioxidant systems. In this study, we constructed Δdrtrx1 and Δdrtrx2 mutants and examined their survival rates under H2O2 treated conditions. Both drtrx1 and drtrx2 genes were induced following H2O2 treatment, and the Δdrtrx1 and Δdrtrx2 mutants showed a decrease in resistance toward H2O2, compared to the wild-type. Native DrTrx1 and DrTrx2 clearly displayed insulin and DTNB reduction activity, whereas mutant DrTrx1 and DrTrx2, which harbors the substitution of conserved cysteine to serine in its active site CXXC motif, showed almost no reduction activity. Mutations in the zinc binding cysteines did not fully eliminate the reduction activities of DrTrx2. Furthermore, we solved the crystal structure of full-length DrTrx2 at 1.96 Å resolution. The N-terminal zinc-finger domain of Trx2 is thought to be involved in Trx-target interaction and, from our DrTrx2 structure, the orientation of the zinc-finger domain of DrTrx2 and its interdomain interaction, between the Trx-fold domain and the zinc-finger domain, is clearly distinguished from those of the other Trx2 structures.

20.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34832916

ABSTRACT

Tetanus neurotoxin (TeNT) is a protein exotoxin produced by Clostridium tetani that causes the deadly spastic neuroparalysis of tetanus. It consists of a metalloprotease light chain and of a heavy chain linked via a disulphide bond. TeNT binds to the neuromuscular junction (NMJ) and it is retro-axonally transported into vesicular compartments to the spinal cord, where it is released and taken up by inhibitory interneuron. Therein, the catalytic subunit is translocated into the cytoplasm where it cleaves its target protein VAMP-1/2 with consequent blockage of the release of inhibitory neurotransmitters. Vaccination with formaldehyde inactivated TeNT prevents the disease, but tetanus is still present in countries where vaccination coverage is partial. Here, we show that small molecule inhibitors interfering with TeNT trafficking or with the reduction of the interchain disulphide bond block the activity of the toxin in neuronal cultures and attenuate tetanus symptoms in vivo. These findings are relevant for the development of therapeutics against tetanus based on the inhibition of toxin molecules that are being retro-transported to or are already within the spinal cord and are, thus, not accessible to anti-TeNT immunoglobulins.

SELECTION OF CITATIONS
SEARCH DETAIL