Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Publication year range
1.
Annu Rev Genet ; 50: 93-111, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27617973

ABSTRACT

Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions. We discuss how the sperm interacts with the female reproductive tract, zona pellucida, and the oolemma. Finally, we review recent progress made in elucidating the mechanisms that reduce polyspermy and ensure that eggs normally fuse with only a single sperm.


Subject(s)
Fertilization/genetics , Sperm-Ovum Interactions/genetics , Animals , Female , Gene Expression Regulation, Developmental , Humans , Male , Tetraspanin 29/genetics , Zona Pellucida/physiology
2.
Mol Biol Rep ; 51(1): 749, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874800

ABSTRACT

Background The incidence of various types of cancers, including leukemia, is on the rise and many challenges in both drug resistance and complications related to chemotherapy appeared. Recently, the development and application of extracellular vesicles (EV) such as exosomes in the management of cancers, especially leukemia, holds great significance. In this article, we extracted exosomes from NALM6 cells and assessed their regulatory effects on proliferation and apoptosis in mesenchymal stem cells (MSCs). Method and result We first verified the exosomes using various techniques, including flow cytometry, transient electron microscopy, dynamic light scattering (DLS), and BCA protein assay. Then MTT analysis and flowcytometry (apoptosis and cell cycle assay) besides gene expressions were employed to determine the state of MSC proliferations. The results indicated that exosome-specific pan markers like CD9, CD63, and CD81 were present. Through DLS, we found out that the mean size of the exosomes was 89.68 nm. The protein content was determined to be 956.292 µg/ml. Analysis of MTT, flow cytometry (cell cycle and apoptosis assay), and RT-qPCR showed that in the dose of 50 µg/ml the proliferation of MSCs was increased significantly (p-value < 0.05). Conclusion All these data showed that exosomes use several signaling pathways to increase the MSCs' proliferation and drug resistance, ultimately leading to high mortalities and morbidities of acute lymphoblastic leukemia.


Subject(s)
Apoptosis , Cell Proliferation , Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Humans , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Tetraspanin 29/metabolism , Tetraspanin 29/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tetraspanin 30/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
3.
Development ; 147(15)2020 08 14.
Article in English | MEDLINE | ID: mdl-32665248

ABSTRACT

Gamete fusion is an indispensable process for bearing offspring. In mammals, sperm IZUMO1-oocyte JUNO recognition essentially carries out the primary step of this process. In oocytes, CD9 is also known to play a crucial role in gamete fusion. In particular, microvilli biogenesis through CD9 involvement appears to be a key event for successful gamete fusion, because CD9-disrupted oocytes produce short and sparse microvillous structures, resulting in almost no fusion ability with spermatozoa. In order to determine how CD9 and JUNO cooperate in gamete fusion, we analyzed the molecular profiles of each molecule in CD9- and JUNO-disrupted oocytes. Consequently, we found that CD9 is crucial for the exclusion of GPI-anchored proteins, such as JUNO and CD55, from the cortical actin cap region, suggesting strict molecular organization of the unique surface of this region. Through distinct surface compartmentalization due to CD9 governing, GPI-anchored proteins are confined to the appropriate fusion site of the oocyte.


Subject(s)
Oocytes/metabolism , Tetraspanin 29/metabolism , Animals , CD55 Antigens/genetics , CD55 Antigens/metabolism , Female , Male , Mice , Mice, Transgenic , Oocytes/cytology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sperm-Ovum Interactions , Spermatozoa/cytology , Spermatozoa/metabolism , Tetraspanin 29/genetics
4.
Int J Mol Sci ; 23(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35563166

ABSTRACT

The tetraspanin CD9 is considered a metastasis suppressor in many cancers, however its role is highly debated. Currently, little is known about CD9 prognostic value in cutaneous melanoma. Our aim was to analyse CD9 expression in melanocytic nevi and primary cutaneous melanomas through immunohistochemistry and immunofluorescence approaches to determine its correlation with invasiveness and metastatic potential. CD9 displayed homogeneous staining in all melanocytic nevi. In contrast, it showed a complete loss of reactivity in all thin melanomas. Interestingly, CD9 was re-expressed in 46% of intermediate and thick melanomas in small tumor clusters predominantly located at sites of invasion near or inside the blood or lymphatic vessels. The most notable finding is that all CD9 stained melanomas presented sentinel node positivity. Additionally, a direct association between CD9 expression and presence of distant metastasis was reported. Finally, we confirm that CD9 expression is consistent with an early protective role against tumorigenesis, however, our data endorse in melanoma a specific function of CD9 in vascular dissemination during late tumor progression. The presence of CD9 hotspots could be essential for melanoma cell invasion in lymphatic and endothelial vessels. CD9 could be a valid prognostic factor for lymph node metastasis risk.


Subject(s)
Melanoma , Nevus, Pigmented , Skin Neoplasms , Humans , Melanoma/metabolism , Sentinel Lymph Node Biopsy , Skin Neoplasms/pathology , Tetraspanin 29/genetics , Tetraspanins/genetics , Melanoma, Cutaneous Malignant
5.
Biol Reprod ; 104(6): 1292-1301, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33724343

ABSTRACT

Sperm-oocyte binding initiates an outside-in signaling event in the mouse oocyte that triggers recruitment and activation of the cytosolic protein kinase PTK2B in the cortex underlying the bound sperm. While not involved in gamete fusion, PTK2B activity promotes actin remodeling events important during sperm incorporation. However, the mechanism by which sperm-oocyte binding activates PTK2B is unknown, and the present study examined the possibility that sperm interaction with specific oocyte surface proteins plays an important role in PTK2B activation. Imaging studies revealed that as IZUMO1R and CD9 became concentrated at the sperm binding site, activated (phosphorylated) PTK2B accumulated in the cortex underlying the sperm head and in microvilli partially encircling the sperm head. In order to determine whether IZUMO1R and/or CD9 played a significant role in PTK2B recruitment and activation at the sperm binding site, the ability of oocytes null for Izumo1r or Cd9, to initiate an increase in PTK2B content and activation was tested. The results revealed that IZUMO1R played a minor role in PTK2B activation and had no effect on actin remodeling; however, CD9 played a very significant role in PTK2B activation and subsequent actin remodeling at the sperm binding site. These findings suggest the possibility that interaction of sperm surface proteins with CD9 or CD9-associated oocyte proteins triggers PTK2B activation at the sperm binding site.


Subject(s)
Focal Adhesion Kinase 2/genetics , Oocytes/physiology , Receptors, Cell Surface/genetics , Signal Transduction , Sperm-Ovum Interactions , Spermatozoa/physiology , Tetraspanin 29/genetics , Animals , Focal Adhesion Kinase 2/metabolism , Male , Mice , Mice, Transgenic , Receptors, Cell Surface/metabolism , Tetraspanin 29/metabolism
6.
Vet Res ; 52(1): 28, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33597018

ABSTRACT

CD9 is a glycoprotein of the transmembrane 4 superfamily that is involved in various cellular processes. Studies related to the immune functions and activities of CD9 in teleost fish are limited. In this study, we characterized two CD9 homologs, PoCD9.1 and PoCD9.3, from Japanese flounder (Paralichthys olivaceus). Sequence analysis showed that PoCD9.1 and PoCD9.3 possess characteristic transmembrane 4 superfamily (TM4SF) structures. PoCD9.1 shares 70.61% sequence identity with PoCD9.3. The expression of PoCD9.1 and PoCD9.3 in the three main immune tissues was significantly induced in a time-dependent manner by extracellular and intracellular pathogen infection, which indicates that the two CD9 homologs play an important role in the response to pathogenic infection. Following infection with the extracellular pathogen Vibrio anguillarum, the expression profiles of both PoCD9.1 and PoCD9.3 were similar. After infection with the intracellular pathogen Edwardsiella piscicida, the expression levels of PoCD9.1 and PoCD9.3 were different at different stages of infection, especially in the spleen. The spleen was the most important tissue for the PoCD9.1 and PoCD9.3 responses to pathogen infection among the three examined immune tissues. Knockdown of PoCD9.1 and PoCD9.3 attenuated the ability of host cells to eliminate pathogenic bacteria, and PoCD9.1 knockdown was more lethal than PoCD9.3 knockdown for host cells with E. piscicida infection. Overexpression of PoCD9.1 and PoCD9.3 promoted host or host cell defence against E. piscicida infection. These findings suggest that PoCD9.1 and PoCD9.3 serve as immune-related factors, play an important role in the immune defence system of Japanese flounder, and display different functions in response to different pathogens at different stages of infection.


Subject(s)
Flounder/genetics , Flounder/immunology , Gene Expression Regulation/immunology , Tetraspanin 29/genetics , Amino Acid Sequence , Animals , Cell Line , Edwardsiella , Escherichia coli , Gills/cytology , Head Kidney/metabolism , Iridoviridae , Liver/metabolism , Models, Molecular , Protein Conformation , Spleen/metabolism , Tetraspanin 29/metabolism , Transcriptome , Vibrio
7.
Exp Cell Res ; 392(1): 112009, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32305326

ABSTRACT

One of the reasons for recurrence following treatment of high grade serous ovarian carcinoma (HGSOC) is the persistence of residual cancer stem cells (CSCs). There has been variability between laboratories in the identification of CSC markers for HGSOC. We have identified new surface markers (CD24, CD9 and EPHA1) in addition to those previously known (CD44, CD117 and CD133) using a bioinformatics approach. The expression of these surface markers was evaluated in ovarian cancer cell lines, primary malignant cells (PMCs), normal ovary and HGSOC. There was no preferential expression of any of the markers or a combination. All the markers were expressed at variable levels in ovarian cancer cell lines and PMCs. Only CD117 and CD9 were expressed in the normal ovarian surface epithelium and fallopian tube. Both ALDEFLUOR (ALDH1A1) and side population assays identified a small proportion of cells (<3%) separately that did not overlap with little variability in cell lines and PMCs. All surface markers were co-expressed in ALDH1A1+ cells without preference for one combination. The cell cycle analysis of ALDH1A1+ cells alone revealed that majority of them reside in G0/G1 phase of cell cycle. Further separation of G0 and G1 phases showed that ALDH1A1+ cells reside in G1 phase of the cell cycle. Xenograft assays showed that the combinations of ALDH1A1 + cells co-expressing CD9, CD24 or EPHA1 were more tumorigenic and aggressive with respect to ALDH1A1-cells. These data suggest that a combined approach could be more useful in identifying CSCs in HGSOC.


Subject(s)
Aldehyde Dehydrogenase 1 Family/metabolism , Biomarkers, Tumor/metabolism , Cystadenocarcinoma, Serous/pathology , Neoplastic Stem Cells/physiology , Ovarian Neoplasms/pathology , Retinal Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Biomarkers, Tumor/genetics , CD24 Antigen/genetics , CD24 Antigen/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Female , Heterografts , Humans , Mice , Mice, Nude , Mice, Transgenic , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Receptor, EphA1/genetics , Receptor, EphA1/metabolism , Retinal Dehydrogenase/genetics , Tetraspanin 29/genetics , Tetraspanin 29/metabolism
8.
PLoS Genet ; 14(10): e1007688, 2018 10.
Article in English | MEDLINE | ID: mdl-30325918

ABSTRACT

Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, Ras mutations alone are insufficient for tumorigenesis, therefore it is paramount to identify cooperating cancer-relevant signaling pathways. We devised an in vivo near genome-wide, functional screen in Drosophila and discovered multiple novel, evolutionarily-conserved pathways controlling Ras-driven epithelial tumorigenesis. Human gene orthologs of the fly hits were significantly downregulated in thousands of primary tumors, revealing novel prognostic markers for human epithelial tumors. Of the top 100 candidate tumor suppressor genes, 80 were validated in secondary Drosophila assays, identifying many known cancer genes and multiple novel candidate genes that cooperate with Ras-driven tumorigenesis. Low expression of the confirmed hits significantly correlated with the KRASG12 mutation status and poor prognosis in pancreatic cancer. Among the novel top 80 candidate cancer genes, we mechanistically characterized the function of the top hit, the Tetraspanin family member Tsp29Fb, revealing that Tsp29Fb regulates EGFR signaling, epithelial architecture and restrains tumor growth and invasion. Our functional Drosophila screen uncovers multiple novel and evolutionarily conserved epithelial cancer genes, and experimentally confirmed Tsp29Fb as a key regulator of EGFR/Ras induced epithelial tumor growth and invasion.


Subject(s)
Drosophila Proteins/genetics , IMP Dehydrogenase/genetics , Neoplasms/genetics , Tetraspanin 29/genetics , Animals , Animals, Genetically Modified , Carcinogenesis/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Genes, ras , Genetic Testing/methods , Humans , IMP Dehydrogenase/metabolism , Male , Mice , Neoplasms/metabolism , Neoplasms/pathology , Oncogenes , Signal Transduction , Tetraspanin 29/metabolism , Tumor Suppressor Proteins/genetics
9.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572290

ABSTRACT

Tetraspanin CD9 is widely expressed on various cell types, such as cancer cells and mesenchymal stem cells (MSCs), and/or cell-released exosomes. It has been reported that exosomal CD9 plays an important role in intercellular communications involved in cancer cell migration and metastasis. However, reports on the effect of the CD9 of MSCs or MSC-derived exosomes on cancer cell migration are still lacking. In this study, using a transwell migration assay, we found that both dextran-coated iron oxide nanoparticles (dex-IO NPs) and ionomycin stimulated exosomal CD9 expression in human MSCs (hMSCs); however, hMSCs could not deliver them to melanoma cells to affect cell migration. Interestingly, a reduced migration of melanoma cell line was observed when the ionomycin-incubated hMSC-conditioned media but not dex-IO NP-labeled hMSC-conditioned media were in the bottom chamber. In addition, we found that dex-IO NPs decreased cellular CD9 expression in hMSCs but ionomycin increased this. Simultaneously, we found that ionomycin suppressed the expression and secretion of the chemokine CCL21 in hMSCs. The silencing of CD9 demonstrated an inhibitory role of cellular CD9 in CCL21 expression in hMSCs, suggesting that ionomycin could upregulate cellular CD9 to decrease CCL21 expression and secretion of hMSCs, which would reduce the migration of B16F10, A549 and U87MG cancer cell lines due to chemoattraction reduction of CCL21. The present study not only highlights the important role of bone marrow-derived hMSCs' CD9-mediated CCL21 regulation in cancer bone metastasis but also suggests a new distinct pharmaceutical strategy for prevention or/and therapy of cancer metastasis.


Subject(s)
Bone Neoplasms/secondary , Cell Movement/physiology , Chemokine CCL21/metabolism , Mesenchymal Stem Cells/metabolism , Tetraspanin 29/metabolism , Animals , Bone Marrow/pathology , Cell Line, Tumor , Cell Movement/drug effects , Chemokine CCL21/genetics , Coculture Techniques , Culture Media, Conditioned/pharmacology , Exosomes/metabolism , Gene Knockdown Techniques , Humans , Ionomycin/pharmacology , Mesenchymal Stem Cells/cytology , Mice , Paracrine Communication/drug effects , Primary Cell Culture , Tetraspanin 29/genetics , Up-Regulation/drug effects
10.
Int J Mol Sci ; 22(4)2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33562323

ABSTRACT

Aggressive chemotherapy treatment may lead to male infertility. Prepubertal boys do not produce sperm at this age, however, they have spermatogonial stem cells in their testes. Here, we examined the effect of intraperitoneal injection of cyclophosphamide (CP) on the capacity of immature mice (IM) to develop spermatogenesis in vivo and in vitro [using methylcellulose culture system (MCS)]. Our results show a significant decrease in testicular weight, total number of testicular cells, and the number of Sertoli, peritubular, premeiotic, and meiotic/post-meiotic cells, but an increase in the percentages of damaged seminiferous tubules in CP-treated IM compared to control. The functionality of Sertoli cells was significantly affected. The addition of testosterone to isolated cells from seminiferous tubules of CP-treated IM significantly increased the percentages of premeiotic (CD9-positive cells) and meiotic/post-meiotic cells (ACROSIN-positive cells) developed in MCS compared to control. The addition of FSH did not affect developed cells in MCS compared to control, but in combination with testosterone, it significantly decreased the percentages of CD9-positive cells and ACROSIN-positive cells. The addition of IL-1 did not affect developed cells in MCS compared to control, but in combination with testosterone, it significantly increased the percentages of VASA-positive cells and BOULE-positive cells compared to IL-1 or testosterone. Addition of TNF significantly increased only CD9-positive cells in MCS compared to control, but in combination with testosterone, it significantly decreased ACROSIN-positive cells compared to testosterone. Our results show a significant impairment of spermatogenesis in the testes of CP-treated IM, and that spermatogonial cells from these mice proliferate and differentiate to meiotic/post-meiotic cells under in vitro culture conditions.


Subject(s)
Cyclophosphamide/toxicity , Cytokines/pharmacology , Hormones/pharmacology , Infertility, Male/pathology , Organ Size/drug effects , Spermatogenesis , Spermatogonia/pathology , Animals , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , In Vitro Techniques , Infertility, Male/chemically induced , Infertility, Male/metabolism , Integrin alpha6/genetics , Integrin alpha6/metabolism , Male , Mice , Mice, Inbred ICR , Mutagens/toxicity , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Spermatogonia/drug effects , Spermatogonia/metabolism , Tetraspanin 29/genetics , Tetraspanin 29/metabolism
11.
J Cell Mol Med ; 24(8): 4871-4876, 2020 04.
Article in English | MEDLINE | ID: mdl-32101370

ABSTRACT

Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence-Associated ß-Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9- and CD81-positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.


Subject(s)
Cellular Senescence/genetics , Endothelial Cells/metabolism , Exosomes/genetics , Extracellular Vesicles/genetics , Biomarkers/metabolism , Endothelial Cells/cytology , Flow Cytometry , Human Umbilical Vein Endothelial Cells , Humans , Tetraspanin 29/genetics , Tetraspanin 30/genetics , beta-Galactosidase/genetics , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
12.
J Cell Mol Med ; 24(1): 814-829, 2020 01.
Article in English | MEDLINE | ID: mdl-31680442

ABSTRACT

Glaucoma has been the leading cause of irreversible blindness worldwide. High intraocular pressure (IOP) is a high-risk factor of glaucoma, repression of which has been the important treatment of glaucoma in clinic. Trabecular meshwork is crucial for maintaining IOP in aqueous humour out-flow system. It is urgent to reveal the molecular mechanism of trabecular meshwork in glaucoma. Previous studies found that some pathways were related to glaucoma, such as extracellular matrix (ECM)-receptor interaction, phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) and apoptosis. To identify novel molecules in glaucoma, we performed high-throughput transcriptome and proteome analysis to immortal human trabecular meshwork cells (iHTM) and glaucomatous human trabecular meshwork cells (GTM3 ), respectively. Twenty-six up-regulated genes/proteins and 59 down-regulated genes/proteins were identified as the high-risk factors based on differential analysis, including some known factors of glaucoma. Furthermore, a glaucoma-related protein-protein interaction (PPI) network was constructed for investigating the function roles of risk factors. Some genes were identified as potential regulator in the pathogenesis of glaucoma based on the topology analysis and module analysis to the network. Importantly, we identified and demonstrated that CD9 played key roles in glaucoma by biological experiment. CD9 is down-regulated in glaucoma, overexpression of CD9 can active integrin α4 (ITGA4), PI3K and Akt, which lead to the decreased apoptosis and attenuate glaucoma. All these results provide a novel molecular therapy of glaucoma.


Subject(s)
Apoptosis , Glaucoma/pathology , Integrins/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tetraspanin 29/metabolism , Trabecular Meshwork/pathology , Cells, Cultured , Glaucoma/genetics , Glaucoma/metabolism , Humans , Integrins/genetics , Phosphatidylinositol 3-Kinase/genetics , Proteome/analysis , Proteome/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Tetraspanin 29/genetics , Trabecular Meshwork/metabolism , Transcriptome
13.
Med Microbiol Immunol ; 209(4): 461-471, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32385608

ABSTRACT

Human papillomaviruses (HPV) are causative agents of various tumours such as cervical cancer. HPV binding to the cell surface of keratinocytes leads to virus endocytosis at tetraspanin enriched microdomains. Complex interactions of the capsid proteins with host proteins as well as ADAM17-dependent ERK1/2 signal transduction enable the entry platform assembly of the oncogenic HPV type 16. Here, we studied the importance of tetraspanin CD9, also known as TSPAN29, in HPV16 infection of different epithelial cells. We found that both overexpression and loss of the tetraspanin decreased infection rates in cells with low endogenous CD9 levels, while reduction of CD9 expression in keratinocytes that exhibit high-CD9 protein amounts, led to an increase of infection. Therefore, we concluded that low-CD9 supports infection. Moreover, we found that changes in CD9 amounts affect the shedding of the ADAM17 substrate transforming growth factor alpha (TGFα) and the downstream phosphorylation of ERK. These effects correlate with those on infection rates suggesting that a specific CD9 optimum promotes ADAM17 activity, ERK signalling and virus infection. Together, our findings implicate that CD9 regulates HPV16 infection through the modulation of ADAM17 sheddase activity.


Subject(s)
ADAM17 Protein/metabolism , MAP Kinase Signaling System , Papillomavirus Infections/metabolism , Tetraspanin 29/metabolism , ADAM17 Protein/genetics , Endocytosis , Gene Expression Regulation , Gene Knockdown Techniques , HaCaT Cells , HeLa Cells , Human papillomavirus 16 , Humans , Keratinocytes/virology , Papillomavirus Infections/virology , Tetraspanin 29/genetics , Transforming Growth Factor alpha/metabolism , Virus Internalization
14.
Pharmacol Res ; 159: 104991, 2020 09.
Article in English | MEDLINE | ID: mdl-32504836

ABSTRACT

LSD1 (histone lysine specific demethylase 1) takes part in the physiological process of cell differentiation, EMT (epithelial-mesenchymal transition) and immune response. In this study, we found LSD1 expression in metastatic gastric cancer tissues was significantly higher than that in normal tissues. Furthermore, LSD1 deletion was found to suppress gastric cancer migration by decreasing intracellular miR-142-5p, which further led to the upregulation of migration suppressor CD9, a newly identified target of miR-142-5p. While LSD1 was reported as a demethylase of H3K4me1/2, H3K9me1/2 and several non-histone proteins, this is a new evidence for LSD1 as a functional regulator of miRNA. On the other hand, our data suggested that promoting the secretion of miR-142-5p using small extracellular vesicles as vehicles is a new mechanism for LSD1 abrogation to down-regulate intracellular miR-142-5p. Taken together, this study uncovered a new mechanism for LSD1 that can contribute to gastric cancer migration by facilitating miR-142-5p to target CD9.


Subject(s)
Cell Movement , Gene Deletion , Histone Demethylases/metabolism , MicroRNAs/metabolism , Stomach Neoplasms/enzymology , Tetraspanin 29/metabolism , Animals , Cell Line, Tumor , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Histone Demethylases/genetics , Humans , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , MicroRNAs/genetics , Neoplasm Invasiveness , Neoplasm Metastasis , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tetraspanin 29/genetics
15.
Int J Med Sci ; 17(7): 865-873, 2020.
Article in English | MEDLINE | ID: mdl-32308539

ABSTRACT

Endogenous electric field (EF)-directed keratinocytes migration is known to play a key role in the wound re-epithelialization process. Although many molecules and signaling pathways are reported important for directional keratinocytes migration under EF, the underlying mechanism remains unclear. Our previous research found that CD9, a trans-membrane protein, is involved in wound re-epithelialization and CD9 downregulation contributes to keratinocytes migration. In this study, we observed the effect of EF on CD9 expression and keratinocytes migration. The keratinocytes migrated directionally toward the cathode and CD9 expression was down-regulated under EF (200mV/mm). In addition, CD9 overexpression reversed EF-induced migratory speed and the electrotactic response of keratinocytes. Also, we found that EF reduced AMP-activated protein kinase (AMPK) activity. Furthermore, AICAR, an AMPK activator, increased CD9 expression under EF, while compound C, an AMPK inhibitor, decreased CD9 expression in keratinocytes. Our results demonstrate that EF regulates CD9 expression and keratinocytes directional migration, in which AMPK pathway plays an important role.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Tetraspanin 29/metabolism , Animals , Cell Movement , Cells, Cultured , Down-Regulation , Electric Stimulation/methods , Humans , Keratinocytes/chemistry , Metabolic Networks and Pathways , Mice, Inbred BALB C , Tetraspanin 29/genetics
16.
Nano Lett ; 19(1): 19-28, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30517011

ABSTRACT

In vitro and in vivo delivery of RNAs of interest holds promise for gene therapy. Recently, exosomes are considered as a kind of rational vehicle for RNA delivery, especially miRNA and/or siRNA, while the loading efficiency is limited. In this study, we engineered the exosomes for RNA loading by constructing a fusion protein in which the exosomal membrane protein CD9 was fused with RNA binding protein, while the RNA of interest either natively harbors or is engineered to have the elements for the binding. By proof-of-principle experiments, we here fused CD9 with HuR, an RNA binding protein interacting with miR-155 with a relatively high affinity. In the exosome packaging cells, the fused CD9-HuR successfully enriched miR-155 into exosomes when miR-155 was excessively expressed. Moreover, miR-155 encapsulated in the exosomes in turn could be efficiently delivered into the recipient cells and recognized the endogenous targets. In addition, we also revealed that the CD9-HuR exosomes could enrich the functional miRNA inhibitor or CRISPR/dCas9 when the RNAs were engineered to have the AU rich elements. Taken together, we here have established a novel strategy for enhanced RNA cargo encapsulation into engineered exosomes, which in turn functions in the recipient cells.


Subject(s)
ELAV-Like Protein 1/chemistry , Exosomes/chemistry , MicroRNAs/chemistry , Tetraspanin 29/chemistry , Animals , CRISPR-Cas Systems/genetics , Cell Line , ELAV-Like Protein 1/genetics , Exosomes/genetics , Gene Transfer Techniques , Humans , Mice , MicroRNAs/genetics , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Tetraspanin 29/genetics
17.
Int J Mol Sci ; 21(19)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33023058

ABSTRACT

Similar to growth-limited human primary cultures of mesenchymal stroma/stem-like cells (MSC), the continuously proliferating human MSC544 cell line produced extracellular vesicles as characterized by expression of the tetraspanin molecules CD9, CD63, and CD81. Release of these particles was predominantly detectable during continuous cell growth of MSC544 in contrast to confluency-mediated transient growth arrest. For therapeutic use, these particles were isolated from proliferating MSC544 after taxol treatment and applied to different cancer cell cultures. A pronounced cytotoxicity of lung, ovarian, and breast cancer cells was observed primarily with taxol-loaded exosomes, similar to the effects displayed by application of taxol substance. While these findings suggested pronounced cancer cell targeting of MSC544 exosomes, a tumor therapeutic approach was performed using a mouse in vivo breast cancer model. Thus, intravenous injection of taxol-loaded MSC544 exosomes displayed superior tumor-reducing capabilities as compared to application of taxol exosomes by oral gavage. To broaden this therapeutic spectrum, epirubicin was applied to MSC544, and the derived exosomes likewise exhibited significant cytotoxic effects in different cancer cell cultures. These findings suggest an unlimited source for large-scale exosome production with reproducible quality to enable variable drug targeting of tumors or other diseases.


Subject(s)
Breast Neoplasms/drug therapy , Exosomes/genetics , Extracellular Vesicles/genetics , Lung Neoplasms/drug therapy , Ovarian Neoplasms/drug therapy , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Exosomes/metabolism , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Female , Heterografts , Humans , Lung Neoplasms/pathology , Mesenchymal Stem Cells/metabolism , Mice , Ovarian Neoplasms/pathology , Paclitaxel/pharmacology , Tetraspanin 28/genetics , Tetraspanin 29/genetics , Tetraspanin 30/genetics , Tetraspanins/genetics
18.
J Cell Physiol ; 234(10): 17677-17689, 2019 08.
Article in English | MEDLINE | ID: mdl-30807658

ABSTRACT

The fusion of sperm and oocytes determines the fertilization competence and subsequent development of embryos, which, in turn, can be affected by various proteins and DNA methylation. However, several factors in this whole regulation process remain unknown, especially in yaks. Here, we report that fibroblast growth factor 10 (FGF10) is an important growth factor that can enhance the maturation rate of yak oocytes and the motility of frozen spermatozoa. Subsequent blastocyst quality was also improved by increasing the total cell number and level of pregnancy-associated protein in blastocysts. These effects were significantly high in the group that received the 5 ng/ml FGF10 treatment, during both in vitro maturation (IVM) and capacitation. Our data show that the effects of FGF10 were dose-dependent at vital steps of embryogenesis in vitro. Furthermore, quantitative polymerase chain reaction, western blot analysis, and immunofluorescence demonstrated that the levels of CD9, CD81, DNMT1, and DNMT3B in both mature cumulus-oocyte complexes and capacitated sperms were regulated by FGF10, which was also highly expressed in the group treated with 5 ng/ml FGF10 during both IVM and capacitation. From our present study, we concluded that FGF10 promotes yak oocyte fertilization competence and subsequent blastocyst quality, and could also regulate CD9, CD81, DNMT1, and DNMT3B to optimize sperm-oocyte interactions and DNA methylation during fertilization.


Subject(s)
Cattle/physiology , Fibroblast Growth Factor 10/physiology , Oocytes/physiology , Animals , Blastocyst/drug effects , Blastocyst/physiology , Cattle/embryology , Cattle/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Embryonic Development/drug effects , Embryonic Development/genetics , Embryonic Development/physiology , Female , Fertilization/drug effects , Fertilization/genetics , Fertilization/physiology , Fertilization in Vitro/veterinary , Fibroblast Growth Factor 10/administration & dosage , In Vitro Oocyte Maturation Techniques/veterinary , Male , Oocytes/drug effects , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tetraspanin 28/genetics , Tetraspanin 28/metabolism , Tetraspanin 29/genetics , Tetraspanin 29/metabolism , DNA Methyltransferase 3B
19.
J Cell Biochem ; 120(6): 10847-10854, 2019 06.
Article in English | MEDLINE | ID: mdl-30681184

ABSTRACT

Cutaneous wounds, a type of soft tissue injury, are difficult to heal in aging. Differentiation, migration, proliferation, and apoptosis of skin cells are identified as key factors during wound healing processes. Mesenchymal stem cells have been documented as possible candidates for wound healing treatment because their use could augment the regenerative capacity of many tissues. However, the effects of exosomes derived from adipose-derived stem cell (ADSC-exos) on cutaneous wound healing remain to be carefully elucidated. In this present study, HaCaT cells were exposed to hydrogen peroxide (H2 O 2 ) for the establishment of the skin lesion model. Cell Counting Kit-8 assay, migration assay, and flow cytometry assay were conducted to detect the biological function of ADSC-exos in skin lesion model. Finally, the possible mechanism was further investigated using Western blot assay. The successful construction of the skin lesion model was confirmed by results of the enhanced cell apoptosis of HaCaT cells induced by H 2 O 2 , the increased Bax expression and decreased Bcl-2 expression. CD9 and CD63 expression evidenced the existence of ADSC-exos. The results of functional experiments demonstrated that ADSC-exos could prompt cell proliferation and migration of HaCaT cells, and repress cell apoptosis of HaCaT cells. In addition, the activation of Wnt/ß-catenin signaling was confirmed by the enhanced expression of ß-catenin at the protein level. Collectively, our findings suggest that ADSC-exos play a positive role in cutaneous wound healing possibly via Wnt/ß-catenin signaling. Our study may provide new insights into the therapeutic target for cutaneous wound healing.


Subject(s)
Exosomes/chemistry , Keratinocytes/metabolism , Mesenchymal Stem Cells/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Apoptosis/genetics , Cell Differentiation , Cell Line , Cell Movement , Cell Proliferation , Gene Expression Regulation , Humans , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Keratinocytes/cytology , Keratinocytes/drug effects , Mesenchymal Stem Cells/cytology , Models, Biological , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Skin/injuries , Tetraspanin 29/genetics , Tetraspanin 29/metabolism , Tetraspanin 30/genetics , Tetraspanin 30/metabolism , Wound Healing/genetics , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , beta Catenin/metabolism
20.
J Virol ; 92(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-29976662

ABSTRACT

Herpes simplex virus 1 (HSV-1)-infected cells release extracellular vesicles (EVs) that deliver to uninfected cells viral factors and host components, such as the stimulator of interferon genes (STING), which activates type I interferon upon foreign DNA sensing. The functions of EVs released by HSV-1-infected cells have remained unknown. Here, we describe a procedure to separate the EVs from HSV-1 virions that is based on an iodixanol/sucrose gradient. STING, along with the EV markers CD63 and CD9, was found in light-density fractions, while HSV components accumulated in heavy-density fractions. HSV-1 infection stimulated the release of EVs from the cells. The EVs derived from infected cells, but not from uninfected cells, activated innate immunity in recipient cells and suppressed viral gene expression and virus replication. Moreover, only the EVs derived from infected cells stimulated the expression of a subset of M1-type markers in recipient macrophages. Conversely, EVs derived from STING-knockdown cells failed to stimulate the expression of these M1-type markers, they activated innate immune responses to a lesser extent in recipient cells, and they did not sustain the inhibition of virus replication. These data suggest that STING from the EV donor cells contributes to the antiviral responses in cells receiving EVs from HSV-1-infected cells. Perturbations in the biogenesis of EVs by silencing CD63 or blocking the activity of the neutral spingomyelinase-2 (nSMase-2) increased the HSV-1 yields. Overall, our data suggest that the EVs released from HSV-1-infected cells negatively impact the infection and could control the dissemination of the virus.IMPORTANCE Extracellular vesicles (EVs) are released by all types of cells as they constitute major mechanism of intercellular communication and have the capacity to alter the functions of recipient cells despite their limited capacity for cargo. How the EVs released by HSV-infected cells could alter the surrounding microenvironment and influence the infection currently remains unknown. The cargo of EVs reflects the physiological state of the cells in which they were produced, so the content of EVs originating from infected cells is expected to be substantially different from that of healthy cells. Our studies indicate that the EVs released by HSV-1-infected cells carry innate immune components such as STING and other host and viral factors; they can activate innate immune responses in recipient cells and inhibit HSV-1 replication. The implication of these data is that the EVs released by HSV-1-infected cells could control HSV-1 dissemination promoting its persistence in the host.


Subject(s)
Extracellular Vesicles/metabolism , Herpesvirus 1, Human/physiology , Immunity, Innate , Interferons/genetics , Membrane Proteins/genetics , Virus Replication/genetics , Animals , Chlorocebus aethiops , Extracellular Vesicles/chemistry , Extracellular Vesicles/immunology , Fibroblasts/virology , Host-Pathogen Interactions , Humans , Interferons/metabolism , Tetraspanin 29/genetics , Tetraspanin 30/genetics , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL