Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 167(5): 1201-1214.e15, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863241

ABSTRACT

Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromatin Assembly and Disassembly , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/metabolism , Multiprotein Complexes/metabolism , RNA Polymerase II/metabolism
2.
Cell ; 167(5): 1215-1228.e25, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27839866

ABSTRACT

The last steps in mRNA export and remodeling are performed by the Nup82 complex, a large conserved assembly at the cytoplasmic face of the nuclear pore complex (NPC). By integrating diverse structural data, we have determined the molecular architecture of the native Nup82 complex at subnanometer precision. The complex consists of two compositionally identical multiprotein subunits that adopt different configurations. The Nup82 complex fits into the NPC through the outer ring Nup84 complex. Our map shows that this entire 14-MDa Nup82-Nup84 complex assembly positions the cytoplasmic mRNA export factor docking sites and messenger ribonucleoprotein (mRNP) remodeling machinery right over the NPC's central channel rather than on distal cytoplasmic filaments, as previously supposed. We suggest that this configuration efficiently captures and remodels exporting mRNP particles immediately upon reaching the cytoplasmic side of the NPC.


Subject(s)
Nuclear Pore Complex Proteins/chemistry , Nuclear Pore/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Yeasts/metabolism , Active Transport, Cell Nucleus , Fungal Proteins , Nuclear Pore Complex Proteins/ultrastructure , RNA, Messenger , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/ultrastructure
3.
Mol Cell ; 83(2): 186-202.e11, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36669479

ABSTRACT

PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes. We show that PGC-1α promotes pausing release in a two-arm mechanism (1) by recruiting the positive transcription elongation factor b (P-TEFb) and (2) by outcompeting the premature transcription termination complex Integrator. Using mice homozygous for five amino acid changes in the CBP80-binding motif (CBM) of PGC-1α that destroy CBM function, we show that efficient differentiation of primary myoblasts to myofibers and timely skeletal muscle regeneration after injury require PGC-1α binding to CBP80. Our findings reveal how PGC-1α activates stress-response gene transcription in a previously unanticipated pre-mRNA quality-control pathway.


Subject(s)
RNA Precursors , Transcription Factors , Animals , Mice , DNA-Binding Proteins/genetics , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Promoter Regions, Genetic , RNA Cap-Binding Proteins/genetics , RNA Polymerase II/metabolism , RNA Precursors/metabolism , Transcription Factors/metabolism , Transcription, Genetic
4.
Annu Rev Biochem ; 84: 325-54, 2015.
Article in English | MEDLINE | ID: mdl-25784054

ABSTRACT

Throughout their lifetimes, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Since the discovery of the first mRNP component more than 40 years ago, what is known as the mRNA interactome now comprises >1,000 proteins. These proteins bind mRNAs in myriad ways with varying affinities and stoichiometries, with many assembling onto nascent RNAs in a highly ordered process during transcription and precursor mRNA (pre-mRNA) processing. The nonrandom distribution of major mRNP proteins observed in transcriptome-wide studies leads us to propose that mRNPs are organized into three major domains loosely corresponding to 5' untranslated regions (UTRs), open reading frames, and 3' UTRs. Moving from the nucleus to the cytoplasm, mRNPs undergo extensive remodeling as they are first acted upon by the nuclear pore complex and then by the ribosome. When not being actively translated, cytoplasmic mRNPs can assemble into large multi-mRNP assemblies or be permanently disassembled and degraded. In this review, we aim to give the reader a thorough understanding of past and current eukaryotic mRNP research.


Subject(s)
Ribonucleoproteins/chemistry , Active Transport, Cell Nucleus , Animals , Humans , Protein Biosynthesis , RNA Splicing , RNA Stability , RNA, Messenger/metabolism , Transcription, Genetic
5.
Trends Biochem Sci ; 49(7): 611-621, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677920

ABSTRACT

YTHDF proteins are main cytoplasmic 'reader' proteins of RNA N6-methyladenosine (m6A) methylation in mammals. They are largely responsible for m6A-mediated regulation in the cell cytosol by controlling both mRNA translation and degradation. Recent functional and mechanistic investigations of the YTHDF proteins revealed that these proteins have different functions to enable versatile regulation of the epitranscriptome. Their divergent functions largely originate from their different amino acid sequences in the low-complexity N termini. Consequently, they have different phase separation propensities and possess distinct post-translational modifications (PTMs). Different PTMs, subcellular localizations, and competition among partner proteins have emerged as three major mechanisms that control the functions of these YTHDF proteins. We also summarize recent progress on critical roles of these YTHDF proteins in anticancer immunity and the potential for targeting these proteins for developing new anticancer therapies.


Subject(s)
Adenosine , RNA-Binding Proteins , Humans , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine/metabolism , Adenosine/analogs & derivatives , Protein Processing, Post-Translational , RNA/metabolism , Methylation , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology
6.
Trends Biochem Sci ; 49(3): 199-207, 2024 03.
Article in English | MEDLINE | ID: mdl-38071089

ABSTRACT

Gene expression is a complex process requiring many control mechanisms to achieve a desired phenotype. DNA accessibility within chromatin is well established as an important determinant of gene expression. By contrast, while mRNA also associates with a complement of proteins, the exact nature of messenger ribonucleoprotein (mRNP) packaging and its functional relevance is not as clear. Recent reports indicate that exon junction complex (EJC)-mediated mRNP packaging renders exon junction-proximal regions inaccessible for m6A methylation, and that EJCs reside within the inaccessible interior of globular transcription and export (TREX) complex-associated nuclear mRNPs. We propose that 'mRNA accessibility' within mRNPs is an important determinant of gene expression that may modulate the specificity of a broad array of regulatory processes including but not limited to m6A methylation.


Subject(s)
Cell Nucleus , Ribonucleoproteins , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Cell Nucleus/metabolism , Gene Expression
7.
Mol Cell ; 77(6): 1176-1192.e16, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31999954

ABSTRACT

Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.


Subject(s)
Autistic Disorder/physiopathology , Cognitive Dysfunction/pathology , Eukaryotic Initiation Factor-4G/physiology , Exons/genetics , Fragile X Mental Retardation Protein/metabolism , Neuroblastoma/pathology , Neurons/pathology , Animals , Behavior, Animal , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Fragile X Mental Retardation Protein/genetics , Male , Mice , Mice, Inbred C57BL , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neurogenesis , Neurons/metabolism , Protein Biosynthesis , RNA Splicing , Tumor Cells, Cultured
8.
Mol Cell ; 72(4): 715-726.e3, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30415953

ABSTRACT

Compared to noncoding RNAs (ncRNAs), such as rRNAs and ribozymes, for which high-resolution structures abound, little is known about the tertiary structures of mRNAs. In eukaryotic cells, newly made mRNAs are packaged with proteins in highly compacted mRNA particles (mRNPs), but the manner of this mRNA compaction is unknown. Here, we developed and implemented RIPPLiT (RNA immunoprecipitation and proximity ligation in tandem), a transcriptome-wide method for probing the 3D conformations of RNAs stably associated with defined proteins, in this case, exon junction complex (EJC) core factors. EJCs multimerize with other mRNP components to form megadalton-sized complexes that protect large swaths of newly synthesized mRNAs from endonuclease digestion. Unlike ncRNPs, wherein strong locus-specific structures predominate, mRNPs behave more like flexible polymers. Polymer analysis of proximity ligation data for hundreds of mRNA species demonstrates that nascent and pre-translational mammalian mRNAs are compacted by their associated proteins into linear rod-like structures.


Subject(s)
RNA Precursors/ultrastructure , Ribonucleoproteins/genetics , Ribonucleoproteins/ultrastructure , Cell Nucleus , Exons , HEK293 Cells , Humans , Immunoprecipitation/methods , Protein Processing, Post-Translational , RNA Precursors/genetics , RNA Splicing , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/ultrastructure , RNA, Untranslated , Spliceosomes , Transcription, Genetic
9.
Mol Cell ; 72(6): 1035-1049.e5, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30503769

ABSTRACT

Membrane-less organelles (MLOs) are liquid-like subcellular compartments that form through phase separation of proteins and RNA. While their biophysical properties are increasingly understood, their regulation and the consequences of perturbed MLO states for cell physiology are less clear. To study the regulatory networks, we targeted 1,354 human genes and screened for morphological changes of nucleoli, Cajal bodies, splicing speckles, PML nuclear bodies (PML-NBs), cytoplasmic processing bodies, and stress granules. By multivariate analysis of MLO features we identified hundreds of genes that control MLO homeostasis. We discovered regulatory crosstalk between MLOs, and mapped hierarchical interactions between aberrant MLO states and cellular properties. We provide evidence that perturbation of pre-mRNA splicing results in stress granule formation and reveal that PML-NB abundance influences DNA replication rates and that PML-NBs are in turn controlled by HIP kinases. Together, our comprehensive dataset is an unprecedented resource for deciphering the regulation and biological functions of MLOs.


Subject(s)
Organelles/genetics , Stress, Physiological/genetics , Systems Biology/methods , Transcriptome , DNA Replication , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , HeLa Cells , Humans , Organelles/metabolism , Phase Transition , RNA Interference , RNA Precursors/genetics , RNA, Messenger/genetics , Signal Transduction/genetics , Single-Cell Analysis
10.
Mol Cell ; 72(4): 727-738.e5, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30415950

ABSTRACT

mRNAs form ribonucleoprotein complexes (mRNPs) by association with proteins that are crucial for mRNA metabolism. While the mRNP proteome has been well characterized, little is known about mRNP organization. Using a single-molecule approach, we show that mRNA conformation changes depending on its cellular localization and translational state. Compared to nuclear mRNPs and lncRNPs, association with ribosomes decompacts individual mRNAs, while pharmacologically dissociating ribosomes or sequestering them into stress granules leads to increased compaction. Moreover, translating mRNAs rarely show co-localized 5' and 3' ends, indicating either that mRNAs are not translated in a closed-loop configuration, or that mRNA circularization is transient, suggesting that a stable closed-loop conformation is not a universal state for all translating mRNAs.


Subject(s)
RNA Precursors/physiology , Ribonucleoproteins/genetics , Ribonucleoproteins/physiology , Exons , Gene Expression/physiology , HEK293 Cells , Humans , Protein Biosynthesis/physiology , RNA Precursors/genetics , RNA Splicing , RNA Stability , RNA, Long Noncoding , RNA, Messenger/genetics , RNA, Messenger/ultrastructure , Ribosomes , Single Molecule Imaging/methods , Spatial Analysis
11.
Genes Dev ; 32(7-8): 555-567, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29654059

ABSTRACT

Although peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1α) is a well-established transcriptional coactivator for the metabolic adaptation of mammalian cells to diverse physiological stresses, the molecular mechanism by which it functions is incompletely understood. Here we used in vitro binding assays, X-ray crystallography, and immunoprecipitations of mouse myoblast cell lysates to define a previously unknown cap-binding protein 80 (CBP80)-binding motif (CBM) in the C terminus of PGC-1α. We show that the CBM, which consists of a nine-amino-acid α helix, is critical for the association of PGC-1α with CBP80 at the 5' cap of target transcripts. Results from RNA sequencing demonstrate that the PGC-1α CBM promotes RNA synthesis from promyogenic genes. Our findings reveal a new conduit between DNA-associated and RNA-associated proteins that functions in a cap-binding protein surveillance mechanism, without which efficient differentiation of myoblasts to myotubes fails to occur.


Subject(s)
Nuclear Cap-Binding Protein Complex/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/chemistry , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcriptional Activation , Animals , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Differentiation , Humans , MCF-7 Cells , Mice , Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , RNA Caps/metabolism , RNA-Binding Proteins , Transcription, Genetic
12.
RNA ; 29(2): 178-187, 2023 02.
Article in English | MEDLINE | ID: mdl-36456182

ABSTRACT

The NMD helicase UPF1 is a prototype of the superfamily 1 (SF1) of RNA helicases that bind RNA with high affinity and translocate on it in an ATP-dependent manner. Previous studies showed that UPF1 has a low basal catalytic activity that is greatly enhanced upon binding of its interaction partner, UPF2. Activation of UPF1 by UPF2 entails a large conformational change that switches the helicase from an RNA-clamping mode to an RNA-unwinding mode. The ability of UPF1 to bind RNA was expected to be unaffected by this activation mechanism. Here we show, using a combination of biochemical and biophysical methods, that binding of UPF2 to UPF1 drastically reduces the affinity of UPF1 for RNA, leading to a release of the bound RNA. Although UPF2 is capable of binding RNA in vitro, our results suggest that dissociation of the UPF1-RNA complex is not a consequence of direct competition in RNA binding but rather an allosteric effect that is likely mediated by the conformational change in UPF1 that is induced upon binding its activator. We discuss these results in light of transient interactions forged during mRNP assembly, particularly in the UPF1-dependent mRNA decay pathways.


Subject(s)
RNA Helicases , RNA-Binding Proteins , Trans-Activators , Nonsense Mediated mRNA Decay , RNA Helicases/metabolism , RNA Stability , RNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Humans
13.
RNA ; 30(1): 89-98, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37914399

ABSTRACT

The eukaryotic THO complex coordinates the assembly of so-called messenger RNA-ribonucleoprotein particles (mRNPs), a process that involves cotranscriptional coating of nascent mRNAs with proteins. Once formed, mRNPs undergo a quality control step that marks them either for active transport to the cytoplasm, or Rrp6/RNA exosome-mediated degradation in the nucleus. However, the mechanism behind the quality control of nascent mRNPs is still unclear. We investigated the cotranscriptional quality control of mRNPs in budding yeast by expressing the bacterial Rho helicase, which globally perturbs yeast mRNP formation. We examined the genome-wide binding profiles of the THO complex subunits Tho2, Thp2, Hpr1, and Mft1 upon perturbation of the mRNP biogenesis, and found that Tho2 plays two roles. In addition to its function as a subunit of the THO complex, upon perturbation of mRNP biogenesis Tho2 targets Rrp6 to chromatin via its carboxy-terminal domain. Interestingly, other THO subunits are not enriched on chromatin upon perturbation of mRNP biogenesis and are not necessary for localizing Rrp6 at its target loci. Our study highlights the potential role of Tho2 in cotranscriptional mRNP quality control, which is independent of other THO subunits. Considering that both the THO complex and the RNA exosome are evolutionarily highly conserved, our findings are likely relevant for mRNP surveillance in mammals.


Subject(s)
Chromatin , Saccharomyces cerevisiae Proteins , Chromatin/genetics , Chromatin/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
14.
Mol Cell ; 67(4): 608-621.e6, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28757210

ABSTRACT

Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage.


Subject(s)
DNA, Fungal/genetics , Genomic Instability , Introns , Nucleic Acid Heteroduplexes/genetics , RNA, Fungal/genetics , Transcription, Genetic , Candida glabrata/genetics , Candida glabrata/metabolism , Cell Line , Computational Biology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , DNA Damage , DNA, Fungal/chemistry , DNA, Fungal/metabolism , Databases, Genetic , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genotype , Humans , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/metabolism , Phenotype , RNA Splicing , RNA, Fungal/chemistry , RNA, Fungal/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Structure-Activity Relationship
15.
Mol Cell ; 68(4): 808-820.e5, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29129640

ABSTRACT

Stress granules are mRNA-protein assemblies formed from nontranslating mRNAs. Stress granules are important in the stress response and may contribute to some degenerative diseases. Here, we describe the stress granule transcriptome of yeast and mammalian cells through RNA-sequencing (RNA-seq) analysis of purified stress granule cores and single-molecule fluorescence in situ hybridization (smFISH) validation. While essentially every mRNA, and some noncoding RNAs (ncRNAs), can be targeted to stress granules, the targeting efficiency varies from <1% to >95%. mRNA accumulation in stress granules correlates with longer coding and UTR regions and poor translatability. Quantifying the RNA-seq analysis by smFISH reveals that only 10% of bulk mRNA molecules accumulate in mammalian stress granules and that only 185 genes have more than 50% of their mRNA molecules in stress granules. These results suggest that stress granules may not represent a specific biological program of messenger ribonucleoprotein (mRNP) assembly, but instead form by condensation of nontranslating mRNPs in proportion to their length and lack of association with ribosomes.


Subject(s)
Cytoplasmic Granules/metabolism , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Transcriptome/physiology , Cell Line, Tumor , Cytoplasmic Granules/genetics , Humans , RNA, Fungal/genetics , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics
16.
Mol Cell ; 65(4): 685-698.e8, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28190769

ABSTRACT

RNA polymerase II (Pol2) movement through chromatin and the co-transcriptional processing and fate of nascent transcripts is coordinated by transcription elongation factors (TEFs) such as polymerase-associated factor 1 (Paf1), but it is not known whether TEFs have gene-specific functions. Using strand-specific nucleotide resolution techniques, we show that levels of Paf1 on Pol2 vary between genes, are controlled dynamically by environmental factors via promoters, and reflect levels of processing and export factors on the encoded transcript. High levels of Paf1 on Pol2 promote transcript nuclear export, whereas low levels reflect nuclear retention. Strains lacking Paf1 show marked elongation defects, although low levels of Paf1 on Pol2 are sufficient for transcription elongation. Our findings support distinct Paf1 functions: a core general function in transcription elongation, satisfied by the lowest Paf1 levels, and a regulatory function in determining differential transcript fate by varying the level of Paf1 on Pol2.


Subject(s)
Cell Nucleus/metabolism , Nuclear Proteins/metabolism , RNA, Fungal/biosynthesis , RNA, Messenger/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Elongation, Genetic , Active Transport, Cell Nucleus , Binding Sites , Gene Expression Regulation, Fungal , Genotype , Mutation , Nuclear Proteins/genetics , Phenotype , Phosphorylation , Protein Binding , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Fungal/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Time Factors
17.
Trends Biochem Sci ; 45(1): 42-57, 2020 01.
Article in English | MEDLINE | ID: mdl-31679841

ABSTRACT

Bacterial RNA degradosomes are multienzyme molecular machines that act as hubs for post-transcriptional regulation of gene expression. The ribonuclease activities of these complexes require tight regulation, as they are usually essential for cell survival while potentially destructive. Recent studies have unveiled a wide variety of regulatory mechanisms including autoregulation, post-translational modifications, and protein compartmentalization. Recently, the subcellular organization of bacterial RNA degradosomes was found to present similarities with eukaryotic messenger ribonucleoprotein (mRNP) granules, membraneless compartments that are also involved in mRNA and protein storage and/or mRNA degradation. In this review, we present the current knowledge on the composition and targets of RNA degradosomes, the most recent developments regarding the regulation of these machineries, and their similarities with the eukaryotic mRNP granules.


Subject(s)
Endoribonucleases/metabolism , Multienzyme Complexes/metabolism , Polyribonucleotide Nucleotidyltransferase/metabolism , RNA Helicases/metabolism , RNA, Bacterial/metabolism , Endoribonucleases/genetics , Multienzyme Complexes/genetics , Polyribonucleotide Nucleotidyltransferase/genetics , RNA Helicases/genetics
18.
BMC Biol ; 21(1): 246, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37936138

ABSTRACT

BACKGROUND: The exon junction complex (EJC) is involved in most steps of the mRNA life cycle, ranging from splicing to nonsense-mediated mRNA decay (NMD). It is assembled by the splicing machinery onto mRNA in a sequence-independent manner. A fundamental open question is whether the EJC is deposited onto all exon‒exon junctions or only on a subset of them. Several previous studies have made observations supportive of the latter, yet these have been limited by methodological constraints. RESULTS: In this study, we sought to overcome these limitations via the integration of two different approaches for transcriptome-wide mapping of EJCs. Our results revealed that nearly all, if not all, internal exons consistently harbor an EJC in Drosophila, demonstrating that EJC presence is an inherent consequence of the splicing reaction. Furthermore, our study underscores the limitations of eCLIP methods in fully elucidating the landscape of RBP binding sites. Our findings highlight how highly specific (low false positive) methodologies can lead to erroneous interpretations due to partial sensitivity (high false negatives). CONCLUSIONS: This study contributes to our understanding of EJC deposition and its association with pre-mRNA splicing. The universal presence of EJC on internal exons underscores its significance in ensuring proper mRNA processing. Additionally, our observations highlight the need to consider both specificity and sensitivity in RBP mapping methodologies.


Subject(s)
RNA-Binding Proteins , Ribonucleoproteins , Animals , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Drosophila/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Exons , Binding Sites
19.
Traffic ; 21(7): 454-462, 2020 07.
Article in English | MEDLINE | ID: mdl-32374065

ABSTRACT

RNA granule formation, which can be regulated by RNA-binding proteins (RBPs) such as fragile X mental retardation protein (FMRP), acts as a mechanism to control both the repression and subcellular localization of translation. Dysregulated assembly of RNA granules has been implicated in multiple neurological disorders, such as amyotrophic lateral sclerosis. Thus, it is crucial to understand the cellular pathways impinging upon granule assembly or disassembly. The goal of this review is to summarize recent advances in our understanding of the role of the RBP, FMRP, in translational repression underlying RNA granule dynamics, mRNA transport and localized. We summarize the known mechanisms of translational regulation by FMRP, the role of FMRP in RNA transport granules, fragile X granules and stress granules. Focusing on the emerging link between FMRP and stress granules, we propose a model for how hyperassembly and hypoassembly of RNA granules may contribute to neurological diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Fragile X Mental Retardation Protein , Amyotrophic Lateral Sclerosis/genetics , Cytoplasmic Granules , Fragile X Mental Retardation Protein/genetics , Humans , RNA
20.
Cell Mol Life Sci ; 78(5): 2019-2030, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33205304

ABSTRACT

The DEAD-box protein (DBP) Dbp5, a member of the superfamily II (SFII) helicases, has multiple reported roles in gene expression. First identified as an essential regulator of mRNA export in Saccharomyces cerevisiae, the enzyme now has reported functions in non-coding RNA export, translation, transcription, and DNA metabolism. Localization of the protein to various cellular compartments (nucleoplasm, nuclear envelope, and cytoplasm) highlights the ability of Dbp5 to modulate different stages of the RNA lifecycle. While Dbp5 has been well studied for > 20 years, several critical questions remain regarding the mechanistic principles that govern Dbp5 localization, substrate selection, and functions in gene expression. This review aims to take a holistic view of the proposed functions of Dbp5 and evaluate models that accommodate current published data.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , DEAD-box RNA Helicases/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Active Transport, Cell Nucleus , DEAD-box RNA Helicases/genetics , Humans , Nucleocytoplasmic Transport Proteins/genetics , RNA/genetics , RNA/metabolism , RNA Transport , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL