Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.354
Filter
Add more filters

Publication year range
1.
Cell ; 177(5): 1136-1152.e18, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31100268

ABSTRACT

Here, we describe the discovery of a naturally occurring human antibody (Ab), FluA-20, that recognizes a new site of vulnerability on the hemagglutinin (HA) head domain and reacts with most influenza A viruses. Structural characterization of FluA-20 with H1 and H3 head domains revealed a novel epitope in the HA trimer interface, suggesting previously unrecognized dynamic features of the trimeric HA protein. The critical HA residues recognized by FluA-20 remain conserved across most subtypes of influenza A viruses, which explains the Ab's extraordinary breadth. The Ab rapidly disrupted the integrity of HA protein trimers, inhibited cell-to-cell spread of virus in culture, and protected mice against challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes when used as prophylaxis or therapy. The FluA-20 Ab has uncovered an exceedingly conserved protective determinant in the influenza HA head domain trimer interface that is an unexpected new target for anti-influenza therapeutics and vaccines.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Viral/immunology , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections , Animals , Dogs , Madin Darby Canine Kidney Cells , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control
2.
Cell ; 177(5): 1124-1135.e16, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31100267

ABSTRACT

Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular "breathing" of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in "universal" flu vaccines.


Subject(s)
Antibodies, Viral/immunology , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin G/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections , Adult , Animals , Dogs , Female , Humans , Madin Darby Canine Kidney Cells , Male , Mice , Middle Aged , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control
3.
Immunity ; 57(5): 1141-1159.e11, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38670113

ABSTRACT

Broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem of influenza A viruses (IAVs) tend to be effective against either group 1 or group 2 viral diversity. In rarer cases, intergroup protective bnAbs can be generated by human antibody paratopes that accommodate the conserved glycan differences between the group 1 and group 2 stems. We applied germline-engaging nanoparticle immunogens to elicit a class of cross-group bnAbs from physiological precursor frequency within a humanized mouse model. Cross-group protection depended on the presence of the human bnAb precursors within the B cell repertoire, and the vaccine-expanded antibodies enriched for an N55T substitution in the CDRH2 loop, a hallmark of the bnAb class. Structurally, this single mutation introduced a flexible fulcrum to accommodate glycosylation differences and could alone enable cross-group protection. Thus, broad IAV immunity can be expanded from the germline repertoire via minimal antigenic input and an exceptionally simple antibody development pathway.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Influenza A virus , Influenza Vaccines , Orthomyxoviridae Infections , Vaccination , Animals , Mice , Humans , Antibodies, Viral/immunology , Influenza Vaccines/immunology , Influenza A virus/immunology , Antibodies, Neutralizing/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Amino Acid Substitution , B-Lymphocytes/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Broadly Neutralizing Antibodies/immunology
4.
Nat Immunol ; 20(3): 362-372, 2019 03.
Article in English | MEDLINE | ID: mdl-30742080

ABSTRACT

The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Nanoparticles/chemistry , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/virology , Cross Reactions/drug effects , Cross Reactions/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunization , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/prevention & control , Influenza, Human/virology , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology
5.
Cell ; 166(3): 532-533, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27471961

ABSTRACT

Seasonal influenza vaccine formulation efforts struggle to keep up with viral antigenic variation. Two studies now report engineered or naturally occurring human antibodies targeting the influenza hemagglutinin (HA) stem, with exceptional neutralizing breadth (Joyce et al., 2016; Kallewaard et al., 2016). Antibodies with similar structural features are elicited in multiple subjects, suggesting that modified vaccine regimens could provide broad protection.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza, Human/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Influenza Vaccines/immunology
6.
Cell ; 162(1): 160-9, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26140596

ABSTRACT

Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory FcγRIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes.


Subject(s)
Antibodies, Neutralizing/immunology , Influenza Vaccines/immunology , Receptors, Antigen, B-Cell/immunology , Antigen-Antibody Complex/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunoglobulin Fc Fragments , Immunoglobulin G/immunology , Plasma Cells/immunology , Receptors, Antigen, B-Cell/chemistry , Receptors, Fc/metabolism , Sialic Acids/metabolism
7.
Nat Immunol ; 18(4): 464-473, 2017 04.
Article in English | MEDLINE | ID: mdl-28192418

ABSTRACT

Infection with influenza virus induces antibodies to the viral surface glycoproteins hemagglutinin and neuraminidase, and these responses can be broadly protective. To assess the breadth and magnitude of antibody responses, we sequentially infected mice, guinea pigs and ferrets with divergent H1N1 or H3N2 subtypes of influenza virus. We measured antibody responses by ELISA of an extensive panel of recombinant glycoproteins representing the viral diversity in nature. Guinea pigs developed high titers of broadly cross-reactive antibodies; mice and ferrets exhibited narrower humoral responses. Then, we compared antibody responses after infection of humans with influenza virus H1N1 or H3N2 and found markedly broad responses and cogent evidence for 'original antigenic sin'. This work will inform the design of universal vaccines against influenza virus and can guide pandemic-preparedness efforts directed against emerging influenza viruses.


Subject(s)
Antibodies, Viral/immunology , Cross Reactions/immunology , Influenza A virus/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Viral Envelope Proteins/immunology , Adolescent , Adult , Age Factors , Animals , Cluster Analysis , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Ferrets , Guinea Pigs , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunoglobulin G/immunology , Influenza A virus/classification , Male , Mice , Middle Aged , Neuraminidase/immunology , Viral Proteins/immunology , Young Adult
8.
Nat Immunol ; 18(4): 456-463, 2017 04.
Article in English | MEDLINE | ID: mdl-28192417

ABSTRACT

Immunodominance (ID) defines the hierarchical immune response to competing antigens in complex immunogens. Little is known regarding B cell and antibody ID despite its importance in immunity to viruses and other pathogens. We show that B cells and serum antibodies from inbred mice demonstrate a reproducible ID hierarchy to the five major antigenic sites in the influenza A virus hemagglutinin globular domain. The hierarchy changed as the immune response progressed, and it was dependent on antigen formulation and delivery. Passive antibody transfer and sequential infection experiments demonstrated 'original antigenic suppression', a phenomenon in which antibodies suppress memory responses to the priming antigenic site. Our study provides a template for attaining deeper understanding of antibody ID to viruses and other complex immunogens.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Host-Pathogen Interactions/immunology , Immunodominant Epitopes/immunology , Virus Diseases/immunology , Viruses/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Genetic Background , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Host-Pathogen Interactions/genetics , Immunization , Immunodominant Epitopes/chemistry , Immunologic Memory , Influenza A virus/immunology , Lymph Nodes/immunology , Mice , Models, Molecular , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Protein Conformation , Virus Diseases/genetics , Virus Diseases/virology
9.
Immunity ; 53(6): 1230-1244.e5, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33096040

ABSTRACT

Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.


Subject(s)
B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Orthomyxoviridae/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Affinity , Broadly Neutralizing Antibodies/genetics , Cross Reactions , Epitopes, B-Lymphocyte/immunology , Genes, Immunoglobulin , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Orthomyxoviridae/classification , Protein Domains , Somatic Hypermutation, Immunoglobulin
10.
Nat Immunol ; 17(10): 1226-34, 2016 10.
Article in English | MEDLINE | ID: mdl-27525369

ABSTRACT

Antigen-specific B cells bifurcate into antibody-secreting cells (ASCs) and memory B cells (MBCs) after infection or vaccination. ASCs (plasmablasts) have been extensively studied in humans, but less is known about B cells that become activated but do not differentiate into plasmablasts. Here we have defined the phenotype and transcriptional program of a subset of antigen-specific B cells, which we have called 'activated B cells' (ABCs), that were distinct from ASCs and were committed to the MBC lineage. We detected ABCs in humans after infection with Ebola virus or influenza virus and also after vaccination. By simultaneously analyzing antigen-specific ASCs and ABCs in human blood after vaccination against influenza virus, we investigated the clonal overlap and extent of somatic hypermutation (SHM) in the ASC (effector) and ABC (memory) lineages. Longitudinal tracking of vaccination-induced hemagglutinin (HA)-specific clones revealed no overall increase in SHM over time, which suggested that repeated annual immunization might have limitations in enhancing the quality of influenza-virus-specific antibody.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/immunology , Influenza A virus/physiology , Influenza Vaccines/immunology , Influenza, Human/immunology , PAX5 Transcription Factor/metabolism , Plasma Cells/immunology , Adult , Antibodies, Viral/blood , Cell Differentiation , Clone Cells , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunologic Memory , Lymphocyte Activation , Somatic Hypermutation, Immunoglobulin/genetics , Vaccination , Young Adult
11.
Immunity ; 51(2): 398-410.e5, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31350180

ABSTRACT

Vaccine-induced memory B cell responses to evolving viruses like influenza A involve activation of pre-existing immunity and generation of new responses. To define the contribution of these two types of responses, we analyzed the response to H7N9 vaccination in H7N9-naive adults. We performed comprehensive comparisons at the single-cell level of the kinetics, Ig repertoire, and activation phenotype of established pre-existing memory B cells recognizing conserved epitopes and the newly generated memory B cells directed toward H7 strain-specific epitopes. The recall response to conserved epitopes on H7 HA involved a transient expansion of memory B cells with little observed adaptation. However, the B cell response to newly encountered epitopes was phenotypically distinct and generated a sustained memory population that evolved and affinity matured months after vaccination. These findings establish clear differences between newly generated and pre-existing memory B cells, highlighting the challenges in achieving long-lasting, broad protection against an ever-evolving virus.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Influenza A Virus, H7N9 Subtype/physiology , Influenza Vaccines/immunology , Influenza, Human/immunology , Adult , Antibodies, Viral/metabolism , Antibody Formation , Cells, Cultured , Epitopes/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunologic Memory , Lymphocyte Activation , Male , Middle Aged , Phenotype , Receptors, Antigen, B-Cell/genetics , Single-Cell Analysis , Vaccination , Young Adult
12.
Immunity ; 51(4): 735-749.e8, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31563464

ABSTRACT

Antibody paratopes are formed by hypervariable complementarity-determining regions (CDRH3s) and variable gene-encoded CDRs. The latter show biased usage in human broadly neutralizing antibodies (bnAbs) against both HIV and influenza virus, suggesting the existence of gene-endowed targeting solutions that may be amenable to pathway amplification. To test this, we generated transgenic mice with human CDRH3 diversity but simultaneously constrained to individual user-defined human immunoglobulin variable heavy-chain (VH) genes, including IGHV1-69, which shows biased usage in human bnAbs targeting the hemagglutinin stalk of group 1 influenza A viruses. Sequential immunization with a stalk-only hemagglutinin nanoparticle elicited group 1 bnAbs, but only in IGHV1-69 mice. This VH-endowed response required minimal affinity maturation, was elicited alongside pre-existing influenza immunity, and when IGHV1-69 B cells were diluted to match the frequency measured in humans. These results indicate that the human repertoire could, in principle, support germline-encoded bnAb elicitation using a single recombinant hemagglutinin immunogen.


Subject(s)
Antibodies, Viral/metabolism , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/metabolism , Influenza A virus/physiology , Influenza Vaccines/immunology , Influenza, Human/immunology , Receptors, Antigen, B-Cell/genetics , Animals , Antibodies, Viral/genetics , Antibody Affinity , Broadly Neutralizing Antibodies/genetics , Complementarity Determining Regions/genetics , Germ-Line Mutation/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Immunoglobulin Heavy Chains/genetics , Mice , Mice, Transgenic , Nanoparticles , Protein Engineering
13.
Nature ; 602(7896): 314-320, 2022 02.
Article in English | MEDLINE | ID: mdl-34942633

ABSTRACT

Broadly neutralizing antibodies that target epitopes of haemagglutinin on the influenza virus have the potential to provide near universal protection against influenza virus infection1. However, viral mutants that escape broadly neutralizing antibodies have been reported2,3. The identification of broadly neutralizing antibody classes that can neutralize viral escape mutants is critical for universal influenza virus vaccine design. Here we report a distinct class of broadly neutralizing antibodies that target a discrete membrane-proximal anchor epitope of the haemagglutinin stalk domain. Anchor epitope-targeting antibodies are broadly neutralizing across H1 viruses and can cross-react with H2 and H5 viruses that are a pandemic threat. Antibodies that target this anchor epitope utilize a highly restricted repertoire, which encodes two public binding motifs that make extensive contacts with conserved residues in the fusion peptide. Moreover, anchor epitope-targeting B cells are common in the human memory B cell repertoire and were recalled in humans by an oil-in-water adjuvanted chimeric haemagglutinin vaccine4,5, which is a potential universal influenza virus vaccine. To maximize protection against seasonal and pandemic influenza viruses, vaccines should aim to boost this previously untapped source of broadly neutralizing antibodies that are widespread in the human memory B cell pool.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , Epitopes/chemistry , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Memory B Cells/immunology
14.
Nature ; 592(7855): 623-628, 2021 04.
Article in English | MEDLINE | ID: mdl-33762730

ABSTRACT

Influenza vaccines that confer broad and durable protection against diverse viral strains would have a major effect on global health, as they would lessen the need for annual vaccine reformulation and immunization1. Here we show that computationally designed, two-component nanoparticle immunogens2 induce potently neutralizing and broadly protective antibody responses against a wide variety of influenza viruses. The nanoparticle immunogens contain 20 haemagglutinin glycoprotein trimers in an ordered array, and their assembly in vitro enables the precisely controlled co-display of multiple distinct haemagglutinin proteins in defined ratios. Nanoparticle immunogens that co-display the four haemagglutinins of licensed quadrivalent influenza vaccines elicited antibody responses in several animal models against vaccine-matched strains that were equivalent to or better than commercial quadrivalent influenza vaccines, and simultaneously induced broadly protective antibody responses to heterologous viruses by targeting the subdominant yet conserved haemagglutinin stem. The combination of potent receptor-blocking and cross-reactive stem-directed antibodies induced by the nanoparticle immunogens makes them attractive candidates for a supraseasonal influenza vaccine candidate with the potential to replace conventional seasonal vaccines3.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Influenza A virus/classification , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Nanomedicine , Nanoparticles , Animals , Disease Models, Animal , Female , Ferrets/immunology , Ferrets/virology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/virology , Male , Mice , Mice, Inbred BALB C , Models, Molecular
15.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39129362

ABSTRACT

Influenza viruses rapidly evolve to evade previously acquired human immunity. Maintaining vaccine efficacy necessitates continuous monitoring of antigenic differences among strains. Traditional serological methods for assessing these differences are labor-intensive and time-consuming, highlighting the need for efficient computational approaches. This paper proposes MetaFluAD, a meta-learning-based method designed to predict quantitative antigenic distances among strains. This method models antigenic relationships between strains, represented by their hemagglutinin (HA) sequences, as a weighted attributed network. Employing a graph neural network (GNN)-based encoder combined with a robust meta-learning framework, MetaFluAD learns comprehensive strain representations within a unified space encompassing both antigenic and genetic features. Furthermore, the meta-learning framework enables knowledge transfer across different influenza subtypes, allowing MetaFluAD to achieve remarkable performance with limited data. MetaFluAD demonstrates excellent performance and overall robustness across various influenza subtypes, including A/H3N2, A/H1N1, A/H5N1, B/Victoria, and B/Yamagata. MetaFluAD synthesizes the strengths of GNN-based encoding and meta-learning to offer a promising approach for accurate antigenic distance prediction. Additionally, MetaFluAD can effectively identify dominant antigenic clusters within seasonal influenza viruses, aiding in the development of effective vaccines and efficient monitoring of viral evolution.


Subject(s)
Antigens, Viral , Humans , Antigens, Viral/genetics , Antigens, Viral/immunology , Neural Networks, Computer , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control , Computational Biology/methods , Orthomyxoviridae/immunology , Orthomyxoviridae/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Machine Learning
16.
Nat Chem Biol ; 20(8): 1012-1021, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38225471

ABSTRACT

A major challenge in creating universal influenza vaccines is to focus immune responses away from the immunodominant, variable head region of hemagglutinin (HA-head) and toward the evolutionarily conserved stem region (HA-stem). Here we introduce an approach to control antigen orientation via site-specific insertion of aspartate residues that facilitates antigen binding to alum. We demonstrate the generalizability of this approach with antigens from Ebola, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses and observe enhanced neutralizing antibody responses in all cases. We then reorient an H2 HA in an 'upside-down' configuration to increase the exposure and immunogenicity of HA-stem. The reoriented H2 HA (reoH2HA) on alum induced stem-directed antibodies that cross-react with both group 1 and group 2 influenza A subtypes. Electron microscopy polyclonal epitope mapping (EMPEM) revealed that reoH2HA (group 1) elicits cross-reactive antibodies targeting group 2 HA-stems. Our results highlight antigen reorientation as a generalizable approach for designing epitope-focused vaccines.


Subject(s)
Influenza Vaccines , SARS-CoV-2 , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Humans , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Antigens, Viral/immunology , Antigens, Viral/chemistry , Cross Reactions/immunology , Mice , Epitopes/immunology , Epitopes/chemistry , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Ebolavirus/immunology , Influenza A virus/immunology , Alum Compounds/chemistry , Epitope Mapping , COVID-19 Vaccines/immunology , COVID-19 Vaccines/chemistry
17.
Immunity ; 46(4): 587-595, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423338

ABSTRACT

Although vaccines confer protection against influenza A viruses, antiviral treatment becomes the first line of defense during pandemics because there is insufficient time to produce vaccines. Current antiviral drugs are susceptible to drug resistance, and developing new antivirals is essential. We studied host defense peptides from the skin of the South Indian frog and demonstrated that one of these, which we named "urumin," is virucidal for H1 hemagglutinin-bearing human influenza A viruses. This peptide specifically targeted the conserved stalk region of H1 hemagglutinin and was effective against drug-resistant H1 influenza viruses. Using electron microscopy, we showed that this peptide physically destroyed influenza virions. It also protected naive mice from lethal influenza infection. Urumin represents a unique class of anti-influenza virucide that specifically targets the hemagglutinin stalk region, similar to targeting of antibodies induced by universal influenza vaccines. Urumin therefore has the potential to contribute to first-line anti-viral treatments during influenza outbreaks.


Subject(s)
Amphibian Proteins/pharmacology , Influenza A virus/drug effects , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Peptides/pharmacology , Amino Acid Sequence , Amphibian Proteins/immunology , Animals , Antiviral Agents/immunology , Antiviral Agents/pharmacology , Dogs , Dose-Response Relationship, Drug , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Influenza A virus/immunology , Influenza A virus/metabolism , Influenza, Human/immunology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Peptides/immunology , Ranidae/metabolism , Survival Analysis , Treatment Outcome , Virion/drug effects , Virion/immunology , Virion/metabolism
18.
Nature ; 588(7838): 485-490, 2020 12.
Article in English | MEDLINE | ID: mdl-33032297

ABSTRACT

Antibodies against viral pathogens represent promising therapeutic agents for the control of infection, and their antiviral efficacy has been shown to require the coordinated function of both the Fab and Fc domains1. The Fc domain engages a wide spectrum of receptors on discrete cells of the immune system to trigger the clearance of viruses and subsequent killing of infected cells1-4. Here we report that Fc engineering of anti-influenza IgG monoclonal antibodies for selective binding to the activating Fcγ receptor FcγRIIa results in enhanced ability to prevent or treat lethal viral respiratory infection in mice, with increased maturation of dendritic cells and the induction of protective CD8+ T cell responses. These findings highlight the capacity for IgG antibodies to induce protective adaptive immunity to viral infection when they selectively activate a dendritic cell and T cell pathway, with important implications for the development of therapeutic antibodies with improved antiviral efficacy against viral respiratory pathogens.


Subject(s)
Antibodies, Viral/chemistry , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Immunoglobulin Fc Fragments/chemistry , Influenza, Human/immunology , Orthomyxoviridae/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation , Dendritic Cells/cytology , Dendritic Cells/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Influenza, Human/drug therapy , Influenza, Human/mortality , Influenza, Human/prevention & control , Lymphocyte Activation , Mice , Neuraminidase/immunology , Receptors, IgG/chemistry , Receptors, IgG/immunology
19.
J Virol ; 98(8): e0078124, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39078191

ABSTRACT

Influenza remains a worldwide public health threat. Although seasonal influenza vaccines are currently the best means of preventing severe disease, the standard-of-care vaccines require frequent updating due to antigenic drift and can have low efficacy, particularly in vulnerable populations. Here, we demonstrate that a single administration of a recombinant adenovirus-associated virus (rAAV) vector expressing a computationally optimized broadly reactive antigen (COBRA)-derived influenza H1 hemagglutinin (HA) induces strongly neutralizing and broadly protective antibodies in naïve mice and ferrets with pre-existing influenza immunity. Following a lethal viral challenge, the rAAV-COBRA vaccine allowed for significantly reduced viral loads in the upper and lower respiratory tracts and complete protection from morbidity and mortality that lasted for at least 5 months post-vaccination. We observed no signs of antibody waning during this study. CpG motif enrichment of the antigen can act as an internal adjuvant to further enhance the immune responses to allow for lower vaccine dosages with the induction of unique interferon-producing CD4+ and CD8+ T cells specific to HA head and stem peptide sequences. Our studies highlight the utility of rAAV as an effective platform to improve seasonal influenza vaccines. IMPORTANCE: Developing an improved seasonal influenza vaccine remains an ambitious goal of researchers and clinicians alike. With influenza routinely causing severe epidemics with the potential to rise to pandemic levels, it is critical to create an effective, broadly protective, and durable vaccine to improve public health worldwide. As a potential solution, we created a rAAV viral vector expressing a COBRA-optimized influenza hemagglutinin antigen with modestly enriched CpG motifs to evoke a robust and long-lasting immune response after a single intramuscular dose without needing boosts or adjuvants. Importantly, the rAAV vaccine boosted antibody breadth to future strains in ferrets with pre-existing influenza immunity. Together, our data support further investigation into the utility of viral vectors as a potential avenue to improve our seasonal influenza vaccines.


Subject(s)
Adaptive Immunity , Antibodies, Viral , Dependovirus , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Orthomyxoviridae Infections , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Dependovirus/genetics , Dependovirus/immunology , Antibodies, Neutralizing/immunology , Humans , Female , Genetic Vectors , Mice, Inbred BALB C , Vaccination , Influenza, Human/prevention & control , Influenza, Human/immunology , CD8-Positive T-Lymphocytes/immunology
20.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38305155

ABSTRACT

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N6 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Parainfluenza Virus 5 , Animals , Humans , Mice , Ferrets/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Cellular , Immunity, Humoral , Immunity, Mucosal , Influenza A Virus, H5N1 Subtype/chemistry , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N6 Subtype/chemistry , Influenza A Virus, H5N6 Subtype/classification , Influenza A Virus, H5N6 Subtype/genetics , Influenza A Virus, H5N6 Subtype/immunology , Influenza in Birds/immunology , Influenza in Birds/prevention & control , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Pandemic Preparedness/methods , Parainfluenza Virus 5/genetics , Parainfluenza Virus 5/immunology , Parainfluenza Virus 5/metabolism , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Administration, Intranasal , Poultry/virology , Immunoglobulin A/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL