Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.327
Filter
Add more filters

Publication year range
1.
Ecol Appl ; 34(4): e2974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646794

ABSTRACT

A wide range of approaches has been used to manage the spread of invasive species, yet invaders continue to be a challenge to control. In some cases, management actions have no effect or may even inadvertently benefit the targeted invader. Here, we use the mid-20th century management of the Red Imported Fire Ant, Solenopsis invicta, in the US as a motivating case study to explore the conditions under which such wasted management effort may occur. Introduced in approximately 1940, the fire ant spread widely through the southeast US and became a problematic pest. Historically, fire ants were managed with broad-spectrum pesticides; unfortunately, these efforts were largely unsuccessful. One hypothesis suggests that, by also killing native ants, mass pesticide application reduced competitive burdens thereby enabling fire ants to invade more quickly than they would in the absence of management. We use a mechanistic competition model to demonstrate the landscape-level effects of such management. We explicitly model the extent and location of pesticide applications, showing that the same pesticide application can have a positive, neutral, or negative effect on the progress of an invasion, depending on where it is applied on the landscape with respect to the invasion front. When designing management, the target species is often considered alone; however, this work suggests that leveraging existing biotic interactions, specifically competition with native species, can increase the efficacy of management. Our model not only highlights the potential unintended consequences of ignoring biotic interactions, but also provides a framework for developing spatially explicit management strategies that take advantage of these biotic interactions to work smarter, not harder.


Subject(s)
Ants , Introduced Species , Animals , Ants/physiology , Models, Biological , Pesticides , Insect Control/methods
2.
Arch Insect Biochem Physiol ; 116(1): e22121, 2024 May.
Article in English | MEDLINE | ID: mdl-38783691

ABSTRACT

Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, Spodoptera frugiperda. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in Drosophila melanogaster which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as S. frugiperda. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as tssk2 through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and tssk2 sgRNA) into G0 eggs of S. frugiperda. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of tssk2 editing affecting egg hatchability.


Subject(s)
CRISPR-Cas Systems , Spodoptera , Animals , Spodoptera/genetics , Male , Pest Control, Biological/methods , Gene Editing/methods , Spermatogenesis/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Female , Insect Control/methods
3.
Arch Insect Biochem Physiol ; 116(2): e22124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860794

ABSTRACT

Pesticides are widely used for pest control to promote sustained and stable growth of agricultural production. However, indiscriminate pesticide usage poses a great threat to environmental and human health. In recent years, nanotechnology has shown the ability to increase the performance of conventional pesticides and has great potential for improving adhesion to crop foliage, solubility, stability, targeted delivery, and so forth. This review discusses two types of nanopesticides, namely, carrier-free nanopesticides and carrier-based nanopesticides, that can precisely release necessary and sufficient amounts of active ingredients. At first, the basic characterization and preparation methods of these two distinct types of nanopesticides are briefly summarized. Subsequently, current applications and future perspectives on scientific examples and strategies for promoting the usage efficacy and reducing the environmental risks of these nanopesticides were also described. Overall, nanopesticides can promote higher crop yields and lay the foundation for sustainable agriculture and global food security.


Subject(s)
Pest Control , Pesticides , Pesticides/chemistry , Pest Control/methods , Animals , Nanotechnology/methods , Nanoparticles/chemistry , Insect Control/methods , Crops, Agricultural
4.
Arch Insect Biochem Physiol ; 116(1): e22115, 2024 May.
Article in English | MEDLINE | ID: mdl-38770623

ABSTRACT

Zeugodacus cucurbitae (Coquillett) is an important fruit and vegetable pest, especially in high-temperature seasons. In our previous research, we developed a temperature-sensitive sustained-release attractant for Z. cucurbitae, that not only can control the release rate of cuelure according to the temperature change, but also shows an excellent trapping effect on Z. cucurbitae. To further enhance the killing effect of the temperature-sensitive attractant on Z. cucurbitae, this study proposed using it in combination with an insecticide to prepare a temperature-sensitive insecticide for Z. cucurbitae. Based on the controlled release technology of pesticides, a temperature-sensitive Z. cucurbitae insecticide was developed by using PNIPAM gel as a temperature-sensitive switch to carry both cuelure and insecticide at the same time. In addition, the lethal effect of different pesticides on Z. cucurbitae were tested by indoor toxicity test, and the best pesticide combination was screened out. The temperature-sensitive insecticide prepared in this study not only had excellent thermal response and controlled release ability, but also enhanced its toxicological effects on Z. cucurbitae because it contained insecticides. Among them, combining thiamethoxam and clothianidin with the temperature-sensitive attractants was the most effective, and their lethality reached more than 97% against Z. cucurbitae. This study is not only of great practical significance for the monitoring and controlling Z. cucurbitae, but also provides theoretical basis and reference value for the combination of temperature-sensitive attractant and insecticide.


Subject(s)
Insecticides , Neonicotinoids , Temperature , Insecticides/pharmacology , Animals , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Insect Control/methods , Weevils/drug effects , Thiazoles/pharmacology
5.
Phytopathology ; 114(1): 137-145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38318843

ABSTRACT

Interactions between microorganisms and frugivorous insects can modulate fruit rot disease epidemiology. Insect feeding and/or oviposition wounds may create opportunities for fungal infection. Passive and active dispersal of fungal inoculums by adult insects also increases disease incidence. In fall-bearing raspberries and blackberries, such vectoring interactions could increase crop damage from the invasive pestiferous vinegar fly Drosophila suzukii (spotted-wing drosophila). Periods of peak D. suzukii activity are known to overlap with several species of primary fruit rot pathogen, particularly Botrytis cinerea and Cladosporium cladosporioides, and previous work indicates that larvae co-occur with and feed on various filamentous fungi at low rates. To further our understanding of the epidemiological consequences that may emerge from these associations, we surveyed the filamentous fungal community associated with adult D. suzukii, isolating and molecularly identifying fungi externally and internally (indicating feeding) from field-collected adults over 3 years. We isolated and identified 37 unique genera of fungi in total, including known raspberry pathogens. Most fungi were detected infrequently, and flies acquired and carried fungi externally at higher richness, frequency, and density relative to internally. In a worst-case scenario laboratory vectoring assay, D. suzukii adults were able to transfer B. cinerea and C. cladosporioides to sterile media at 0, 24, 48, and 72 h after exposure to sporulating cultures in Petri dishes. These results collectively suggest an adventitious vectoring association between D. suzukii and fruit rot fungi that has the potential to alter caneberry disease dynamics.


Subject(s)
Drosophila , Rubus , Animals , Female , Plant Diseases , Rubus/microbiology , Larva , Fruit/microbiology , Insect Control/methods
6.
J Math Biol ; 88(6): 73, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679652

ABSTRACT

Insect growth regulators (IGRs) have been developed as effective control measures against harmful insect pests to disrupt their normal development. This study is to propose a mathematical model to evaluate the cost-effectiveness of IGRs for pest management. The key features of the model include the temperature-dependent growth of insects and realistic impulsive IGRs releasing strategies. The impulsive releases are carefully modeled by counting the number of implements during an insect's temperature-dependent development duration, which introduces a surviving probability determined by a product of terms corresponding to each release. Dynamical behavior of the model is illustrated through dynamical system analysis and a threshold-type result is established in terms of the net reproduction number. Further numerical simulations are performed to quantitatively evaluate the effectiveness of IGRs to control populations of harmful insect pests. It is interesting to observe that the time-changing environment plays an important role in determining an optimal pest control scheme with appropriate release frequencies and time instants.


Subject(s)
Computer Simulation , Insecta , Mathematical Concepts , Models, Biological , Pest Control, Biological , Animals , Insecta/growth & development , Pest Control, Biological/methods , Pest Control, Biological/statistics & numerical data , Juvenile Hormones , Temperature , Insect Control/methods , Cost-Benefit Analysis
7.
Bull Entomol Res ; 114(2): 180-189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38327068

ABSTRACT

Drosophila suzukii (Matsumura) is an exotic pest of economic importance that affects several soft-skinned fruits in Mexico. Previously, we found that yellow or yellow-green rectangular cards inside a transparent trap baited with attractants improved D. suzukii capture. In this study, we evaluated the influence of rectangular cards with different yellow shades inside a transparent multi-hole trap baited with apple cider vinegar (ACV) on D. suzukii capture in the field. Second, we tested whether ACV-baited traps with cards of other geometric shapes affected D. suzukii catches compared to traps with rectangular cards. Third, we evaluated the effects of commercial lures combined with a more efficient visual stimulus from previous experiments on trapping D. suzukii flies. We found that ACV-baited traps plus a yellow-shaded rectangle card with 67% reflectance at a 549.74 nm dominant wavelength captured more flies than ACV-baited traps with yellow rectangle cards with a higher reflectance. Overall, ACV-baited traps with rectangles and squares caught more flies than did ACV-baited traps without visual stimuli. The traps baited with SuzukiiLURE-Max, ACV and Z-Kinol plus yellow rectangles caught 57, 70 and 101% more flies, respectively, than the traps baited with the lure but without a visual stimulus.


Subject(s)
Drosophila , Insect Control , Animals , Drosophila/physiology , Insect Control/instrumentation , Insect Control/methods , Pheromones/pharmacology , Female , Photic Stimulation , Mexico , Acetic Acid/pharmacology , Male
8.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34697238

ABSTRACT

Pest management practices in modern industrial agriculture have increasingly relied on insurance-based insecticides such as seed treatments that are poorly correlated with pest density or crop damage. This approach, combined with high invertebrate toxicity for newer products like neonicotinoids, makes it challenging to conserve beneficial insects and the services that they provide. We used a 4-y experiment using commercial-scale fields replicated across multiple sites in the midwestern United States to evaluate the consequences of adopting integrated pest management (IPM) using pest thresholds compared with standard conventional management (CM). To do so, we employed a systems approach that integrated coproduction of a regionally dominant row crop (corn) with a pollinator-dependent specialty crop (watermelon). Pest populations, pollination rates, crop yields, and system profitability were measured. Despite higher pest densities and/or damage in both crops, IPM-managed pests rarely reached economic thresholds, resulting in 95% lower insecticide use (97 versus 4 treatments in CM and IPM, respectively, across all sites, crops, and years). In IPM corn, the absence of a neonicotinoid seed treatment had no impact on yields, whereas IPM watermelon experienced a 129% increase in flower visitation rate by pollinators, resulting in 26% higher yields. The pollinator-enhancement effect under IPM management was mediated entirely by wild bees; foraging by managed honey bees was unaffected by treatments and, overall, did not correlate with crop yield. This proof-of-concept experiment mimicking on-farm practices illustrates that cropping systems in major agricultural commodities can be redesigned via IPM to exploit ecosystem services without compromising, and in some cases increasing, yields.


Subject(s)
Agriculture/methods , Conservation of Natural Resources , Insect Control/methods , Insecta , Insecticides , Pollination , Agriculture/economics , Animals , Biomass , Citrullus , Insect Control/economics , Pesticide Residues/analysis , Pollen/chemistry , Zea mays
9.
Pestic Biochem Physiol ; 200: 105838, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582600

ABSTRACT

Diaspididae are one of the most serious small herbivorous insects with piercing-sucking mouth parts and are major economic pests as they attack and destroy perennial ornamentals and food crops. Chemical control is the primary management approach for armored scale infestation. However, chemical insecticides do not possess selectivity in action and not always effective enough for the control of armored scale insects. Our previous work showed that green oligonucleotide insecticides (olinscides) are highly effective against armored and soft scale insects. Moreover, olinscides possess affordability, selectivity in action, fast biodegradability, and a low carbon footprint. Insect pest populations undergo microevolution and olinscides should take into account the problem of insecticide resistance. Using sequencing results, it was found that in the mixed populations of insect pests Dynaspidiotus britannicus Newstead and Aonidia lauri Bouche, predominates the population of A. lauri. Individuals of A. lauri comprised for 80% of individuals with the sequence 3'-ATC-GTT-GGC-AT-5' in the 28S rRNA site, and 20% of the population comprised D. britannicus individuals with the sequence 3'-ATC-GTC-GGT-AT-5'. We created olinscides Diasp80-11 (5'-ATG-CCA-ACG-AT-3') and Diasp20-11 (5'-ATA-CCG-ACG-AT-3') with perfect complementarity to each of the sequences. Mortality of insects on the 14th day comprised 98.19 ± 3.12% in Diasp80-11 group, 64.66 ± 0.67% in Diasp20-11 group (p < 0.05), and 3.77 ± 0.94% in the control group. Results indicate that for maximum insecticidal effect it is necessary to use an oligonucleotide insecticide that corresponds to the dominant species. Mortality in Diasp80-11 group was accompanied with significant decrease in target 28S rRNA concentration and was 8.44 ± 0.14 and 1.72 ± 0.36 times lower in comparison with control (p < 0.05) on the 10th and 14th days, respectively. We decided to make single nucleotide substitutions in Diasp20-11 olinscide to understand which nucleotide will play the most important role in insecticidal effect. We created three sequences with single nucleotide transversion substitutions at the 5'-end - Diasp20(5')-11 (A to T), 3'-end - Diasp20(3')-11 (T to A), and in the middle of the sequence - Diasp20(6)-11 (6th nitrogenous base of the sequence; G to C), respectively. As a result, mortality of mixed population of the field experiment decreased and comprised 53.89 ± 7.25% in Diasp20(5')-11 group, 40.68 ± 4.33% in Diasp20(6)-11 group, 35.74 ± 5.51% in Diasp20(3')-11 group, and 3.77 ± 0.94% in the control group on the 14th day. Thus, complementarity of the 3'-end nucleotide to target 28S rRNA was the most important for pronounced insecticidal effect (significance of complementarity of nucleotides for insecticidal effect: 5' nt < 6 nt < 3' nt). As was found in our previous research works, the most important rule to obtain maximum insecticidal effect is complete complementarity to the target rRNA sequence and maximum coverage of target sequence in insect pest populations. However, in this article we also show that the complementarity of 3'-end is a second important factor for insecticidal potential of olinscides. Also in this article we propose 2-step DNA containment mechanism of action of olinscides, recruiting RNase H. The data obtained indicate the selectivity of olinscides and at the same time provide a simple and flexible platform for the creation of effective plant protection products, based on antisense DNA oligonucleotides.


Subject(s)
Hemiptera , Insecticides , Humans , Animals , Insecticides/pharmacology , Oligonucleotides , Nucleotides , RNA, Ribosomal, 28S , Insecta/genetics , Insect Control/methods
10.
Pestic Biochem Physiol ; 200: 105816, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582574

ABSTRACT

The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.


Subject(s)
Seeds , Tephritidae , Male , Animals , Mice , Phylogeny , In Situ Hybridization, Fluorescence , Tephritidae/genetics , Insect Control/methods , Spermatogenesis/genetics , Fertility/genetics , Heat-Shock Response
11.
J Insect Sci ; 24(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38340047

ABSTRACT

Chemical-based interventions are mostly used to control insects that are harmful to human health and agriculture or that simply cause a nuisance. An overreliance on these insecticides however raises concerns for the environment, human health, and the development of resistance, not only in the target species. As such, there is a critical need for the development of novel nonchemical technologies to control insects. Electrocution traps using UV light as an attractant are one classical nonchemical approach to insect control but lack the specificity necessary to target only pest insects and to avoid harmless or beneficial species. Here we review the fundamental physics behind electric fields (EFs) and place them in context with electromagnetic fields more broadly. We then focus on how novel uses of strong EFs, some of which are being piloted in the field and laboratory, have the potential to repel, capture, or kill (electrocute) insects without the negative side effects of other classical approaches. As EF-insect science remains in its infancy, we provide recommendations for future areas of research in EF-insect science.


Subject(s)
Insect Control , Animals , Insect Control/methods , Insecticides/toxicity , Ultraviolet Rays
12.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717262

ABSTRACT

Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.


Subject(s)
Animal Distribution , Climate Change , Introduced Species , Animals , Hemiptera/physiology , Insect Control/methods
13.
J Environ Sci Health B ; 59(7): 417-424, 2024.
Article in English | MEDLINE | ID: mdl-38804855

ABSTRACT

The choice of effective crop protection technologies is a key factors in the economical production of oilseed rape. Insecticides belonging to the group of active substances butenolides and diamides are active substances available as seed treatments in oilseed rape and promising control tools in the crop protection technologies. Our laboratory experiment demonstrated that the experimental insecticides flupyradifurone and cyantraniliprole are both effective against Eurydema ventralis (Hemiptera: Pentatomidae) when used as a seed and in-crop treatments, but there is a fundamental difference in their insect mortality inducing effects. Flupyradifurone was found to have a total mortality 96 h after application based on basipetal translocation. In the case of cyantraniliprole, the insecticidal effect of the same treatment was 27% less. The experiment showed that the acropetal translocation of the tested active substances after seed treatment did not induce efficacy comparable to that of the basipetal translocation. The study of the biophoton emission of the plants demonstrated a verifiable correlation between the different application methods of the insecticides and the photon emission intensity per unit plant surface area. In conclusion, the systematic insecticides tested, in addition to having the expected insecticidal effect, interfere with plant life processes by enhancing photosynthetic activity.


Subject(s)
Insecticides , Photosynthesis , Animals , Insecticides/pharmacology , Photosynthesis/drug effects , Hemiptera/drug effects , Hemiptera/physiology , Brassica napus/drug effects , Pyrazoles/pharmacology , Seeds/drug effects , Crop Protection/methods , Pyridines/pharmacology , ortho-Aminobenzoates/pharmacology , Insect Control/methods , 4-Butyrolactone/analogs & derivatives
14.
J Biol Chem ; 298(9): 102311, 2022 09.
Article in English | MEDLINE | ID: mdl-35921898

ABSTRACT

Global agriculture loses over $100 billion of produce annually to crop pests such as insects. Many of these crop pests either are not currently controlled by artificial means or have developed resistance against chemical pesticides. Long dsRNAs are capable of inducing RNAi in insects and are emerging as novel, highly selective alternatives for sustainable insect management strategies. However, there are significant challenges associated with RNAi efficacy in insects. In this study, we synthesized a range of chemically modified long dsRNAs in an approach to improve nuclease resistance and RNAi efficacy in insects. Our results showed that dsRNAs containing phosphorothioate modifications demonstrated increased resistance to southern green stink bug saliva nucleases. Phosphorothioate-modified and 2'-fluoro-modified dsRNA also demonstrated increased resistance to degradation by soil nucleases and increased RNAi efficacy in Drosophila melanogaster cell cultures. In live insects, we found chemically modified long dsRNAs successfully resulted in mortality in both stink bug and corn rootworm. These results provide further mechanistic insight into the dependence of RNAi efficacy on nucleotide modifications in the sense or antisense strand of the dsRNA in insects and demonstrate for the first time that RNAi can successfully be triggered by chemically modified long dsRNAs in insect cells or live insects.


Subject(s)
Heteroptera , Insect Control , Pest Control, Biological , Plant Diseases , RNA Interference , RNA, Double-Stranded , Animals , Drosophila melanogaster , Heteroptera/genetics , Insect Control/methods , Nucleotides/metabolism , Pest Control, Biological/methods , Pesticides/pharmacology , Plant Diseases/parasitology , Plant Diseases/prevention & control , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , Soil/chemistry
15.
Annu Rev Pharmacol Toxicol ; 60: 241-255, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31914891

ABSTRACT

Neonicotinoids have been used to protect crops and animals from insect pests since the 1990s, but there are concerns regarding their adverse effects on nontarget organisms, notably on bees. Enhanced resistance to neonicotinoids in pests is becoming well documented. We address the current understanding of neonicotinoid target site interactions, selectivity, and metabolism not only in pests but also in beneficial insects such as bees. The findings are relevant to the management of both neonicotinoids and the new generation of pesticides targeting insect nicotinic acetylcholine receptors.


Subject(s)
Insect Control/methods , Insecticides/pharmacology , Neonicotinoids/pharmacology , Animals , Bees , Humans , Insecticide Resistance , Insecticides/toxicity , Molecular Targeted Therapy , Neonicotinoids/toxicity , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
16.
Arch Insect Biochem Physiol ; 113(4): e22023, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37221967

ABSTRACT

The review discusses current RNA interference (RNAi) biotechnological innovations for crop protection. Special attention is given to the management of insect pests in the order Hemiptera. This insect order has the most members of insects which transmit pathogens on economically important crops. It first briefly summarizes the characteristics of the insects in this order and the type of transmission mechanisms for viral and bacterial plant pathogens. RNAi products developed for other insects are also analyzed. Emphasis was made on the need for innovative management approaches to offset the threat of resistance by both the insect vector to insecticides and the pathogens to microbicides. Subsequently, the RNAi technology is described, which is particularly an ingenious method currently utilized in itself or in combination with other modern biotechnological innovations for managing important vector insects that could provide an additional powerful tool for use in integrated pest control programs. The requirements and recent advances for performing RNAi assays are detailed and an overview is given on how to produce cheaper double-stranded RNA as the main component of RNAi-based biopesticide. Examples of agricultural companies that use RNAi biotechnology in their product development were also discussed.


Subject(s)
Hemiptera , Insecta , Animals , RNA Interference , Insecta/genetics , Hemiptera/genetics , Pest Control , RNA, Double-Stranded/genetics , Biotechnology , Insect Control/methods
17.
Bull Entomol Res ; 113(3): 361-367, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36820514

ABSTRACT

Insects breathe using one or a combination of three gas exchange patterns; continuous, cyclic and discontinuous, which vary in their rates of exchange of oxygen, carbon dioxide and water. In general, there is a trade-off between lowering gas exchange using discontinuous exchange that limits water loss at the cost of lower metabolic rate. These patterns and hypotheses for the evolution of discontinuous exchange have been examined for relatively large insects (>20 mg) over relatively short periods (<4 h), but smaller insects and longer time periods have yet to be examined. We measured gas exchange patterns and metabolic rates for adults of a small insect pest of grain, the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), using flow-through respirometry in dry air for 48 h. All adults survived the desiccating measurement period; initially they used continuous gas exchange, then after 24 h switched to cyclic gas exchange with a 27% decrease in metabolic rate, and then after 48 h switched to discontinuous gas exchange with increased interburst duration and further decrease in metabolic rate. The successful use of the Qubit, a lower cost and so more common gas analyser, to measure respiration in the very small T. castaneum, may prompt more flow-through respirometry studies of small insects. Running such studies over long durations may help to better understand the evolution of respiration physiology and thus suggest new methods of pest management.


Subject(s)
Coleoptera , Tribolium , Animals , Insect Control/methods , Carbon Dioxide
18.
PLoS Genet ; 16(11): e1009180, 2020 11.
Article in English | MEDLINE | ID: mdl-33137115

ABSTRACT

The field performance of Sterile Insect Technique (SIT) is improved by sex-sorting and releasing only sterile males. This can be accomplished by resource-intensive separation of males from females by morphology. Alternatively, sex-ratio biasing genetic constructs can be used to selectively remove one sex without the need for manual or automated sorting, but the resulting genetically engineered (GE) control agents would be subject to additional governmental regulation. Here we describe and demonstrate a genetic method for the batch production of non-GE males. This method could be applied to generate the heterogametic sex (XY, or WZ) in any organism with chromosomal sex determination. We observed up to 100% sex-selection with batch cultures of more than 103 individuals. Using a stringent transgene detection assay, we demonstrate the potential of mass production of transgene free males.


Subject(s)
Genetic Engineering/methods , Insect Control/methods , Pest Control, Biological/methods , Sex Chromosomes/genetics , Animals , Animals, Genetically Modified/physiology , Drosophila melanogaster/genetics , Female , Male , Models, Animal , Sex Determination Analysis/methods , Sex Determination Processes/genetics , Transgenes/genetics
19.
An Acad Bras Cienc ; 95(4): e20191046, 2023.
Article in English | MEDLINE | ID: mdl-38055601

ABSTRACT

Ceratitis capitata (Wiedemann, 1824) is an insect of major economic importance in the mango orchards of the submedium of the São Francisco River Valley, the main area of mango production and exportation in Brazil. To provide alternatives for the management of C. capitata, toxic baits based on alpha-cypermethrin (Gelsura®) and spinosad (Success® 0.02 CB) were evaluated in three commercial mango experiments during two consecutive harvests: 2016/2017 (experiment 1 - area 1) and 2017/2018 (experiment 2 -area 2 and experiment 3 - area 3). According to the results, there was a large reduction in the infestation of C. capitata after five sequential applications of the alpha-cypermethrin (6 g.ha-1) and spinosad (0.38 g.ha-1) toxic baits performed at seven-day intervals during mango fruit ripening in all experiments and years (harvest) evaluated. Compared with the untreated plots, the plots with alpha-cypermethrin and spinosad applications showed a significant reduction in the damage induced (fallen fruits and/or on trees) by C. capitata. The management of C. capitata in mango orchards can include the use of the toxic bait based on alpha-cypermethrin, which represents an alternative to rotate with spinosad toxic bait in the São Francisco River Valley.


Subject(s)
Ceratitis capitata , Insecticides , Mangifera , Animals , Insecticides/pharmacology , Insect Control/methods
20.
Pestic Biochem Physiol ; 191: 105339, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36963921

ABSTRACT

There are many insect pests worldwide that damage agricultural crop and reduce yield either by direct feeding or by the transmission of plant diseases. To date, control of pest insects has been achieved largely by applying synthetic insecticides. However, insecticide use can be seriously impacted by legislation that limits their use or by the evolution of resistance in the target pest. Thus, there is a move towards less use of insecticides and increased adoption of integrated pest management strategies using a wide range of non-chemical and chemical control methods. For good pest control there is a need to understand the mode of action and selectivity of insecticides, the life cycles of the pests and their biology and behaviours, all of which can benefit from good quality genome data. Here we present the complete assembled (chromosome level) genomes (incl. mtDNA) of 19 insect pests, Agriotes lineatus (click beetle/wireworm), Aphis gossypii (melon/cotton aphid), Bemisia tabaci (cotton whitefly), Brassicogethes aeneus (pollen beetle), Ceutorhynchus obstrictus (seedpod weevil), Chilo suppressalis (striped rice stem borer), Chrysodeixis includens (soybean looper), Diabrotica balteata (cucumber beetle), Diatraea saccharalis (sugar cane borer), Nezara viridula (green stink bug), Nilaparvata lugens (brown plant hopper), Phaedon cochleariae (mustard beetle), Phyllotreta striolata (striped flea beetle), Psylliodes chrysocephala (cabbage stem flea beetle), Spodoptera exigua (beet army worm), Spodoptera littoralis (cotton leaf worm), Diabrotica virgifera (western corn root worm), Euschistus heros (brown stink bug) and Phyllotreta cruciferae (crucifer flea beetle). For the first 15 of these we also present the annotation of genes encoding potential xenobiotic detoxification enzymes. This public resource will aid in the elucidation and monitoring of resistance mechanisms, the development of highly selective chemistry and potential techniques to disrupt behaviour in a way that limits the effect of the pests.


Subject(s)
Aphids , Coleoptera , Heteroptera , Insecticides , Moths , Animals , Insecticides/pharmacology , Agriculture/methods , Pest Control , Coleoptera/genetics , Insect Control/methods
SELECTION OF CITATIONS
SEARCH DETAIL