Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Publication year range
1.
J Sci Food Agric ; 104(10): 6196-6207, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38459922

ABSTRACT

BACKGROUND: Millet bran (MB), a byproduct of millet production, is rich in functional components but it is underutilized. In recent years, researchers have shown that fermentation can improve the biological activity of cereals and their byproducts. This study used Bacillus natto to ferment millet bran to improve its added value and broaden the application of MB. The bioactive component content, physicochemical properties, and functional activity of millet bran extract (MBE) from fermented millet bran were determined. RESULTS: After fermentation, the soluble dietary fiber (SDF) content increased by 92.0%, the ß-glucan content by 164.4%, the polypeptide content by 111.4%, the polyphenol content by 32.5%, the flavone content by 16.4%, and the total amino acid content by 95.4%. Scanning electron microscopy revealed that the microscopic morphology of MBE changed from complete and dense blocks to loosely porous shapes after fermentation. After fermentation, the solubility, water-holding capacity, and viscosity significantly increased and the particle size decreased. Moreover, the glucose adsorption capacity (2.1 mmol g-1), glucose dialysis retardation index (75.3%), and α-glucosidase inhibitory (71.4%, mixed reversible inhibition) activity of the fermented MBE (FMBE) were greater than those of the unfermented MBE (0.99 mmol g-1, 32.1%, and 35.1%, respectively). The FMBE presented better cholesterol and sodium cholate (SC) adsorption properties and the adsorption was considered inhomogeneous surface adsorption. CONCLUSION: Fermentation increased the bioactive component content and improved the physicochemical properties of MBE, thereby improving its hypoglycemic and hypolipidemic properties. This study not only resolves the problem of millet bran waste but also encourages the development of higher value-added application methods for millet bran. © 2024 Society of Chemical Industry.


Subject(s)
Dietary Fiber , Fermentation , Millets , Plant Extracts , Dietary Fiber/metabolism , Dietary Fiber/analysis , Millets/chemistry , Millets/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Bacillus subtilis/metabolism , beta-Glucans/metabolism , beta-Glucans/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Polyphenols/chemistry , Polyphenols/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry
2.
J Cell Mol Med ; 27(15): 2249-2260, 2023 08.
Article in English | MEDLINE | ID: mdl-37403218

ABSTRACT

In the present study, the identification of potential α-amylase inhibitors is explored as a potential strategy for treating type-2 diabetes mellitus. A computationally driven approach using molecular docking was employed to search for new α-amylase inhibitors. The interactions of potential drugs with the enzyme's active site were investigated and compared with the contacts established by acarbose (a reference drug for α-amylase inhibition) in the crystallographic structure 1B2Y. For this active site characterization, both molecular docking and molecular dynamics simulations were performed, and the residues involved in the α-amylase-acarbose complex were considered to analyse the potential drug's interaction with the enzyme. Two potential α-amylase inhibitors (AN-153I105594 and AN-153I104845) have been selected following this computational strategy. Both compounds established a large number of interactions with key binding site α-amylase amino acids and obtained a comparable docking score concerning the reference drug (acarbose). Aiming to further analyse candidates' properties, their ADME (absorption, distribution, metabolism, excretion) parameters, druglikeness, organ toxicity, toxicological endpoints and median lethal dose (LD50 ) were estimated. Overall estimations are promising for both candidates, and in silico toxicity predictions suggest that a low toxicity should be expected.


Subject(s)
Acarbose , Diabetes Mellitus, Type 2 , Humans , Acarbose/pharmacology , Acarbose/chemistry , Acarbose/therapeutic use , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Molecular Docking Simulation , Drug Evaluation, Preclinical , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , alpha-Amylases
3.
Molecules ; 27(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35164396

ABSTRACT

In this work, a new strain of Bacillus amyloliquefaciens SY07 isolated from a traditional fermented soybean food was reported to possess remarkable α-glucosidase inhibitor-producing ability. Different culture media were applied for the proliferation of B. amyloliquefaciens SY07, and it was found that fermented okara broth presented the highest α-glucosidase inhibitory activity, while Luria-Bertani medium showed a negative effect. The extract from fermented okara broth acted in a dose-dependent manner to inhibit α-glucosidase activity, with an IC50 value of 0.454 mg/mL, and main inhibitors in the fermentation extract presented a reversible, uncompetitive pattern according to Lineweaver-Burk plots. Moreover, 1-deoxynojirimycin, a recognized α-glucosidase inhibitor, was found in the extract. Results indicated that B. amyloliquefaciens SY07 could utilize okara, a by-product from the soy processing industry, to generate α-glucosidase inhibitors effectively, and be regarded as a novel excellent microbial candidate for safe, economical production of potential functional foods or ingredients with hypoglycemic effect.


Subject(s)
Bacillus amyloliquefaciens/metabolism , Fermentation , Glycine max/metabolism , Glycoside Hydrolase Inhibitors/metabolism , Plant Proteins/metabolism , Polysaccharides/metabolism , 1-Deoxynojirimycin/metabolism , 1-Deoxynojirimycin/pharmacology , Bioreactors , Functional Food , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Soy Foods/microbiology , Glycine max/microbiology , alpha-Glucosidases/metabolism
4.
Bioorg Chem ; 107: 104623, 2021 02.
Article in English | MEDLINE | ID: mdl-33444984

ABSTRACT

Three new alkaloids (1-3) together with four previously reported compounds (4-7) were identified from the extracts and the diversity-enhanced extracts of the fermentation broth of the endophytic fungus, Aspergillus flavus GZWMJZ-288 associated with Garcinia multiflora. The structures of new compounds were respectively determined as 19-amino-19-dehydroxy 5-epi-α-cyclopiazonic acid (1), 2-hydroxymethyl-5-(3-oxobutan-2-yl)aminopyran-4(4H)-one (2) and 4-amino-2-hydroxymethylpyridin-5-ol (3) by spectroscopic analysis, ECD calculation and X-ray single crystal diffraction. Compounds 1 and 4 with 19-enamine were dynamic equilibrium of Z- and E- isomers in the solution but favored in Z- isomers in the solid state, while compound 7 with 19-enol was favored in Z- isomer in the solution but a mixture of Z- and E- isomers in solid state. This phenomenon could be explained by the quantum-mechanical energies calculations. Among the isolated compounds 1-7, compounds 1, 4 and 7 with a rare 1,3,4,5-tetrahydro-1-azaacenaphtho[3,4-c]pyrrolizidine skeleton showed α-glucosidase inhibitory activity with the IC50 values of 41.97 ± 0.97, 232.57 ± 11.45 and 243.95 ± 3.36 µM, respectively, and the binding modes were performed by silico docking studies.


Subject(s)
Alkaloids/chemistry , Aspergillus/chemistry , Alkaloids/isolation & purification , Alkaloids/metabolism , Aspergillus/growth & development , Aspergillus/metabolism , Binding Sites , Crystallography, X-Ray , Garcinia/microbiology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/metabolism , Humans , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , Protein Structure, Tertiary , Quantum Theory , Stereoisomerism , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
5.
Bioorg Chem ; 114: 105046, 2021 09.
Article in English | MEDLINE | ID: mdl-34126575

ABSTRACT

BACKGROUND: A hybrid molecule of different biologically active substances can improve affinity and efficiency compared to a standard drug. Hence based on this fact, we predict that a combination of fluorine, oxadiazole, sulfur, etc., may enhance α-glucosidase inhibition activity compared to a standard drug. METHODS: A series of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives (2a-2i) were synthesized and characterized using spectroscopic techniques such as 1HNMR and LC-MS. In order to evaluate its bioactivity, in vitro α-amylase and α-glycosidase inhibitory activity were performed. In vivo study was carried using a genetic model, Drosophila melanogaster, for assessing the antihyperglycemic effects. RESULTS: The compounds 2a-2i demonstrated α-amylase inhibitory activity in the range of IC50 = 40.00-80.00 µg/ml as compare to standard acarbose (IC50 = 34.71 µg/ml). Compounds 2a-2i demonstrated α-glucosidase inhibitory activity in the range of IC50 = 46.01-81.65 µg/ml as compared to standard acarbose (IC50 = 34.72 µg/ml). Docking studies on a target protein, N-terminal subunit of human Maltase-glucoamylase (PDB:2QMJ) was carried and the compounds were found to dock into the active site of the enzyme (Fig. 1). The predicted binding energies of the compounds were calculated. The in vitro studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. Whereas in vivo study indicates that 2b, 2g, and 2i could lower glucose levels in the Drosophila, but then 17-30% reduced capacity than acarbose and may be overcome by adjusting their dosage. CONCLUSIONS: The in vitro and in vivo studies indicate that compounds 2b and 2g had better activity among the synthesized compounds. This study has recognized that compounds like 2b, 2g, and 2i may be considered potential candidates for further developing a novel class of antidiabetic agents.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Oxadiazoles/pharmacology , Amylases/antagonists & inhibitors , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/metabolism , Female , Glucose/metabolism , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/metabolism , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/metabolism , Male , Molecular Docking Simulation , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/metabolism , Protein Binding , Structure-Activity Relationship , alpha-Glucosidases/metabolism
6.
Bioorg Chem ; 107: 104632, 2021 02.
Article in English | MEDLINE | ID: mdl-33450544

ABSTRACT

Eleven new compounds including five bisabolane (1-5) and three oplopane (6-8) sesquiterpenoids, a pair of benzopyran enantiomers (9 & 10) and a benzofuran derivative (11), along with six known sesquiterpenoid co-metabolites (12-17), have been obtained from the flower buds of Tussilago farfara. Their structures were elucidated by comprehensive spectroscopic analyses and comparison with structurally related known analogues. The absolute configurations of all the compounds except 11 were unequivocally assigned by various techniques, including Mosher's method and time-dependent density functional theory (TD-DFT) based calculations of 13C NMR and electronic circular dichroism (ECD) data. The C-8 absolute configuration on the sidechain of this group of bisabolane sesquiterpenoids was assigned for the first time. Our bioassays have established that compounds 3, 4, 13 and 14 showed significant α-glucosidase inhibitory activities, while 6, 8 and 14 displayed moderate antiproliferative effects against two human tumor cell lines A549 and MDA-MB-231. Further flow cytometric analysis revealed that 14 effectively induced cell apoptosis and arrested cell cycle at the S/G2 phases in A549 cells, in a dose-dependent manner.


Subject(s)
Sesquiterpenes/chemistry , Tussilago/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Circular Dichroism , Flowers/chemistry , Flowers/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Magnetic Resonance Spectroscopy , Molecular Conformation , S Phase Cell Cycle Checkpoints/drug effects , Sesquiterpenes/isolation & purification , Sesquiterpenes/metabolism , Sesquiterpenes/pharmacology , Stereoisomerism , Tussilago/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
7.
Bioorg Chem ; 106: 104180, 2021 01.
Article in English | MEDLINE | ID: mdl-33276979

ABSTRACT

In the present work synthesis and characterization of five new bisferrocenyl bisthiourea analogues (G2M, S2M, G3F, G4F and T2M) is reported. UV-Visible and electrochemical studies were performed in order to have optical (absorption maximum, Molar absorption coefficient and optical band gap) and electrochemical parameters (Oxidation/reduction potentials and nature of the electrochemical process) of the compounds. In vitro various biological studies such as antibacterial, antifungal, anti-oxidant and antidiabetic activities were carried out to have comparative overview of the phermacochemical strength of the newly synthesized compounds. Similarly, theoretical analysis was accomplished utilizing density functional theory calculations. DFT/B3LYP (6-31G d, p) technique was used. With a view to explore the structure activity relationship (SAR) of the compounds theoretical docking analysis (against α-amylase, α-glucosidase) was also performed to have pictorial view and understanding of the actual interactions responsible for the activity. S2M displayed best antibacterial activity. Similarly, Antifungal and antidiabetic activities showed G3F as a best candidate, whereas T2M proved to be the best antioxidant agent.


Subject(s)
Anti-Infective Agents/pharmacology , Ferrous Compounds/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Metallocenes/pharmacology , Thiourea/analogs & derivatives , Thiourea/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/metabolism , Bacteria/drug effects , Catalytic Domain , Density Functional Theory , Drug Design , Ferrous Compounds/chemical synthesis , Ferrous Compounds/metabolism , Fungi/drug effects , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/metabolism , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/metabolism , Metallocenes/chemical synthesis , Metallocenes/metabolism , Microbial Sensitivity Tests , Models, Chemical , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Thiourea/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry , alpha-Amylases/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
8.
Bioorg Chem ; 113: 105032, 2021 08.
Article in English | MEDLINE | ID: mdl-34089947

ABSTRACT

This study attempts to evaluate the antioxidant, enzyme inhibitory, and anticancer properties as well as fatty acid compositions of endemic Saponaria prostrata WILLD. subsp. anatolica HEDGE. The gas chromatography-mass spectrometry (GC-MS) was used to determine the fatty acid content of methanol: dichloromethane extract from S. prostrata subsp. anatolica (SPA). Enzymatic activity was measured against acetylcholinesterase, butyrylcholinesterase and α-glucosidase. DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity and Ferric reducing antioxidant power assay (FRAP) were conducted to antioxidant properties. The anticancer effect of SPA on human MCF-7 breast cancer and human HCT116 colorectal cancer cell line was evaluated by WST-1 cell viability assay, colony formation assay and wound healing assay. In addition, human VEGF Elisa method was used to determine the anti-angiogenic effect, and the quantitative real-time PCR (qRT-PCR) method on p53, Bax and Bcl-2 mRNA levels were used to evaluate apoptosis. While high amounts of palmitic acid (40.8%), linoleic acid (17.75%) and α-linolenic acid (16.84%) were detected in the SPA, the total amount of unsaturated fatty acid (51.34%) was higher than the total amount of saturated fatty acid (48.66%). SPA displayed the most promising acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and α-glycosidase (AG) inhibitory activities (AChE: IC50: 18.03 µg/mL, BuChE: IC50: 44.24 µg/mL and AG: IC50: 210.85 µg/mL). The half maximum inhibitory concentration (IC50) of SPA in MCF-7 and HCT116 cells was determined as 259.79 µg/mL and 97.24 µg/mL, respectively. In addition, it was determined that SPA suppresses colony formation and wound closure, and suppresses angiogenesis as well as triggering apoptosis at a significant level. It is true that endemic S. prostrata subsp. anatolica is a potential source of functional food ingredients, but more analytical and in vivo experiments are needed to explore further secondary metabolite diversity and pharmacological properties.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , Fatty Acids/analysis , Plant Extracts/chemistry , Saponaria/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/metabolism , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents, Phytogenic/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Humans , Saponaria/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
9.
J Sep Sci ; 44(9): 1805-1814, 2021 May.
Article in English | MEDLINE | ID: mdl-33569908

ABSTRACT

Extensive pharmacological research has demonstrated that Clerodendranthi Spicati Herba has an obvious anti-hyperglycemic effect via α-glucosidase inhibitory activity. However, the anti-hyperglycemic active fraction and its metabolic behavior in vivo have not been elaborated clearly. In this study, ultra-high-performance liquid chromatography coupled to quadrupole time of flight tandem mass spectrometry with data filtering strategy, including mass defect screening, diagnostic product ions and neutral loss identification, was established for chemical and metabolic profiling of anti-hyperglycemic active fraction from Clerodendranthi Spicati Herba. A total of 28 methoxylated flavonoids and 61 diterpenoids were rapidly identified. Four main known methoxylated flavonoids were purified and unambiguously identified by nuclear magnetic resonance analysis. Thirty-one absorbed diterpenoids, 12 absorbed methoxylated flavonoids, and 56 methoxylated flavonoids metabolites were identified in rat plasma, urine, bile, and feces after oral administration of anti-hyperglycemic active fraction. The methoxylated flavonoids were predominantly metabolized by demethylation, sulfation, and glucuronidation. Glucuronidation metabolites found in bile and urine after demethylation were dominant metabolites. Diterpenoids were absorbed into the blood mainly in the form of prototypes and excreted through bile and urine. These results indicated that methoxylated flavonoids and diterpenoids were responsible for α-glucosidase inhibitory activity, which might provide novel drug candidates for the management of diabetes mellitus.


Subject(s)
Blood Glucose/drug effects , Drugs, Chinese Herbal/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Lamiaceae/chemistry , alpha-Glucosidases/metabolism , Administration, Oral , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/metabolism , Glucose Tolerance Test , Glycoside Hydrolase Inhibitors/administration & dosage , Glycoside Hydrolase Inhibitors/metabolism , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/metabolism , Male , Mice , Mice, Inbred C57BL , Plant Components, Aerial/chemistry , Rats , Rats, Sprague-Dawley
10.
J Enzyme Inhib Med Chem ; 36(1): 1938-1951, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34459690

ABSTRACT

In this paper, bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated for their inhibitory activity against α-glucosidase and α-amylase. All synthesised compounds showed potential α-glucosidase and α-amylase inhibitory activities. Compounds 5 g (IC50: 7.54 ± 1.10 µM), 5e (IC50: 9.00 ± 0.97 µM), and 5 h (IC50: 9.57 ± 0.62 µM) presented strongest inhibitory activities against α-glucosidase, that were ∼ 30 times stronger than acarbose. Compounds 5 g (IC50: 32.18 ± 1.66 µM), 5 h (IC50: 31.47 ± 1.42 µM), and 5 s (IC50: 30.91 ± 0.86 µM) showed strongest inhibitory activities towards α-amylase, ∼ 2.5 times stronger than acarbose. The mechanisms and docking simulation of the compounds were also studied. Compounds 5 g and 5 h exhibited bifunctional inhibitory activity against these two enzymes. Furthermore, compounds showed no toxicity against 3T3-L1 cells and HepG2 cells.HighlightsA series of bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated inhibitory activities against α-glucosidase and α-amylase.Compound 5g exhibited promising activity (IC50 = 7.54 ± 1.10 µM) against α-glucosidase.Compound 5s exhibited promising activity (IC50 = 30.91 ± 0.86 µM) against α-amylase.In silico studies were performed to confirm the binding interactions of synthetic compounds with the enzyme active site.


Subject(s)
Glycoside Hydrolase Inhibitors/chemical synthesis , Indoles/chemical synthesis , Methane/chemical synthesis , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , 3T3 Cells , Acarbose/chemistry , Animals , Catalytic Domain , Glycoside Hydrolase Inhibitors/metabolism , Hep G2 Cells , Humans , Kinetics , Methane/metabolism , Mice , Molecular Docking Simulation , Protein Binding , Protein Conformation , Structure-Activity Relationship
11.
Mar Drugs ; 19(9)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34564154

ABSTRACT

Eight new compounds, including two sambutoxin derivatives (1-2), two highly oxygenated cyclopentenones (7-8), four highly oxygenated cyclohexenones (9-12), together with four known sambutoxin derivatives (3-6), were isolated from semimangrove endophytic fungus Talaromyces sp. CY-3, under the guidance of molecular networking. The structures of new isolates were elucidated by analysis of detailed spectroscopic data, ECD spectra, chemical hydrolysis, 13C NMR calculation, and DP4+ analysis. In bioassays, compounds 1-5 displayed better α-glucosidase inhibitory activity than the positive control 1-deoxynojirimycin (IC50 = 80.8 ± 0.3 µM), and the IC50 value was in the range of 12.6 ± 0.9 to 57.3 ± 1.3 µM.


Subject(s)
Endophytes/metabolism , Glycoside Hydrolase Inhibitors/metabolism , Malvaceae/microbiology , Mycotoxins/metabolism , Polyketides/metabolism , Talaromyces/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Molecular Structure , Mycotoxins/chemistry , Polyketides/chemistry , Secondary Metabolism , alpha-Glucosidases/chemistry
12.
Mar Drugs ; 19(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808933

ABSTRACT

In this work, a non-toxic chitosan-based carrier was constructed via genipin activation and applied for the immobilization of tannase. The immobilization carriers and immobilized tannase were characterized using Fourier transform infrared spectroscopy and thermogravimetric analysis. Activation conditions (genipin concentration, activation temperature, activation pH and activation time) and immobilizations conditions (enzyme amount, immobilization time, immobilization temperature, immobilization pH, and shaking speed) were optimized. The activity and activity recovery rate of the immobilized tannase prepared using optimal activation and immobilization conditions reached 29.2 U/g and 53.6%, respectively. The immobilized tannase exhibited better environmental adaptability and stability. The immobilized tannase retained 20.1% of the initial activity after 12 cycles and retained 81.12% of residual activity after 30 days storage. The catechins composition analysis of tea extract indicated that the concentration of non-ester-type catechins, EGC and EC, were increased by 1758% and 807% after enzymatic treatment. Biological activity studies of tea extract revealed that tea extract treated with the immobilized tannase possessed higher antioxidant activity, higher inhibitory effect on α-amylase, and lower inhibitory effect on α-glucosidase. Our results demonstrate that chitosan activated with genipin could be an effective non-toxic carrier for tannase immobilization and enhancing biological activities of tea extract.


Subject(s)
Antioxidants/pharmacology , Camellia sinensis , Carboxylic Ester Hydrolases/metabolism , Chitosan/chemistry , Drug Carriers , Glycoside Hydrolase Inhibitors/pharmacology , Iridoids/chemistry , Plant Extracts/pharmacology , alpha-Amylases/antagonists & inhibitors , Antioxidants/isolation & purification , Antioxidants/metabolism , Camellia sinensis/metabolism , Carboxylic Ester Hydrolases/chemistry , Drug Compounding , Enzyme Stability , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/metabolism , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Temperature , Time Factors , alpha-Amylases/metabolism
13.
J Dairy Sci ; 104(2): 1364-1377, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33309363

ABSTRACT

This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%). The results showed that maximum degree of hydrolysis was obtained when hydrolysis was carried out at higher temperature (45°C; P < 0.05), compared with lower temperatures of 30 and 37°C. Electrophoretic pattern displays degradation of all protein bands upon hydrolysis by pepsin at various hydrolysis conditions applied. All the 27 CWPH generated showed significant AAM and AG inhibitory potential as indicated by their lower IC50 values (mg/mL) compared with intact whey proteins. In total 196 peptides were identified from selected hydrolysates and 15 potential peptides (PepSite score > 0.8; http://pepsite2.russelllab.org/) were explored via in silico approach. Novel peptides PAGNFLMNGLMHR, PAVACCLPPLPCHM, MLPLMLPFTMGY, and PAGNFLPPVAAAPVM were identified as potential inhibitors for both AAM and AG due to their high number of binding sites and highest binding probability toward the target enzymes. CCGM and MFE, as well as FCCLGPVPP were identified as AG and AAM inhibitory peptides, respectively. This is the first study that reports novel AG and AAM inhibitory peptides from camel whey proteins. The future direction for this research involves synthesis of these potential AG and AAM inhibitory peptides in a pure form and investigate their antidiabetic properties in the in vitro, as well as in vivo models. Thus, CWPH can be considered for potential applications in glycaemic regulation.


Subject(s)
Camelus , Glycoside Hydrolase Inhibitors/analysis , Peptides/pharmacology , Whey Proteins/chemistry , alpha-Amylases/antagonists & inhibitors , Amino Acid Sequence , Animals , Glycoside Hydrolase Inhibitors/metabolism , Hydrolysis , Hypoglycemic Agents , Milk/chemistry , Pepsin A/metabolism , Peptides/chemistry , Peptides/metabolism , alpha-Glucosidases/metabolism
14.
Chem Biodivers ; 18(9): e2100404, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34255425

ABSTRACT

Viburnum species are a group of small trees or shrubs that are of great ornamental and medicinal values. Some of them have been used for a long time both as conventional and ethnic medicine. Viburnum fruits, eaten in fresh and processed forms, have been revealed to contain various health-promoting nutrients. With the increasing research on Viburnum plants, they are considered to be an abundant resource of bioactive natural products possessing diverse pharmacological properties and unique chemical structures, that is powerfully proved by the existence of structurally novel vibsane-type diterpenoids which only occur in Viburnum species, newly discovered lignan constituents with unusual side chains and other noteworthy natural components. This review describes 185 new and 228 known secondary metabolites from Viburnum genus between 2008 and 2020, including their chemical structures, sources and bioactivities, and highlights the corresponding structure-activity relationships.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , Diterpenes/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Viburnum/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Benzothiazoles/antagonists & inhibitors , Cell Survival/drug effects , Diterpenes/metabolism , Diterpenes/pharmacology , Fruit/chemistry , Fruit/metabolism , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Molecular Conformation , Sulfonic Acids/antagonists & inhibitors , Viburnum/metabolism , alpha-Glucosidases/metabolism
15.
Molecules ; 26(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808152

ABSTRACT

Numerous scientific studies have confirmed the beneficial therapeutic effects of phenolic acids. Among them gentisic acid (GA), a phenolic acid extensively found in many fruit and vegetables has been associated with an enormous confirmed health benefit. The present study aims to evaluate the antidiabetic potential of gentisic acid and highlight its mechanisms of action following in silico and in vitro approaches. The in silico study was intended to predict the interaction of GA with eight different receptors highly involved in the management and complications of diabetes (dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), α-amylase, peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase), while the in vitro study studied the potential inhibitory effect of GA against α-amylase and α-glucosidase. The results indicate that GA interacted moderately with most of the receptors and had a moderate inhibitory activity during the in vitro tests. The study therefore encourages further in vivo studies to confirm the given results.


Subject(s)
Fruit/chemistry , Gentisates/metabolism , Glycoside Hydrolase Inhibitors/metabolism , Hypoglycemic Agents/metabolism , alpha-Amylases , alpha-Glucosidases/metabolism , Humans , Molecular Docking Simulation , Protein Binding , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism
16.
Molecules ; 26(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34500706

ABSTRACT

The fungal strain YPGA3 was isolated from the sediments of the Yap Trench and identified as Penicillium thomii. Eight new chromone derivatives, named penithochromones M-T (1-8), along with two known analogues, 9 and 10, were isolated from the strain. The structures were established by detailed analyses of the spectroscopic data. The absolute configuration of the only chiral center in compound 1 was tentatively determined by comparing the experimental and the calculated specific rotations. Compounds 7 and 8 represent the first examples of chromone derivatives featuring a 5,7-dioxygenated chromone moiety with a 9-carbon side chain. Bioassay study revealed that compounds 6-10 exhibited remarkable inhibition against α-glucosidase with IC50 values ranging from 268 to 1017 µM, which are more active than the positive control acarbose (1.3 mmol).


Subject(s)
Chromones/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Penicillium/metabolism , alpha-Glucosidases/metabolism , Chromones/chemistry , Enzyme Activation/drug effects , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Magnetic Resonance Spectroscopy , Molecular Structure
17.
Molecules ; 26(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34443347

ABSTRACT

α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a-m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a-m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 µM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 µM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.


Subject(s)
Amides/chemistry , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Drug Design , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Salts/chemistry , Benzimidazoles/metabolism , Catalytic Domain , Glycoside Hydrolase Inhibitors/metabolism , Kinetics , Molecular Docking Simulation , Structure-Activity Relationship , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
18.
Molecules ; 26(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34771127

ABSTRACT

Qingzhuan tea (QZT) is a typical Chinese dark tea that has a long-time manufacturing process. In the present study, liquid chromatography coupled with tandem mass spectrometry was used to study the chemical changes of tea samples during QZT processing. Untargeted metabolomics analysis revealed that the pile-fermentation and turnover (post-fermentation, FT) was the crucial stage in transforming the main compounds of QZT, whose contents of flavan-3-ols and flavonoids glycosides were decreased significantly. The bioactivities, including the antioxidant capacities and inhibitory effects on α-amylase and α-glucosidase, were also reduced after the FT process. It was suggested that although the QZT sensory properties improved following pile-fermentation and aging, the bioactivities remained restrained. Correlation analysis indicated that the main galloylated catechins and flavonoid glycosides were highly related to their antioxidant capacity and inhibitory effects on α-amylase and α-glucosidase.


Subject(s)
Antioxidants/metabolism , Biological Assay , Glycoside Hydrolase Inhibitors/metabolism , Metabolomics , Tea/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , China , Flavonoids/chemistry , Flavonoids/metabolism , Flavonoids/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycosides/chemistry , Glycosides/metabolism , Glycosides/pharmacology , Tea/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism
19.
Molecules ; 26(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34361714

ABSTRACT

α-glucosidase is a major enzyme that is involved in starch digestion and type 2 diabetes mellitus. In this study, the inhibition of hypericin by α-glucosidase and its mechanism were firstly investigated using enzyme kinetics analysis, real-time interaction analysis between hypericin and α-glucosidase by surface plasmon resonance (SPR), and molecular docking simulation. The results showed that hypericin was a high potential reversible and competitive α-glucosidase inhibitor, with a maximum half inhibitory concentration (IC50) of 4.66 ± 0.27 mg/L. The binding affinities of hypericin with α-glucosidase were assessed using an SPR detection system, which indicated that these were strong and fast, with balances dissociation constant (KD) values of 6.56 × 10-5 M and exhibited a slow dissociation reaction. Analysis by molecular docking further revealed that hydrophobic forces are generated by interactions between hypericin and amino acid residues Arg-315 and Tyr-316. In addition, hydrogen bonding occurred between hypericin and α-glucosidase amino acid residues Lys-156, Ser-157, Gly-160, Ser-240, His-280, Asp-242, and Asp-307. The structure and micro-environment of α-glucosidase enzymes were altered, which led to a decrease in α-glucosidase activity. This research identified that hypericin, an anthracene ketone compound, could be a novel α-glucosidase inhibitor and further applied to the development of potential anti-diabetic drugs.


Subject(s)
Anthracenes/chemistry , Fungal Proteins/antagonists & inhibitors , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Perylene/analogs & derivatives , alpha-Glucosidases/chemistry , Anthracenes/metabolism , Binding Sites , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Glycoside Hydrolase Inhibitors/metabolism , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Hypoglycemic Agents/metabolism , Kinetics , Molecular Docking Simulation , Nitrophenylgalactosides/chemistry , Nitrophenylgalactosides/metabolism , Perylene/chemistry , Perylene/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/enzymology , Surface Plasmon Resonance , alpha-Glucosidases/metabolism
20.
Proteins ; 88(10): 1351-1360, 2020 10.
Article in English | MEDLINE | ID: mdl-32525263

ABSTRACT

A fully atomistic (AT) modeling of biological macromolecules at relevant length- and time-scales is often cumbersome or not even desirable, both in terms of computational effort required and a posteriori analysis. This difficulty can be overcome with the use of multiresolution models, in which different regions of the same system are concurrently described at different levels of detail. In enzymes, computationally expensive AT detail is crucial in the modeling of the active site in order to capture, for example, the chemically subtle process of ligand binding. In contrast, important yet more collective properties of the remainder of the protein can be reproduced with a coarser description. In the present work, we demonstrate the effectiveness of this approach through the calculation of the binding free energy of hen egg white lysozyme with the inhibitor di-N-acetylchitotriose. Particular attention is payed to the impact of the mapping, that is, the selection of AT and coarse-grained residues, on the binding free energy. It is shown that, in spite of small variations of the binding free energy with respect to the active site resolution, the separate contributions coming from different energetic terms (such as electrostatic and van der Waals interactions) manifest a stronger dependence on the mapping, thus pointing to the existence of an optimal level of intermediate resolution.


Subject(s)
Avian Proteins/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Muramidase/chemistry , Trisaccharides/chemistry , Animals , Avian Proteins/antagonists & inhibitors , Avian Proteins/isolation & purification , Avian Proteins/metabolism , Binding Sites , Chickens , Female , Glycoside Hydrolase Inhibitors/metabolism , Ligands , Models, Molecular , Muramidase/antagonists & inhibitors , Muramidase/isolation & purification , Muramidase/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Static Electricity , Substrate Specificity , Thermodynamics , Trisaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL