Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Chem Res Toxicol ; 34(12): 2534-2539, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34788025

ABSTRACT

Methimazole (MMI) is a widely used antithyroid drug, but it can cause hepatotoxicity by unknown mechanisms. Previous studies showed that the hepatic metabolism of MMI produces N-methylthiourea, leading to liver damage. However, the specific enzyme responsible for the production of the toxic metabolite N-methylthiourea is still unclear. In this study, we screened cytochromes P450 (CYPs) in N-methylthiourea production from MMI. CYP2A6 was identified as the key enzyme in catalyzing MMI metabolism to produce N-methylthiourea. When mice were pretreated with a CYP2A6 inhibitor, formation of N-methylthiourea from MMI was remarkably reduced. Consistently, the CYP2A6 inhibitor prevented MMI-induced hepatotoxicity. These results demonstrated that CYP2A6 is essential in MMI bioactivation and hepatotoxicity.


Subject(s)
Cytochrome P-450 CYP2A6/metabolism , Liver/drug effects , Methimazole/adverse effects , Thiourea/analogs & derivatives , Animals , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Humans , Liver/metabolism , Liver/pathology , Male , Methimazole/chemistry , Methimazole/metabolism , Mice , Molecular Structure , Recombinant Proteins/metabolism , Thiourea/chemistry , Thiourea/metabolism , Tranylcypromine/chemistry , Tranylcypromine/pharmacology
2.
J Pharmacol Exp Ther ; 372(1): 21-29, 2020 01.
Article in English | MEDLINE | ID: mdl-31628204

ABSTRACT

During tobacco and e-cigarette use, nicotine is mainly metabolized in the human liver by cytochrome P450 2A6 (CYP2A6). Given that a slower CYP2A6 metabolism has been associated with less vulnerability to develop nicotine dependence, the current studies sought to validate a novel CYP2A6 inhibitor, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), for its effects on intravenous nicotine self-administration. Male and female mice were trained to self-administer nicotine across daily sessions. Once stable responding was achieved, DLCI-1 or vehicle control was administered prior to nicotine sessions. We found that the lower 25 mg/kg and moderate 50 mg/kg doses of DLCI-1 induced a significant decrease in nicotine intake for both males and females. DLCI-1 was further shown to be more effective than a moderate 1 mg/kg dose of bupropion on reducing nicotine intake and did not exert the adverse behavioral effects found with a high 75 mg/kg dose of bupropion. Although mice treated with DLCI-1 self-administered significantly less nicotine, similar nicotine-mediated behavioral effects on locomotion were observed. Together, along with the analysis of nicotine metabolites during self-administration, these findings support the contention that blocking hepatic nicotine metabolism would allow for similar activation of nicotinic acetylcholine receptors at lower nicotine doses. Moreover, these effects of DLCI-1 were specific to nicotine self-administration, as DLCI-1 did not result in any behavioral changes during food self-administration. Taken together, these studies validate DLCI-1 as a novel compound to decrease nicotine consumption, which may thereby promote tobacco and nicotine product cessation. SIGNIFICANCE STATEMENT: Current pharmacological approaches for nicotine and tobacco cessation have only been able to achieve limited efficaciousness in promoting long-term abstinence. In this work, we characterize the effects of a novel compound, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), which inhibits the main enzyme that metabolizes nicotine, and we report a significant decrease in intravenous nicotine self-administration in male and female mice, supporting the potential of DLCI-1 as a novel tobacco cessation pharmacotherapeutic.


Subject(s)
Cytochrome P-450 CYP2A6/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Smoking Cessation Agents/therapeutic use , Thiophenes/therapeutic use , Tobacco Use Disorder/drug therapy , Animals , Cytochrome P-450 CYP2A6/metabolism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , Female , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Nicotine/metabolism , Smoking Cessation Agents/administration & dosage , Smoking Cessation Agents/adverse effects , Smoking Cessation Agents/pharmacology , Thiophenes/administration & dosage , Thiophenes/adverse effects , Thiophenes/pharmacology
3.
Drug Metab Dispos ; 48(10): 1028-1043, 2020 10.
Article in English | MEDLINE | ID: mdl-32788161

ABSTRACT

Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with trans-cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (KS = 1.58 µM; Hill slope = 1.16) and CA were investigated. The time-dependent inhibition (TDI) by MCA and CA of CYP2A6-mediated nicotine metabolism is a complex process involving multiple mechanisms. Molecular dynamic simulations showed that CYP2A6's active site accommodates two dynamic ligands. The preferred binding orientations for MCA and CA were consistent with the observed metabolism: epoxidation, O-demethylation, and aromatic hydroxylation of MCA and cinnamic acid formation from CA. The percent remaining activity plots for TDI by MCA and CA were curved, and they were analyzed with a numerical method using models of varying complexity. The best-fit models support multiple inactivator binding, inhibitor depletion, and partial inactivation. Deconvoluted mass spectra indicated that MCA and CA modified CYP2A6 apoprotein with mass additions of 156.79 (142.54-171.04) and 132.67 (123.37-141.98), respectively, and it was unaffected by glutathione. Heme degradation was observed in the presence of MCA (48.5% ± 13.4% loss; detected by liquid chromatography-tandem mass spectrometry). In the absence of clinical data, HDI predictions were made for nicotine and letrozole using inhibition parameters from the best-fit TDI models and parameters scaled from rats. Predicted area under the concentration-time curve fold changes were 4.29 (CA-nicotine), 4.92 (CA-letrozole), 4.35 (MCA-nicotine), and 5.00 (MCA-letrozole). These findings suggest that extensive exposure to cinnamon (corresponding to ≈ 275 mg CA) would lead to noteworthy interactions. SIGNIFICANCE STATEMENT: Human exposure to cinnamon is common because of its presence in food and cinnamon-based herbal treatments. Little is known about the risk for cinnamaldehyde and methoxycinnamaldehyde, two components of cinnamon, to interact with drugs that are eliminated by CYP2A6-mediated metabolism. The interactions with CYP2A6 are complex, involving multiple-ligand binding, time-dependent inhibition of nicotine metabolism, heme degradation, and apoprotein modification. An herb-drug interaction prediction suggests that extensive exposure to cinnamon would lead to noteworthy interactions with nicotine.


Subject(s)
Acrolein/analogs & derivatives , Cinnamomum zeylanicum/chemistry , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Herb-Drug Interactions , Acrolein/chemistry , Acrolein/pharmacology , Area Under Curve , Cytochrome P-450 CYP2A6/isolation & purification , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 CYP2A6/ultrastructure , Drug Evaluation, Preclinical , Humans , Letrozole/pharmacokinetics , Microsomes, Liver , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Nicotine/pharmacokinetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
4.
Drug Metab Dispos ; 48(7): 544-552, 2020 07.
Article in English | MEDLINE | ID: mdl-32350062

ABSTRACT

Several cytochrome P450 enzymes are known to be down-regulated by nitric oxide (NO). CYP2A6 is responsible for the metabolism of nicotine and several other xenobiotics, but its susceptibility to down-regulation by NO has not been reported. To address this question, we used Huh7 human hepatoma cell lines to express CYP2A6 with a C-terminal V5 tag (CYP2A6V5). NO donor treatment [dipropylenetriamine NONOate (DPTA)] down-regulated CYP2A6 protein to approximately 40% of control levels in 4 hours. An NO scavenging agent protected CYP2A6 from down-regulation by DPTA in a concentration-dependent manner, demonstrating that the down-regulation is NO-dependent. Experiments with the protein synthesis inhibitor cycloheximide showed that CYP2A6 protein down-regulation occurs posttranslationally. In the presence of proteasome inhibitors MG132 or bortezomib, NO-treated cells showed an accumulation of a high molecular mass signal, whereas autophagy inhibitors chloroquine and 3-methyladenine and the lysosomal and calpain inhibitor E64d had no effect. Immunoprecipitation of CYP2A6 followed by Western blotting with an antiubiquitin antibody showed that the high molecular mass species contain polyubiquitinated CYP2A6 protein. This suggests that NO led to the degradation of protein via the ubiquitin-proteasome pathway. The down-regulation by NO was blocked by the reversible CYP2A6 inhibitor pilocarpine but not by the suicide inhibitor methoxsalen, demonstrating that down-regulation requires NO access to the active site but does not require catalytic activity of the enzyme. These findings provide novel insights toward the regulation of CYP2A6 in a human cell line and can influence our understanding of CYP2A6-related drug metabolism. SIGNIFICANCE STATEMENT: This study demonstrates that the nicotine metabolizing enzyme CYP2A6 is down-regulated by nitric oxide, a molecule produced in large amounts in the context of inflammation and that is also inhaled from cigarette smoke. This occurs via ubiquitination and proteasomal degradation, and does not require catalytic activity of the enzyme. This work adds to the growing knowledge of the selective effect and mechanism of action of nitric oxide (NO) on cytochrome P450 enzymes and suggests a possible novel mode of interaction between nicotine and NO in cigarette smokers.


Subject(s)
Cytochrome P-450 CYP2A6/antagonists & inhibitors , Nitric Oxide/pharmacology , Proteasome Endopeptidase Complex/metabolism , Cell Line, Tumor , Cigarette Smoking/metabolism , Cytochrome P-450 CYP2A6/metabolism , Down-Regulation/drug effects , Down-Regulation/physiology , Humans , Nicotine/metabolism , Nitric Oxide/metabolism , Proteasome Inhibitors/pharmacology , Protein Synthesis Inhibitors/pharmacology , Proteolysis/drug effects , Ubiquitination/drug effects , Ubiquitination/physiology
5.
Chem Res Toxicol ; 33(7): 1689-1697, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32496054

ABSTRACT

Nicotine is the primary psychoactive chemical in both traditional and electronic cigarettes (e-cigarettes). Nicotine levels in both traditional cigarettes and e-cigarettes are an important concern for public health. Nicotine exposure due to e-cigarette use is of importance primarily due to the addictive potential of nicotine, but there is also concern for nicotine poisoning in e-cigarette users. Nicotine concentrations in e-liquids vary widely. Additionally, there is significant genetic variability in the rate of metabolism of nicotine due to polymorphisms of CYP2A6, the enzyme responsible for the metabolism of approximately 80% of nicotine. Recent studies have shown CYP2A6 activity is also reduced by aromatic aldehydes such as those added to e-liquids as flavoring agents, which may increase nicotine serum concentrations. However, the impacts of flavored e-liquids on CYP2A6 activity are unknown. In this study, we investigated the impact of three flavored e-liquids on microsomal recombinant CYP2A6. Microsomal recombinant CYP2A6 was challenged at e-liquid concentrations ranging up to 0.125% (v/v) and monitored for metabolic activity using a probe molecule approach. Two e-liquids exhibited dose-dependent inhibition of CYP2A6 activity. Mass spectrometry was conducted to identify flavoring agents in flavored e-liquids that inhibited CYP2A6. Microsomal recombinant CYP2A6 was subsequently exposed to flavoring agents at concentrations ranging from 0.03 µM to 500 µM. Cinnamaldehyde and benzaldehyde were found to be the most potent inhibitors of microsomal CYP2A6 of the flavoring agents tested, with identified IC50 values of 1.1 µM and 3.0 µM, respectively. These data indicate certain aromatic aldehyde flavoring agents are potent inhibitors of CYP2A6, which may reduce nicotine metabolism in vivo. These findings indicate an urgent need to evaluate the effects of flavoring agents in e-cigarette liquids on the pharmacokinetics of nicotine in vivo.


Subject(s)
Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Electronic Nicotine Delivery Systems , Flavoring Agents/pharmacology , Nicotine/antagonists & inhibitors , Vaping , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 Enzyme Inhibitors/analysis , Dose-Response Relationship, Drug , Flavoring Agents/analysis , Humans , Mass Spectrometry , Microsomes/drug effects , Microsomes/metabolism , Molecular Conformation , Nicotine/metabolism , Recombinant Proteins/metabolism
6.
Inflamm Res ; 67(3): 209-218, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29134229

ABSTRACT

Epidemiological studies have shown that inflammation plays a critical role in the development and progression of various chronic diseases, including cancers, neurological diseases, hepatic fibrosis, diabetic retinopathy, and vascular diseases. Decursin and decursinol angelate (DA) are pyranocoumarin compounds obtained from the roots of Angelica gigas. Several studies have described the anti-inflammatory effects of decursin and DA. Decursin and DA have shown potential anti-inflammatory activity by modulating growth factors such as vascular endothelial growth factor, transcription factors such as signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells, cellular enzymes including matrix metalloproteinases cyclooxygenase, and protein kinases such as extracellular receptor kinase, phosphatidylinositol-3-kinase, and protein kinase C. These compounds have the ability to induce apoptosis by activating pro-apoptotic proteins and the caspase cascade, and reduced the expression of anti-apoptotic proteins such as B-cell lymphoma 2 and B-cell lymphoma-extra-large. Interaction with multiple molecular targets and cytotoxic effects, these two compounds are favorable candidates for treating various chronic inflammatory diseases such as cancers (prostate, breast, leukemia, cervical, and myeloma), rheumatoid arthritis, diabetic retinopathy, hepatic fibrosis, osteoclastogenesis, allergy, and Alzheimer's disease. We have summarized the preliminary studies regarding the biological effects of decursin and DA. In this review, we will also highlight the functions of coumarin compounds that can be translated to a clinical practice for the treatment and prevention of various inflammatory ailments.


Subject(s)
Anti-Inflammatory Agents , Benzopyrans , Butyrates , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Butyrates/pharmacology , Butyrates/therapeutic use , Cyclooxygenase 2/metabolism , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 CYP2J2 , Cytochrome P-450 Enzyme System/metabolism , Humans
7.
J Enzyme Inhib Med Chem ; 32(1): 1136-1142, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28856944

ABSTRACT

The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 1-4 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 5-8 from V. cinerea, and acetylenic thiophenes 9-11 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic KI values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32-15.4 and 0.92-8.67 µM, respectively, while those of thiophenes were 0.11-1.01 and 0.67-0.97 µM, respectively.


Subject(s)
Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Asteraceae/chemistry , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Vernonia/chemistry , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP2A6/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Humans , Lactones/chemistry , Lactones/isolation & purification , Lactones/pharmacology , Molecular Structure , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/isolation & purification , Thiophenes/pharmacology
8.
Drug Metab Dispos ; 44(4): 534-43, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26851241

ABSTRACT

Human exposure to trans-cinnamic aldehyde [t-CA; cinnamaldehyde; cinnamal; (E)-3-phenylprop-2-enal] is common through diet and through the use of cinnamon powder for diabetes and to provide flavor and scent in commercial products. We evaluated the likelihood of t-CA to influence metabolism by inhibition of P450 enzymes. IC50 values from recombinant enzymes indicated that an interaction is most probable for CYP2A6 (IC50 = 6.1 µM). t-CA was 10.5-fold more selective for human CYP2A6 than for CYP2E1; IC50 values for P450s 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4 were 15.8-fold higher or more. t-CA is a type I ligand for CYP2A6 (KS = 14.9 µM). Inhibition of CYP2A6 by t-CA was metabolism-dependent; inhibition required NADPH and increased with time. Glutathione lessened the extent of inhibition modestly and statistically significantly. The carbon monoxide binding spectrum was dramatically diminished after exposure to NADPH and t-CA, suggesting degradation of the heme or CYP2A6 apoprotein. Using a static model and mechanism-based inhibition parameters (K(I) = 18.0 µM; k(inact) = 0.056 minute(-1)), changes in the area under the concentration-time curve (AUC) for nicotine and letrozole were predicted in the presence of t-CA (0.1 and 1 µM). The AUC fold-change ranged from 1.1 to 3.6. In summary, t-CA is a potential source of pharmacokinetic variability for CYP2A6 substrates due to metabolism-dependent inhibition, especially in scenarios when exposure to t-CA is elevated due to high dietary exposure, or when cinnamon is used as a treatment of specific disease states (e.g., diabetes).


Subject(s)
Acrolein/analogs & derivatives , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 CYP2A6/metabolism , Microsomes, Liver/metabolism , Nicotine/metabolism , Nitriles/metabolism , Triazoles/metabolism , Acrolein/metabolism , Acrolein/pharmacology , Dose-Response Relationship, Drug , Drug Interactions/physiology , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Letrozole , Microsomes, Liver/drug effects
9.
Xenobiotica ; 46(1): 14-24, 2016.
Article in English | MEDLINE | ID: mdl-26068522

ABSTRACT

1. Information about the metabolism of compounds is essential in drug discovery and development, risk assessment of chemicals and further development of predictive methods. 2. In vitro and in silico methods were applied to evaluate the metabolic and inhibitory properties of 6-methylcoumarin, 7-methylcoumarin and 7-formylcoumarin with human CYP2A6, mouse CYP2A5 and pig CYP2A19. 3. 6-Methylcoumarin was oxidized to fluorescent 7-hydroxy-6-methylcoumarin by CYP2A6 (Km: 0.64-0.91 µM; Vmax: 0.81-0.89 min(-1)) and by CYP2A5 and CYP2A19. The reaction was almost completely inhibited at 10 µM 7-methylcoumarin in liver microsomes of human and mouse, but in pig only 40% inhibition was obtained with the anti-CYP2A5 antibody or with methoxsalen and pilocarpine. 7-Methylcoumarin was a mechanism-based inhibitor for CYP2A6, but not for the mouse and pig enzymes. 7-Formylcoumarin was a mechanism-based inhibitor for CYP2As of all species. 4. Docking and molecular dynamics simulations of 6-methylcoumarin and 7-methylcoumarin in the active sites of CYP2A6 and CYP2A5 demonstrated a favorable orientation of the 7-position of 6-methylcoumarin towards the heme moiety. Several orientations of 7-methylcoumarin were possible in CYP2A6 and CYP2A5. 5. These results indicate that the active site of CYP2A6 has unique interaction properties for ligands and differs in this respect from CYP2A5 and CYP2A19.


Subject(s)
Coumarins/pharmacology , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Animals , Cytochrome P-450 CYP2A6/metabolism , Humans , Hydroxylation , Inhibitory Concentration 50 , Kinetics , Mice , Models, Molecular , Oxidation-Reduction , Sus scrofa , Time Factors
10.
Bioorg Med Chem ; 22(23): 6655-6664, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25458499

ABSTRACT

Inhibition of CYP2A6-mediated nicotine metabolism can reduce cigarette smoking. We sought potent and selective CYP2A6 inhibitors to be used as leads for drugs useful in smoking reduction therapy, by evaluating CYP2A6 inhibitory effect of novel formyl, alkyl amine or carbonitrile substituted aromatic core structures. The most potent CYP2A6 inhibitors were thienopyridine-2-carbaldehyde, benzothienophene-3-ylmethanamine, benzofuran-5-carbaldehyde and indole-5-carbaldehyde, with IC50 values below 0.5 µM for coumarin 7-hydroxylation. Nicotine oxidation was effectively inhibited in vitro by two alkyl amine compounds and benzofuran-5-carbonitrile. Some of these molecules could serve as potential lead molecules when designing CYP2A6 inhibitory drugs for smoking reduction therapy.


Subject(s)
Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Drug Design , Pyridines/pharmacology , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Smoking Cessation , Smoking Prevention , Structure-Activity Relationship
11.
Eur J Pharm Sci ; 136: 104944, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31163215

ABSTRACT

Compared with coumarin, 7-hydroxycoumarin could serve as a better hit for developing CYP2A6 inhibitors. In this study, a series of 7-hydroxycoumarin and its structural analogues were collected to study their structure-activity relationship (SAR) and isoform selectivity for inhibiting CYP2A6. All tested coumarins except a C4 phenyl derivative (11) showed higher inhibitory activities for CYP2A6 over the other CYP isoforms, including CYP1A2, CYP2D6, CYP2E1, CYP3A4, CYP2C8, and CYP2C9. Of these coumarins, 6,7-dihydroxycoumarin (1) and 7,8-dihydroxycoumarin (9) were found to be potent inhibitors of CYP2A6 with IC50/Ki value of 0.39/0.25 and 4.61/3.02 µM, respectively, compared to methoxalen as positive control (IC50/Ki = 0.43/0.26 µM). In contrast, other coumarins showed low or decreased CYP2A6-inhibiting activities. SAR analysis showed that hydroxy groups might be important for CYP2A6 inhibition, and the rank order of sites for hydroxy substitution was C6 > C7 > C8. In addition, either hydrophobic or hydrophilic substituents introduced into C4, C6 and C8 led to a reduction in CYP2A6-inhibiting activity, and the degree of influence was dependent on the size and electrical charge of substituents. Furthermore, inhibition kinetic analysis and docking simulations demonstrated that the 8-O-glucosylated coumarin derivative (17) exhibited noncompetitive inhibition against CYP2A6, while competitive inhibition patterns were noted for the other tested coumarins. The mechanisms underlying the inhibitors binding to CYP2A6 were further investigated by molecular docking study. The findings presented herein are very helpful for developing highly selective and more potent CYP2A6 inhibitors.


Subject(s)
Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Protein Isoforms/metabolism , Umbelliferones/pharmacology , Coumarins/pharmacology , Humans , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship
12.
J Med Chem ; 61(16): 7065-7086, 2018 08 23.
Article in English | MEDLINE | ID: mdl-29995408

ABSTRACT

Cigarette smoking causes nearly one in every five deaths in the United States. The development of a specific inhibitor of cytochrome P450 2A6 (CYP2A6), the major nicotine-metabolizing enzyme in humans, which could be prescribed for the cessation of cigarette smoking, has been undertaken. To further refine the structure activity relationship of CYP2A6, previously synthesized 3-alkynyl and 3-heteroaromatic substituted pyridine methanamines were used as lead compounds. Isosteric pyridine replacement and appendage of all available positions around the pyridine ring with a methyl group was performed to identify a modification that would increase CYP2A6 inhibition potency, which led to 4g (IC50 = 0.055 mM) as a primary analogue. Potent compounds were evaluated for CYP selectivity, human liver microsomal half-life, and compliance with the rules of five. Top compounds (i.e., 6i, IC50 = 0.017 mM, >120 min half-life) are poised for further development as treatments for smoking and tobacco use cessation.


Subject(s)
Cytochrome P-450 CYP2A6/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Methylamines/pharmacology , Microsomes, Liver/drug effects , Pyridines/pharmacology , Cytochrome P-450 CYP2A6/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Methylamines/chemical synthesis , Methylamines/chemistry , Microsomes, Liver/enzymology , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Smoking/drug therapy , Tobacco Use Cessation
13.
Psychopharmacology (Berl) ; 233(12): 2289-300, 2016 06.
Article in English | MEDLINE | ID: mdl-27080866

ABSTRACT

RATIONALE: Nicotine, a dominant alkaloid found in tobacco, is responsible for physical dependence, as well as addiction to cigarette smoking; consequently, smoking cessation is a very difficult process. Hepatic cytochrome P-450 2A6 (CYP2A6) is involved in the 70-80 % of the initial metabolism of nicotine and its co-metabolites. As this metabolism is slowed by inhibitors of CYP2A6, this kind of enzymatic inhibition has been proposed as a novel target for smoking cessation. OBJECTIVES: Nicotine administered alone improved memory acquisition and consolidation as well as exerted antidepressive activity in animal models. These effects persist for 24 h. However, they are completely extinguished 48 h after administration. METHODS: To investigate if the coumarins prolong the behavioral effects of nicotine, the forced swimming test (FST)-animal models of depression, and passive avoidance (PA) test-memory and learning paradigm were used. RESULTS: This study revealed that three CYP2A6 inhibitors: two furanocoumarins, xanthotoxin (15 mg/kg) and bergapten (25 mg/kg), and the simple coumarin umbelliferone (25 mg/kg), prolonged the antidepressive and procognitive effects of nicotine. CONCLUSIONS: These natural products may offer a new approach to the treatment of nicotinism as antidepressant and memory improvement actions are one of the main factors of nicotine dependence.


Subject(s)
Behavior, Animal/drug effects , Coumarins/pharmacology , Methoxsalen/analogs & derivatives , Methoxsalen/pharmacology , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Umbelliferones/pharmacology , 5-Methoxypsoralen , Animals , Antidepressive Agents/pharmacology , Avoidance Learning/drug effects , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Depression/psychology , Locomotion/drug effects , Male , Memory/drug effects , Mice , Nootropic Agents/pharmacology , Swimming/psychology
14.
J Ethnopharmacol ; 166: 66-73, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25764964

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gelsemium elegans (GE), widely distributed in East Asia, South East Asia and Northern America, is a kind of well-known toxic plant throughout the world. Yet it has been used as a Chinese folk medicine for treatment of malignant tumors, pain, rheumatic arthritis, psoriasis and immune function. AIM OF THE STUDY: The present study was to investigate the potential inhibitory effects of G. elegans (GE) roots on four major cytochrome P450 (CYP450) isoforms (CYP1A2, CYP2A6, CYP2E1 and CYP3A4) in vitro. MATERIALS AND METHODS: Four extracts (petroleum ether, dichloromethane, EtOAc and aqueous) of GE and two commercially available alkaloids (koumine and humantenmine) were screened for their CYP isoforms inhibitory activity. Four enzyme inhibition assays were examined according to the method of the literature. Phenacetin, coumarin, chlorzoxazone and testosterone were used as probe substrates in order to determine CYP1A2, CYP2A6, CYP2E1 and CYP3A4 catalytic activity, respectively. Each probe substrate was incubated with or without each extract and active constituent for corresponding isoform, followed by determination of the kinetics parameters, IC50 and Ki, to characterize inhibitory effects. RESULTS: GE dichloromethane extract selectively inhibited activities of CYP2E1 (IC50=29.04µg/ml) and CYP2A6 (IC50=46.84µg/ml), with Ki of 10.16 and 19.33µg/ml, respectively. In the case of alkaloids, koumine exhibited significant inhibitory effects on CYP2E1 while humantenmine showed more potent inhibition on CYP2E1 and CYP2A6 (IC50 of 47.44, 18.34 and 45.87µg/ml, Ki of 31.20, 35.06 and 52.06µg/ml, respectively). Because of their relatively high Ki values, the active constituents in GE dichloromethane extract were analyzed. The UPLC-DAD-ESI-MS/MS data showed that GE dichloromethane extract contains 6 kinds of indole alkaloids (koumine, humantenmine, humantenine, humantenirine, N-methoxytaberpsychine, and sempervirine). As for CYP1A2 and CYP3A4, the negligible inhibitions were observed. CONCLUSION: G. elegans extracts inhibited several CYP450 enzyme activities with varying potency. Strong inhibition was observed in CYP2E1 and CYP2A6 isoforms by GE dichloromethane extract, koumine and humantenmine, inferring the involvement of alkaloids chemical constituents from GE dichloromethane extract in the effect.


Subject(s)
Alkaloids/pharmacology , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochromes/antagonists & inhibitors , Gelsemium/chemistry , Plant Roots/chemistry , Alkaloids/chemistry , Animals , Cytochrome P-450 CYP1A2 , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats
15.
Drug Metab Pharmacokinet ; 30(2): 174-81, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25857233

ABSTRACT

The human cytochrome P450 2A6 (CYP2A6) and monoamine oxidases (MAO-A and MAO-B), catalyzing nicotine and dopamine metabolisms, respectively, are two therapeutic targets of nicotine dependence. Vernonia cinerea, a medicinal plant commonly used for treatment of diseases such as asthma and bronchitis, has been shown reducing tobacco dependence effect among tobacco users. In the present study, we found eight active compounds isolated from V. cinerea that comprise inhibitory activity toward CYP2A6 and MAO-A and MAO-B enzymes using activity-guided assays, with coumarin as substrate of CYP2A6 and kynuramine of MAOs. These compounds were three flavones (apigenin, chrysoeriol, luteolin), one flavonol (quercetin), and four hirsutinolide-type sesquiterpene lactones (8α-(2-methylacryloyloxy)-hirsutinolide-13-O-acetate, 8α-(4-hydroxymethacryloyloxy)-hirsutinolide-13-O-acetate, 8α-tigloyloxyhirsutinolide-13-O-acetate, and 8α-(4-hydroxytigloyloxy)-hirsutinolide-13-O-acetate). Modes and kinetics of inhibition against the three enzymes were determined. Flavonoids possessed strong inhibitory effect on CYP2A6 in reversible mode, while inhibition by hirsutinolides was mechanism-based (NADPH-, concentration-, and time-dependence) and irreversible. Inhibition by hirsutinolides could not be reversed by dialysis and by addition of trapping agents or potassium ferricyanide. Flavonoids inhibited MAOs with variable degrees and were more prominent in inhibition toward MAO-A than hirsutinolides, while two of hirsutinolides inhibited MAO-B approximately comparable to two flavonoids. These results could have implications in combination of drug therapy for smoking cessation.


Subject(s)
Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Plant Extracts/pharmacology , Tobacco Use Disorder/drug therapy , Vernonia , Coumarins/metabolism , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/isolation & purification , Drug Therapy, Combination , Humans , Kinetics , Kynuramine/metabolism , Models, Biological , Molecular Structure , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/isolation & purification , Phytotherapy , Plant Components, Aerial , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plants, Medicinal , Recombinant Proteins/metabolism , Tobacco Use Disorder/enzymology , Vernonia/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL