Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
Add more filters

Publication year range
1.
Appl Environ Microbiol ; 87(17): e0308820, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34132587

ABSTRACT

Hyphal polarized growth in filamentous fungi requires tip-directed secretion, while additional evidence suggests that fungal exocytosis for the hydrolytic enzyme secretion can occur at other sites in hyphae, including the septum. In this study, we analyzed the role of the exocyst complex involved in the secretion in the banana wilt fungal pathogen Fusarium odoratissimum. All eight exocyst components in F. odoratissimum not only localized to the tips ahead of the Spitzenkörper in growing hyphae but also localized to the outer edges of septa in mature hyphae. To further analyze the exocyst in F. odoratissimum, we attempted single gene deletion for all the genes encoding the eight exocyst components and only succeeded in constructing the gene deletion mutants for exo70 and sec5; we suspect that the other 6 exocyst components are encoded by essential genes. Deletion of exo70 or sec5 led to defects in vegetative growth, conidiation, and pathogenicity in F. odoratissimum. Notably, the deletion of exo70 resulted in decreased activities for endoglucosidase, filter paper enzymes, and amylase, while the loss of sec5 only led to a slight reduction in amylase activity. Septum-localized α-amylase (AmyB) was identified as the marker for septum-directed secretion, and we found that Exo70 is essential for the localization of AmyB to septa. Meanwhile the loss of Sec5 did not affect AmyB localization to septa but led to a higher accumulation of AmyB in cytoplasm. This suggested that while Exo70 and Sec5 both take part in the septum-directed secretion, the two play different roles in this process. IMPORTANCE The exocyst complex is a multisubunit tethering complex (MTC) for secretory vesicles at the plasma membrane and contains eight subunits, Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84. While the exocyst complex is well defined in eukaryotes from yeast (Saccharomyces cerevisiae) to humans, the exocyst components in filamentous fungi show different localization patterns in the apical tips of hyphae, which suggests that filamentous fungi have evolved divergent strategies to regulate endomembrane trafficking. In this study, we demonstrated that the exocyst components in Fusarium odoratissimum are localized not only to the tips of growing hyphae but also to the outer edge of the septa in mature hyphae, suggesting that the exocyst complex plays a role in the regulation of septum-directed protein secretion in F. odoratissimum. We further found that Exo70 and Sec5 are required for the septum-directed secretion of α-amylase in F. odoratissimum but with different influences.


Subject(s)
Exocytosis , Fungal Proteins/metabolism , Fusarium/enzymology , Musa/microbiology , Plant Diseases/microbiology , Secretory Vesicles/enzymology , Fungal Proteins/genetics , Fusarium/genetics , Fusarium/metabolism , Hyphae/enzymology , Hyphae/genetics , Hyphae/metabolism , Protein Transport , Secretory Pathway , Secretory Vesicles/genetics , Secretory Vesicles/metabolism
2.
Nat Immunol ; 10(7): 761-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19525969

ABSTRACT

Granule-mediated cytotoxicity is the main effector mechanism of cytotoxic CD8+ T cells. We report that CD8+ T cells from acid sphingomyelinase (ASMase)-deficient (ASMase-KO) mice are defective in exocytosis of cytolytic effector molecules; this defect resulted in attenuated cytotoxic activity of ASMase-KO CD8+ T cells and delayed elimination of lymphocytic choriomeningitis virus from ASMase-KO mice. Cytolytic granules of ASMase-KO and wild-type CD8+ T cells were equally loaded with granzymes and perforin, and correctly directed to the immunological synapse. In wild-type CD8+ T cells, secretory granules underwent shrinkage by 82% after fusion with the plasma membrane. In ASMase-KO CD8+ T cells, the contraction of secretory granules was markedly impaired. Thus, ASMase is required for contraction of secretory granules and expulsion of cytotoxic effector molecules.


Subject(s)
Cytotoxicity, Immunologic/immunology , Secretory Vesicles/metabolism , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes/immunology , Animals , Arenaviridae Infections/immunology , Arenaviridae Infections/metabolism , Arenaviridae Infections/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Chemokine CCL5/metabolism , Female , Granzymes/genetics , Granzymes/metabolism , Immunoblotting , Immunological Synapses/immunology , Lymphocytic choriomeningitis virus/physiology , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Perforin/genetics , Perforin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Secretory Vesicles/enzymology , Sphingomyelin Phosphodiesterase/genetics , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
3.
Biochem J ; 476(16): 2321-2346, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31462439

ABSTRACT

Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIß isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell-matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIß, PI4KIIα and PI4KIIß, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Golgi Apparatus/enzymology , Neoplasm Proteins/metabolism , Neoplasms/enzymology , Phosphatidylinositol Phosphates/metabolism , Secretory Vesicles/enzymology , Animals , Golgi Apparatus/pathology , Humans , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Neoplasms/pathology , Secretory Vesicles/pathology
4.
Arterioscler Thromb Vasc Biol ; 38(5): 1037-1051, 2018 05.
Article in English | MEDLINE | ID: mdl-29519941

ABSTRACT

OBJECTIVE: Platelet secretion is crucial for many physiological platelet responses. Even though several regulators of the fusion machinery for secretory granule exocytosis have been identified in platelets, the underlying mechanisms are not yet fully characterized. APPROACH AND RESULTS: By studying a mouse model (cKO [conditional knockout]Kif5b) lacking Kif5b (kinesin-1 heavy chain) in its megakaryocytes and platelets, we evidenced unstable hemostasis characterized by an increase of blood loss associated to a marked tendency to rebleed in a tail-clip assay and thrombus instability in an in vivo thrombosis model. This instability was confirmed in vitro in a whole-blood perfusion assay under blood flow conditions. Aggregations induced by thrombin and collagen were also impaired in cKOKif5b platelets. Furthermore, P-selectin exposure, PF4 (platelet factor 4) secretion, and ATP release after thrombin stimulation were impaired in cKOKif5b platelets, highlighting the role of kinesin-1 in α-granule and dense granule secretion. Importantly, exogenous ADP rescued normal thrombin induced-aggregation in cKOKif5b platelets, which indicates that impaired aggregation was because of defective release of ADP and dense granules. Last, we demonstrated that kinesin-1 interacts with the molecular machinery comprising the granule-associated Rab27 (Ras-related protein Rab-27) protein and the Slp4 (synaptotagmin-like protein 4/SYTL4) adaptor protein. CONCLUSIONS: Our results indicate that a kinesin-1-dependent process plays a role for platelet function by acting into the mechanism underlying α-granule and dense granule secretion.


Subject(s)
Blood Platelets/enzymology , Hemostasis , Kinesins/metabolism , Megakaryocytes/enzymology , Platelet Activation , Secretory Vesicles/enzymology , Thrombosis/enzymology , Adenosine Triphosphate/blood , Animals , Blood Platelets/ultrastructure , Disease Models, Animal , Humans , Kinesins/blood , Kinesins/deficiency , Kinesins/genetics , Megakaryocytes/ultrastructure , Mice, Inbred C57BL , Mice, Knockout , P-Selectin/blood , Platelet Aggregation , Platelet Factor 4/blood , Secretory Pathway , Secretory Vesicles/genetics , Secretory Vesicles/ultrastructure , Signal Transduction , Thrombosis/blood , Thrombosis/genetics , Thrombosis/pathology , Vesicular Transport Proteins/blood , rab27 GTP-Binding Proteins/blood
5.
Mol Cell Biochem ; 444(1-2): 1-13, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29159770

ABSTRACT

The JNK-interacting protein 3 (JIP3) is a molecular scaffold, expressed predominantly in neurons, that serves to coordinate the activation of the c-Jun N-terminal kinase (JNK) by binding to JNK and the upstream kinases involved in its activation. The JNK pathway is involved in the regulation of many cellular processes including the control of cell survival, cell death and differentiation. JIP3 also associates with microtubule motor proteins such as kinesin and dynein and is likely an adapter protein involved in the tethering of vesicular cargoes to the motors involved in axonal transport in neurons. We have used immunofluorescence microscopy and biochemical fractionation to investigate the subcellular distribution of JIP3 in relation to JNK and to vesicular and organelle markers in rat pheochromocytoma cells (PC12) differentiating in response to nerve growth factor. In differentiated PC12 cells, JIP3 was seen to accumulate in growth cones at the tips of developing neurites where it co-localised with both JNK and the JNK substrate paxillin. Cellular fractionation of PC12 cells showed that JIP3 was associated with a subpopulation of vesicles in the microsomal fraction, distinct from synaptic vesicles, likely to be an anterograde-directed exocytic vesicle pool. In differentiated PC12 cells, JIP3 did not appear to associate with retrograde endosomal vesicles thought to be involved in signalling axonal injury. Together, these observations indicate that JIP3 may be involved in transporting vesicular cargoes to the growth cones of PC12 cells, possibly targeting JNK to its substrate paxillin, and thus facilitating neurite outgrowth.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , Growth Cones/enzymology , Nerve Tissue Proteins/metabolism , Neurites/enzymology , Secretory Vesicles/enzymology , Synaptic Vesicles/enzymology , Animals , PC12 Cells , Rats
6.
J Biol Chem ; 291(18): 9835-50, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26961877

ABSTRACT

Peptidylglycine α-amidating monooxygenase (PAM) (EC 1.14.17.3) catalyzes peptide amidation, a crucial post-translational modification, through the sequential actions of its monooxygenase (peptidylglycine α-hydroxylating monooxygenase) and lyase (peptidyl-α-hydroxyglycine α-amidating lyase (PAL)) domains. Alternative splicing generates two different regions that connect the protease-resistant catalytic domains. Inclusion of exon 16 introduces a pair of Lys residues, providing a site for controlled endoproteolytic cleavage of PAM and the separation of soluble peptidylglycine α-hydroxylating monooxygenase from membrane-associated PAL. Exon 16 also includes two O-glycosylation sites. PAM-1 lacking both glycosylation sites (PAM-1/OSX; where OSX is O-glycan-depleted mutant of PAM-1) was stably expressed in AtT-20 corticotrope tumor cells. In PAM-1/OSX, a cleavage site for furin-like convertases was exposed, generating a shorter form of membrane-associated PAL. The endocytic trafficking of PAM-1/OSX differed dramatically from that of PAM-1. A soluble fragment of the cytosolic domain of PAM-1 was produced in the endocytic pathway and entered the nucleus; very little soluble fragment of the cytosolic domain was produced from PAM-1/OSX. Internalized PAM-1/OSX was rapidly degraded; unlike PAM-1, very little internalized PAM-1/OSX was detected in multivesicular bodies. Blue native PAGE analysis identified high molecular weight complexes containing PAM-1; the ability of PAM-1/OSX to form similar complexes was markedly diminished. By promoting the formation of high molecular weight complexes, O-glycans may facilitate the recycling of PAM-1 through the endocytic compartment.


Subject(s)
Cell Membrane/enzymology , Endocytosis/physiology , Mixed Function Oxygenases/metabolism , Multienzyme Complexes/metabolism , Secretory Vesicles/enzymology , Animals , Biological Transport, Active/physiology , Cell Line, Tumor , Cell Membrane/genetics , Glycosylation , Mixed Function Oxygenases/genetics , Multienzyme Complexes/genetics , Rats , Secretory Vesicles/genetics
7.
Anal Biochem ; 537: 20-25, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28847591

ABSTRACT

Epithelial brush-border membrane vesicles (BBMVs) were isolated from the intestine of common carp and studied systematically by enzyme activity, transmission electron microscopy and immunoblotting. The uptake time course and the substrate concentration effect were assessed, and then, the ability of phlorizin and cytochalasin B to inhibit uptake was analyzed. The results show that sucrase, alkaline phosphatase and Na+-K+-ATPase activities in these vesicles were enriched 7.94-, 6.74- and 0.42-fold, respectively, indicating a relatively pure preparation of apical membrane with little basolateral contamination. The vesicular structure was in complete closure, as confirmed by electron microscopy. The presence of SGLT1 on the BBMVs was confirmed by Western blot analysis. In the time course experiment, the glucose uptake by BBMVs in Na+ medium displayed an initial accumulation (overshoot) at 5 min followed by a rapid return to equilibrium values at 60 min. Over the 2-NBDG concentration range selected, the external 2-NBDG concentration in NaSCN medium graphed as a curved line. Phlorizin and cytochalasin B had an obvious inhibitory effect on 2-NBDG transport in carp BBMVs, and the detected fluorescence intensity decreased. The inhibition rate in the 1000 µM group was the strongest at 64.18% and 63.61% of phlorizin and cytochalasin B, respectively, indicating the presence of carriers other than SGLT1. This study is the first to demonstrate that 2-NBDG can be used as a convenient and sensitive probe to detect glucose uptake in fish BBMVs. This technology will provide a convenient method to discover new effects and factors in glucose metabolism.


Subject(s)
4-Chloro-7-nitrobenzofurazan/analogs & derivatives , Deoxyglucose/analogs & derivatives , Glucose/metabolism , Intestinal Mucosa/metabolism , Secretory Vesicles/metabolism , Spectrometry, Fluorescence , 4-Chloro-7-nitrobenzofurazan/chemistry , 4-Chloro-7-nitrobenzofurazan/metabolism , Animals , Biological Transport/drug effects , Carps , Cytochalasin B/pharmacology , Deoxyglucose/chemistry , Deoxyglucose/metabolism , Glucose/analysis , Glucose/chemistry , Microscopy, Electron, Transmission , Phlorhizin/pharmacology , Secretory Vesicles/chemistry , Secretory Vesicles/enzymology , Sodium-Glucose Transporter 1/metabolism , Thiocyanates/chemistry
8.
Adv Exp Med Biol ; 974: 157-165, 2017.
Article in English | MEDLINE | ID: mdl-28353232

ABSTRACT

Pulse radiolabelling of cells with radioactive amino acids is a common method for studying the biosynthesis of proteins. The labelled proteins can then be immunoprecipitated and analysed by electrophoresis and imaging techniques. This chapter presents a protocol for the biosynthetic labelling and immunoprecipitation of pancreatic islet proteins which are known to be affected in psychiatric disorders such as schizophrenia.


Subject(s)
Immunoprecipitation/methods , Insulin/analysis , Islets of Langerhans/chemistry , Proprotein Convertase 2/analysis , Secretory Vesicles/chemistry , Antibody Specificity , Chromatography, Agarose/methods , Electrophoresis/methods , Glucose/pharmacology , Humans , Hydrogen-Ion Concentration , Immunoprecipitation/instrumentation , Immunosorbents , Insulin/biosynthesis , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Isotope Labeling/methods , Methionine/analysis , Proprotein Convertase 2/biosynthesis , Secretory Vesicles/enzymology , Sulfur Radioisotopes/analysis , Urea
9.
Am J Physiol Cell Physiol ; 310(11): C942-54, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27076615

ABSTRACT

The mechanism responsible for the altered spectrum of tear proteins secreted by lacrimal gland acinar cells (LGAC) in patients with Sjögren's Syndrome (SS) remains unknown. We have previously identified increased cathepsin S (CTSS) activity as a unique characteristic of tears of patients with SS. Here, we investigated the role of Rab3D, Rab27a, and Rab27b proteins in the enhanced release of CTSS from LGAC. Similar to patients with SS and to the male nonobese diabetic (NOD) mouse model of SS, CTSS activity was elevated in tears of mice lacking Rab3D. Findings of lower gene expression and altered localization of Rab3D in NOD LGAC reinforce a role for Rab3D in suppressing excess CTSS release under physiological conditions. However, CTSS activity was significantly reduced in tears of mice lacking Rab27 isoforms. The reliance of CTSS secretion on Rab27 activity was supported by in vitro findings that newly synthesized CTSS was detected in and secreted from Rab27-enriched secretory vesicles and that expression of dominant negative Rab27b reduced carbachol-stimulated secretion of CTSS in cultured LGAC. High-resolution 3D-structured illumination microscopy revealed microdomains of Rab3D and Rab27 isoforms on the same secretory vesicles but present in different proportions on different vesicles, suggesting that changes in their relative association with secretory vesicles may tailor the vesicle contents. We propose that a loss of Rab3D from secretory vesicles, leading to disproportionate Rab27-to-Rab3D activity, may contribute to the enhanced release of CTSS in tears of patients with SS.


Subject(s)
Cathepsins/metabolism , Lacrimal Apparatus/enzymology , Sjogren's Syndrome/enzymology , Tears/enzymology , rab GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/metabolism , Animals , Carbachol/pharmacology , Cathepsins/genetics , Cells, Cultured , Disease Models, Animal , Genotype , Lacrimal Apparatus/drug effects , Lacrimal Apparatus/metabolism , Male , Membrane Microdomains/enzymology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Phenotype , Rabbits , Secretory Vesicles/enzymology , Sjogren's Syndrome/genetics , Tears/drug effects , Tears/metabolism , Transfection , rab GTP-Binding Proteins/deficiency , rab GTP-Binding Proteins/genetics , rab27 GTP-Binding Proteins , rab3 GTP-Binding Proteins/deficiency , rab3 GTP-Binding Proteins/genetics
10.
J Biol Chem ; 290(48): 29010-21, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26432644

ABSTRACT

PI(4,5)P2 localizes to sites of dense core vesicle exocytosis in neuroendocrine cells and is required for Ca(2+)-triggered vesicle exocytosis, but the impact of local PI(4,5)P2 hydrolysis on exocytosis is poorly understood. Previously, we reported that Ca(2+)-dependent activation of phospholipase Cη2 (PLCη2) catalyzes PI(4,5)P2 hydrolysis, which affected vesicle exocytosis by regulating the activities of the lipid-dependent priming factors CAPS (also known as CADPS) and ubiquitous Munc13-2 in PC12 cells. Here we describe an additional role for PLCη2 in vesicle exocytosis as a Ca(2+)-dependent regulator of the actin cytoskeleton. Depolarization of neuroendocrine PC12 cells with 56 or 95 mm KCl buffers increased peak Ca(2+) levels to ~400 or ~800 nm, respectively, but elicited similar numbers of vesicle exocytic events. However, 56 mm K(+) preferentially elicited the exocytosis of plasma membrane-resident vesicles, whereas 95 mm K(+) preferentially elicited the exocytosis of cytoplasmic vesicles arriving during stimulation. Depolarization with 95 mm K(+) but not with 56 mm K(+) activated PLCη2 to catalyze PI(4,5)P2 hydrolysis. The decrease in PI(4,5)P2 promoted F-actin disassembly, which increased exocytosis of newly arriving vesicles. Consistent with its role as a Ca(2+)-dependent regulator of the cortical actin cytoskeleton, PLCη2 localized with F-actin filaments. The results highlight the importance of PI(4,5)P2 for coordinating cytoskeletal dynamics with vesicle exocytosis and reveal a new role for PLCη2 as a Ca(2+)-dependent regulator of F-actin dynamics and vesicle trafficking.


Subject(s)
Actins/metabolism , Secretory Vesicles/enzymology , Type C Phospholipases/metabolism , Actins/genetics , Animals , Calcium/metabolism , Enzyme Activation/drug effects , Enzyme Activation/physiology , Exocytosis/drug effects , Exocytosis/physiology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , PC12 Cells , Phosphatidylinositol 4,5-Diphosphate/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Potassium Chloride/pharmacology , Protein Transport/drug effects , Protein Transport/physiology , Rats , Secretory Vesicles/genetics , Type C Phospholipases/genetics
11.
Biochem Biophys Res Commun ; 471(4): 610-5, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26845357

ABSTRACT

Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D.


Subject(s)
Pancreas, Exocrine/enzymology , Pancreatic alpha-Amylases/metabolism , Secretory Vesicles/enzymology , rab GTP-Binding Proteins/physiology , Acinar Cells , Animals , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pancreas, Exocrine/ultrastructure , Secretory Vesicles/ultrastructure , rab GTP-Binding Proteins/biosynthesis , rab GTP-Binding Proteins/genetics , rab27 GTP-Binding Proteins , rab3 GTP-Binding Proteins/biosynthesis
12.
Am J Physiol Regul Integr Comp Physiol ; 309(5): R576-84, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26180185

ABSTRACT

We previously identified aldo-keto reductase 1b7 (AKR1B7) as a marker for juxtaglomerular renin cells in the adult mouse kidney. However, the distribution of renin cells varies dynamically, and it was unknown whether AKR1B7 maintains coexpression with renin in response to different developmental, physiological, and pathological situations, and furthermore, whether similar factor(s) simultaneously regulate both proteins. We show here that throughout kidney development, AKR1B7 expression-together with renin-is progressively restricted in the kidney arteries toward the glomerulus. Subsequently, when formerly renin-expressing cells reacquire renin expression, AKR1B7 is reexpressed as well. This pattern of coexpression persists in extreme pathological situations, such as deletion of the genes for aldosterone synthase or Dicer. However, the two proteins do not colocalize within the same organelles: renin is found in the secretory granules, whereas AKR1B7 localizes to the endoplasmic reticulum. Interestingly, upon deletion of the renin gene, AKR1B7 expression is maintained in a pattern mimicking the embryonic expression of renin, while ablation of renin cells resulted in complete abolition of AKR1B7 expression. Finally, we demonstrate that AKR1B7 transcription is controlled by cAMP. Cultured cells of the renin lineage reacquire the ability to express both renin and AKR1B7 upon elevation of intracellular cAMP. In vivo, deleting elements of the cAMP-response pathway (CBP/P300) results in a stark decrease in AKR1B7- and renin-positive cells. In summary, AKR1B7 is expressed within the renin cell throughout development and perturbations to homeostasis, and AKR1B7 is regulated by cAMP levels within the renin cell.


Subject(s)
Aldehyde Reductase/metabolism , Cyclic AMP/metabolism , Kidney Glomerulus/enzymology , Renin-Angiotensin System , Renin/metabolism , Second Messenger Systems , Aldehyde Reductase/genetics , Animals , Biomarkers/metabolism , Cell Lineage , Endoplasmic Reticulum/enzymology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Kidney Glomerulus/cytology , Mice, Inbred C57BL , Mice, Knockout , Renin/deficiency , Renin/genetics , Renin-Angiotensin System/genetics , Secretory Vesicles/enzymology , Transcription, Genetic
13.
Purinergic Signal ; 11(1): 107-16, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25523180

ABSTRACT

Extracellular nucleotides modulate a wide number of biological processes such as neurotransmission, platelet aggregation, muscle contraction, and epithelial secretion acting by the purinergic pathway. Nucleotidases as NTPDases and ecto-5'-nucleotidase are membrane-anchored proteins that regulate extracellular nucleotide concentrations. In a previous work, we have partially characterized an NTPDase-like activity expressed by rat submandibular gland microsomes, giving rise to the hypothesis that membrane NTPDases could be released into salivary ducts to regulate luminal nucleotide concentrations as was previously proposed for ovarian, prostatic, and pancreatic secretions. Present results show that rat submandibular glands incubated in vitro release membrane-associated NTPDase and ecto-5'-nucleotidase activities. Electron microscopy images show that released membranes presenting nucleotidase activity correspond to exosome-like vesicles which are also present at microsomal fraction. Both exosome release and nucleotidase activities are raised by adrenergic stimulation. Nucleotidase activities present the same kinetic characteristics than microsomal nucleotidase activity, corresponding mainly to the action of NTPDase2 and NTPDase3 isoforms as well as 5'-nucleotidase. This is consistent with Western blot analysis revealing the presence of these enzymes in the microsomal fraction.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine Triphosphatases/metabolism , Secretory Vesicles/enzymology , Submandibular Gland/metabolism , Animals , Biological Transport , Rats , Rats, Wistar , Submandibular Gland/enzymology
14.
J Immunol ; 191(3): 1445-52, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23817418

ABSTRACT

Caspase-3 is a main executioner of apoptotic cell death. The general notion is that, in viable cells, caspase-3 is found as a cytosolic inactive proenzyme and that caspase-3 activation is largely confined to processes associated with cell death. In this study, we challenge this notion by showing that enzymatically active caspase-3 is stored in viable mast cells. The enzymatically active caspase-3 was undetectable in the cytosol of viable cells, but was recovered in subcellular fractions containing secretory granule-localized proteases. Moreover, active caspase-3 was rapidly released into the cytosolic compartment after permeabilization of the secretory granules. Using a cell-permeable substrate for caspase-3, the presence of active caspase-3-like activity in granule-like compartments close to the plasma membrane was demonstrated. Moreover, it was shown that mast cell activation caused release of the caspase-3 to the cell exterior. During the course of mast cell differentiation from bone marrow cells, procaspase-3 was present in cells of all stages of maturation. In contrast, active caspase-3 was undetectable in bone marrow precursor cells, but increased progressively during the process of mast cell maturation, its accumulation coinciding with that of a mast cell-specific secretory granule marker, mouse mast cell protease 6. Together, the current study suggests that active caspase-3 can be stored within secretory compartments of viable mast cells.


Subject(s)
Caspase 3/metabolism , Mast Cells/enzymology , Secretory Vesicles/enzymology , Animals , Apoptosis , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Enzyme Activation , Enzyme Precursors/metabolism , Mast Cells/metabolism , Mast Cells/ultrastructure , Mice , Mice, Inbred C57BL , Secretory Vesicles/metabolism , Vesicular Transport Proteins/metabolism
15.
Nat Rev Immunol ; 3(5): 361-70, 2003 May.
Article in English | MEDLINE | ID: mdl-12766758

ABSTRACT

Granule exocytosis is the main pathway for the immune elimination of virus-infected cells and tumour cells by cytotoxic T lymphocytes and natural killer cells. After target-cell recognition, release of the cytotoxic granule contents into the immunological synapse formed between the killer cell and its target induces apoptosis. The granules contain two membrane-perturbing proteins, perforin and granulysin, and a family of serine proteases known as granzymes, complexed with the proteoglycan serglycin. In this review, I discuss recent insights into the mechanisms of granule-mediated cytotoxicity, focusing on how granzymes A, B and C and granulysin activate cell death through caspase-independent pathways.


Subject(s)
Cytotoxicity, Immunologic , Secretory Vesicles/enzymology , Serine Endopeptidases/metabolism , Animals , Apoptosis , Exocytosis , Granzymes , Mice , Models, Immunological , Secretory Vesicles/chemistry , T-Lymphocytes, Cytotoxic/immunology
16.
J Biol Chem ; 288(24): 17859-70, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23640895

ABSTRACT

FGFRL1 is a newly identified member of the fibroblast growth factor receptor (FGFR) family expressed in adult pancreas. Unlike canonical FGFRs that initiate signaling via tyrosine kinase domains, the short intracellular sequence of FGFRL1 consists of a putative Src homology domain-2 (SH2)-binding motif adjacent to a histidine-rich C terminus. As a consequence of nonexistent kinase domains, FGFRL1 has been postulated to act as a decoy receptor to inhibit canonical FGFR ligand-induced signaling. In pancreatic islet beta-cells, canonical FGFR1 signaling affects metabolism and insulin processing. This study determined beta-cell expression of FGFRL1 as well as consequent effects on FGFR1 signaling and biological responses. We confirmed FGFRL1 expression at the plasma membrane and within distinct intracellular granules of both primary beta-cells and ßTC3 cells. Fluorescent protein-tagged FGFRL1 (RL1) induced a significant ligand-independent increase in MAPK signaling. Removal of the histidine-rich domain (RL1-ΔHis) or entire intracellular sequence (RL1-ΔC) resulted in greater retention at the plasma membrane and significantly reduced ligand-independent ERK1/2 responses. The SHP-1 phosphatase was identified as an RL1-binding substrate. Point mutation of the SH2-binding motif reduced the ability of FGFRL1 to bind SHP-1 and activate ERK1/2 but did not affect receptor localization to insulin secretory granules. Finally, overexpression of RL1 increased cellular insulin content and matrix adhesion. Overall, these data suggest that FGFRL1 does not function as a decoy receptor in beta-cells, but rather it enhances ERK1/2 signaling through association of SHP-1 with the receptor's intracellular SH2-binding motif.


Subject(s)
Insulin-Secreting Cells/enzymology , MAP Kinase Signaling System , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptor, Fibroblast Growth Factor, Type 5/metabolism , Secretory Vesicles/enzymology , Animals , Cell Adhesion , Cell Line , Endosomes/metabolism , Extracellular Matrix/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Protein Transport
17.
Biochim Biophys Acta ; 1833(8): 1844-52, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23531593

ABSTRACT

Cleavage of Rho associated Coiled Coil kinase I (ROCK I) by caspase-3 contributes to membrane blebbing. Whether caspase-3 and ROCK I also play a role in the release of membrane vesicles is unknown. Therefore, we transfected a human breast cancer cell line (MCF-7) that is caspase-3 deficient, lacks membrane blebbing, and does not release membrane vesicles, with caspase-3. Cells expressing caspase-3 demonstrate both ROCK I-mediated membrane blebbing, and release of small (400-600nm) membrane vesicles in a ROCK I-independent manner. These membrane vesicles contain caspase-3, and are enriched in caspase-3 activity compared to the releasing cells. Caspase-3-containing vesicles are taken up by untransfected cells but the cells do not show any sign of apoptosis. In conclusion, we show that the release of caspase-3-enriched membrane vesicles and membrane blebbing are two differentially regulated processes. Furthermore, we hypothesize that packaging of caspase-3 into membrane vesicles contributes to cellular homeostasis by the removal of caspase-3, and concurrently, protects the cells' environment from direct exposure to caspase-3 activity.


Subject(s)
Caspase 3/metabolism , Secretory Vesicles/enzymology , Apoptosis/physiology , Caspase 3/genetics , Cell Line, Tumor , Cell Membrane/enzymology , Cell Membrane/genetics , Cell Membrane/metabolism , Female , Humans , MCF-7 Cells , Secretory Vesicles/genetics , Secretory Vesicles/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
18.
J Immunol ; 189(5): 2169-80, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22826321

ABSTRACT

Exocytosis is a key event in mast cell functions. By this process, mast cells release inflammatory mediators, contained in secretory granules (SGs), which play important roles in immunity and wound healing but also provoke allergic and inflammatory responses. The mechanisms underlying mast cell exocytosis remained poorly understood. An essential step toward deciphering the mechanisms behind exocytosis is the identification of the cellular components that regulate this process. Because Rab GTPases regulate specific trafficking pathways, we screened 44 Rabs for their functional impacts on exocytosis triggered by the FcεRI or combination of Ca ²âº ionophore and phorbol ester. Because exocytosis involves the continuous reorganization of the actin cytoskeleton, we also repeated our screen in the presence of cytochalasin D that inhibits actin polymerization. In this paper, we report on the identification of 30 Rabs as regulators of mast cell exocytosis, the involvement of 26 of which has heretofore not been recognized. Unexpectedly, these Rabs regulated exocytosis in a stimulus-dependent fashion, unless the actin skeleton was disrupted. Functional clustering of the identified Rabs suggested their classification as Rabs involved in SGs biogenesis or Rabs that control late steps of exocytosis. The latter could be further divided into Rabs that localize to the SGs and Rabs that regulate transport from the endocytic recycling compartment. Taken together, these findings unveil the Rab networks that control mast cell exocytosis and provide novel insights into their mechanisms of action.


Subject(s)
Exocytosis/immunology , Gene Expression Regulation, Enzymologic/immunology , Mast Cells/cytology , Mast Cells/enzymology , rab GTP-Binding Proteins/physiology , Actins/physiology , Animals , Cell Line, Tumor , Exocytosis/genetics , Isoenzymes/biosynthesis , Isoenzymes/genetics , Isoenzymes/physiology , Mast Cells/metabolism , Rats , Secretory Vesicles/enzymology , Secretory Vesicles/immunology , rab GTP-Binding Proteins/biosynthesis , rab GTP-Binding Proteins/genetics
19.
Parasitol Res ; 113(8): 2961-72, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24906990

ABSTRACT

Trypanosoma cruzi virulence factors include molecules expressed on the cell surface as well as those secreted or shed into the extracellular medium. Phosphatase activities modulate different aspects of T. cruzi infection, although no studies to date addressed the presence and activity of phosphatases in vesicles secreted by this parasite. Here, we characterized acidic and alkaline secreted phosphatase activities of human-infective trypomastigote forms of T. cruzi from the Y strain and the CL-Brener clone. These are widely studied T. cruzi strains that represent "opposite ends of the spectrum" regarding both in vitro and in vivo behavior. Ecto-phosphatase activities were determined in live parasites, and secreted phosphatase activities were analyzed in soluble protein (SP) and vesicular membrane fractions (VFs) of parasite-conditioned medium. Our analysis using different phosphatase inhibitors strongly suggests that vesicles secreted by Y strain (VF(Y)) and CL-Brener (VF(CLB)) trypomastigotes are derived mostly from the cell surface and from exosome secretion, respectively. Importantly, our results show that the acid phosphatase activities in vesicles secreted by trypomastigotes are largely responsible for the VF-induced increase in adhesion of Y strain parasites to host cells and also for the VF-induced increase in host cell infection by CL-Brener trypomastigotes.


Subject(s)
Acid Phosphatase/metabolism , Alkaline Phosphatase/metabolism , Secretory Vesicles/enzymology , Trypanosoma cruzi/pathogenicity , Virulence Factors/metabolism , Animals , Cell Membrane/metabolism , Cells, Cultured , Macrophages/parasitology , Mice , Secretory Vesicles/ultrastructure , Trypanosoma cruzi/enzymology
20.
Immunol Rev ; 235(1): 117-27, 2010 May.
Article in English | MEDLINE | ID: mdl-20536559

ABSTRACT

Cytotoxic lymphocytes are armed with granules that are released in the granule-exocytosis pathway to kill tumor cells and virus-infected cells. Cytotoxic granules contain the pore-forming protein perforin and a family of structurally homologues serine proteases called granzymes. While perforin facilitates the entry of granzymes into a target cell, the latter initiate distinct apoptotic routes. Granzymes are also implicated in extracellular functions such as extracellular matrix degradation, immune regulation, and inflammation. The family of human granzymes consists of five members, of which granzyme A and B have been studied most extensively. Recently, elucidation of the specific characteristics of the other three human granzymes H, K, and M, also referred to as orphan granzymes, have started. In this review, we summarize and discuss what is currently known about the biology of the human orphan granzymes.


Subject(s)
Cytotoxicity, Immunologic , Granzymes/metabolism , Killer Cells, Natural/enzymology , T-Lymphocytes, Cytotoxic/enzymology , Animals , Apoptosis , Gene Expression Regulation, Enzymologic , Granzymes/genetics , Granzymes/immunology , Humans , Killer Cells, Natural/immunology , Mice , Perforin/metabolism , Protein Conformation , Secretory Vesicles/enzymology , Secretory Vesicles/immunology , Structure-Activity Relationship , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL