Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(3): 741-754, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38299357

RESUMEN

BACKGROUND: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS: In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS: MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS: An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Animales , Ratones , Placa Aterosclerótica/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Factores de Riesgo , Aterosclerosis/diagnóstico , Aterosclerosis/metabolismo , Aorta/diagnóstico por imagen , Aorta/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Glicerofosfolípidos/metabolismo , Factores de Riesgo de Enfermedad Cardiaca
2.
J Proteome Res ; 23(8): 3012-3024, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38594816

RESUMEN

Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.


Asunto(s)
Aneurisma de la Aorta Torácica , Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Puntos de Control del Ciclo Celular , Daño del ADN , Músculo Liso Vascular , Miocitos del Músculo Liso , Humanos , Enfermedad de la Válvula Aórtica Bicúspide/patología , Enfermedad de la Válvula Aórtica Bicúspide/metabolismo , Aneurisma de la Aorta Torácica/patología , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Puntos de Control del Ciclo Celular/genética , Masculino , Válvula Aórtica/patología , Válvula Aórtica/anomalías , Válvula Aórtica/metabolismo , Femenino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Persona de Mediana Edad , Estrés Oxidativo , Enfermedades de las Válvulas Cardíacas/patología , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/genética , Anciano , Proteómica/métodos , Apoptosis/genética
3.
Eur Heart J ; 44(13): 1112-1123, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477861

RESUMEN

Chronic kidney disease (CKD) is projected to become a leading global cause of death by 2040, and its early detection is critical for effective and timely management. The current definition of CKD identifies only advanced stages, when kidney injury has already destroyed >50% of functioning kidney mass as reflected by an estimated glomerular filtration rate <60 mL/min/1.73 m2 or a urinary albumin/creatinine ratio >six-fold higher than physiological levels (i.e. > 30 mg/g). An elevated urinary albumin-excretion rate is a known early predictor of future cardiovascular events. There is thus a 'blind spot' in the detection of CKD, when kidney injury is present but is undetectable by current diagnostic criteria, and no intervention is made before renal and cardiovascular damage occurs. The present review discusses the CKD 'blind spot' concept and how it may facilitate a holistic approach to CKD and cardiovascular disease prevention and implement the call for albuminuria screening implicit in current guidelines. Cardiorenal risk associated with albuminuria in the high-normal range, novel genetic and biochemical markers of elevated cardiorenal risk, and the role of heart and kidney protective drugs evaluated in recent clinical trials are also discussed. As albuminuria is a major risk factor for cardiovascular and renal disease, starting from levels not yet considered in the definition of CKD, the implementation of opportunistic or systematic albuminuria screening and therapy, possibly complemented with novel early biomarkers, has the potential to improve cardiorenal outcomes and mitigate the dismal 2040 projections for CKD and related cardiovascular burden.


Asunto(s)
Albuminuria , Insuficiencia Renal Crónica , Humanos , Albuminuria/diagnóstico , Albuminuria/etiología , Albuminuria/orina , Riñón , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/prevención & control , Tasa de Filtración Glomerular , Biomarcadores/orina , Albúminas
4.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000114

RESUMEN

Early diagnosis and treatment of chronic kidney disease (CKD) is a worldwide challenge. Subjects with albumin-to-creatinine ratio (ACR) ≥ 30 mg/g and preserved renal function are considered to be at no cardiorenal risk in clinical practice, but prospective clinical studies evidence increased risk, even at the high-normal (HN) ACR range (10-30 mg/g), supporting the need to identify other molecular indicators for early assessment of patients at higher risk. Following our previous studies, here we aim to stratify the normoalbuminuria range according to cardiorenal risk and identify the glycoproteins and N-glycosylation sites associated with kidney damage in subclinical CKD. Glycoproteins were analyzed in urine from hypertensive patients within the HN ACR range compared to control group (C; ACR < 10 mg/g) by mass spectrometry. A different cohort was analyzed for confirmation (ELISA) and sex perspective was evaluated. Patients' follow-up for 8 years since basal urine collection revealed higher renal function decline and ACR progression for HN patients. Differential N-glycopeptides and their N -glycosylation sites were also identified, together with their pathogenicity. N-glycosylation may condition pathological protein deregulation, and a panel of 62 glycoproteins evidenced alteration in normoalbuminuric subjects within the HN range. Haptoglobin-related protein, haptoglobin, afamin, transferrin, and immunoglobulin heavy constant gamma 1 (IGHG1) and 2 (IGHG2) showed increased levels in HN patients, pointing to disturbed iron metabolism and tubular reabsorption and supporting the tubule as a target of interest in the early progression of CKD. When analyzed separately, haptoglobin, afamin, transferrin, and IGHG2 remained significant in HN, in both women and men. At the peptide level, 172 N-glycopeptides showed differential abundance in HN patients, and 26 showed high pathogenicity, 10 of them belonging to glycoproteins that do not show variation between HN and C groups. This study highlights the value of glycosylation in subjects not meeting KDIGO criteria for CKD. The identified N-glycopeptides and glycosylation sites showed novel targets, for both the early assessment of individual cardiorenal risk and for intervention aimed at anticipating CKD progression.


Asunto(s)
Glicopéptidos , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Glicopéptidos/orina , Insuficiencia Renal Crónica/orina , Persona de Mediana Edad , Glicosilación , Anciano , Biomarcadores/orina , Creatinina/orina , Glicoproteínas/orina , Progresión de la Enfermedad , Albuminuria/orina , Factores de Riesgo , Haptoglobinas/metabolismo
5.
J Pathol ; 254(3): 229-238, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33885146

RESUMEN

Thoracic aortic aneurysm (TAA) develops silently and asymptomatically and is a major cause of mortality. TAA prevalence is greatly underestimated, it is usually diagnosed incidentally, and its treatment consists mainly of prophylactic surgery based on the aortic diameter. The lack of effective drugs and biological markers to identify and stratify TAAs by risk before visible symptoms results from scant knowledge of its pathophysiological mechanisms. Here we integrate the structural impairment affecting non-syndromic non-familial TAA with the main cellular and molecular changes described so far and consider how these changes are interconnected through specific pathways. The ultimate goal is to define much-needed novel markers of TAA, and so the potential of previously identified molecules to aid in early diagnosis/prognosis is also discussed. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Aneurisma de la Aorta Torácica , Humanos
6.
BMC Biol ; 18(1): 192, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317539

RESUMEN

BACKGROUND: Subclinical atherosclerosis may result in fatal cardiovascular (CV) events, but the underlying mechanisms and molecular players leading to disease are not entirely understood. Thus, novel approaches capable of identifying the factors involved in pathological progression and providing a better understanding of the subjacent mechanisms are needed. Extracellular vesicles (EVs) have been shown to have numerous biological functions, and their metabolome has recently generated interest as a source of novel biomarkers. The metabolic content of the exosomes has been so far unexplored in cardiovascular disease (CVD), and here, we developed an analytical strategy aimed at probing urinary exosomal metabolite content and its association to CV risk. RESULTS: Direct analysis of the exosomes without metabolite extraction was evaluated by high-resolution magic angle spinning (1H HR-MAS). Other two methodologies for the analysis of exosomal metabolites by 1H NMR were set up, based on methanol or organic solvents sequential extraction. The three methods were compared in terms of the number of detected signals and signal to noise ratio (S/N). The methanol method was applied to identify altered metabolites in the urinary exosomes of subjects with programmed coronary artery by-pass grafting (CABG) versus a control group. Target mass spectrometry (MS) was also performed for differential analysis. The clinical performance of exosomal metabolites of interest in CVD was investigated, and the added value of the exosomes compared to urine analysis was evaluated. Based on S/N ratio, simplicity, reproducibility, and quality of the spectrum, the methanol method was chosen for the study in CVD. A cardiometabolic signature composed by 4-aminohippuric acid, N-1-methylnicotinamide, and citric acid was identified in urinary exosomes. Directly in urine, 4-aminohippuric acid and citric acid do not show variation between groups and changes in N-1-methylnicotinamide are less pronounced, proving the added value of exosomes. CONCLUSIONS: We set up a novel methodology to analyze metabolic alterations in urinary exosomes and identified a cardiometabolic signature in these microvesicles. This study constitutes the first evidence of a role for the exosomal metabolism in CVD and demonstrates the possibility to evaluate the urinary exosomal metabolic content by NMR and MS.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Exosomas/metabolismo , Urinálisis/estadística & datos numéricos , Orina/química , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
7.
Expert Rev Proteomics ; 16(1): 77-92, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30412432

RESUMEN

Introduction: Renin-angiotensin system (RAS) blockers are in clinical use to treat high blood pressure and proteinuric chronic kidney disease. However, RAS blockade is limited by the risk of hyperkalemia, angiotensin receptor blockers are not clinically superior to angiotensin-converting enzyme inhibitors and dual RAS blockade is formally contraindicated. Areas covered: We review the regulation of protein expression and activation by angiotensin II and RAS blockers as it contributes to kidney disease. Specifically excluded are direct renin actions as well as aldosterone actions. The search strategy included the terms angiotensin, protein, proteomics, inflammation, fibrosis, and kidney and was complemented by additional searches based on initial results. Expert commentary: Recent developments include an improved understanding of the structure, function, and signaling of angiotensin G-protein-coupled receptors; identification of ligands that behave as agonists, antagonists, and even reverse agonists on specific signaling and functional pathways of the same receptor; characterization of further signaling pathways by applying proteomics and phosphoproteomics; and systems biology approaches to characterize signatures of adequate RAS blockade or resistance of kidney injury to RAS blockade. These developments will allow optimization of clinical RAS targeting to improve kidney outcomes through precision nephrology strategies that may include combined approaches, along the path marked by clinically successful dual RAS/neprilysin blockade.


Asunto(s)
Enfermedades Renales/metabolismo , Angiotensinas/metabolismo , Animales , Humanos , Proteómica/métodos , Sistema Renina-Angiotensina/fisiología
8.
Clin Sci (Lond) ; 132(7): 739-758, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29626149

RESUMEN

The development of de novo albuminuria during chronic renin-angiotensin system (RAS) suppression is a clinical entity that remains poorly recognized in the biomedical literature. It represents a clear increment in global cardiovascular (CV) and renal risk that cannot be counteracted by RAS suppression. Although not specifically considered, it is clear that this entity is present in most published and ongoing trials dealing with the different forms of CV and renal disease. In this review, we focus on the mechanisms promoting albuminuria, and the predictors and new markers of de novo albuminuria, as well as the potential treatment options to counteract the excretion of albumin. The increase in risk that accompanies de novo albuminuria supports the search for early markers and predictors that will allow practising physicians to assess and prevent the development of de novo albuminuria in their patients.


Asunto(s)
Albuminuria/etiología , Bloqueadores del Receptor Tipo 1 de Angiotensina II , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Humanos , Sistema Renina-Angiotensina , Investigación Biomédica Traslacional
9.
Biochim Biophys Acta ; 1862(4): 725-732, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26675529

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of death globally, being atherosclerosis the main cause. Main risk factors are known and current effort is very much dedicated to improve prevention. However, the asymptomatic and silent course of atherosclerosis hampers an accurate and individualized risk evaluation. OBJECTIVES: Here we investigate subjacent molecular changes taking place in arterial tissue which can be ultimately translated in a measurable fingerprint in plasma. METHODS: First, we applied a combined approach to find out main molecular alterations at protein and metabolite level in response to early atherosclerosis development in a rabbit model. A potential reflection of all these alterations observed in aortic tissue was investigated in rabbit plasma and further analyzed in a translational study in human plasma from 62 individuals. RESULTS: Data link the structural remodeling taking place in atherosclerotic arteries in terms of loss of contractile properties and favored cellular migration, with an up-regulation of integrin linked kinase, tropomyosin isoform 2 and capping protein gelsolin-like, and a down-regulation of vinculin. A molecular response to oxidative stress is evidenced, involving changes in the glucose metabolism enzymes pyruvate kinase (PKM) and phosphoglycerate kinase (PGK), and pyruvate. Up-regulation of aspartate connects different changes observed in amino acid metabolism and, additionally, alterations in the phosphatidylcholine route of the glycerophospholipid metabolism were found. CONCLUSIONS: A specific molecular marker panel composed by PKM, valine and pyruvate is shown here linked to cardiovascular risk.


Asunto(s)
Aminoácidos/metabolismo , Aorta/metabolismo , Aterosclerosis/sangre , Citoesqueleto/metabolismo , Metabolismo Energético , Animales , Aorta/patología , Aterosclerosis/patología , Citoesqueleto/patología , Masculino , Conejos
10.
Expert Rev Proteomics ; 13(1): 69-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26558814

RESUMEN

Atherosclerosis is usually the underlying cause of a fatal event such as myocardial infarction or ictus. The atherome plaque develops silently and asymptomatically within the arterial intima layer. In this context, the possibility to analyze the molecular content of arterial tissue while preserving each molecule's specific localization is of great interest as it may reveal further insights into the physiopathological changes taking place. Mass spectrometry imaging (MSI) enables the spatially resolved molecular analysis of proteins, peptides, metabolites, lipids and drugs directly in tissue, with a resolution sufficient to reveal molecular features specific to distinct arterial structures. MSI represents a novel ex vivo imaging tool still underexplored in cardiovascular diseases. This review focuses on the MSI technique applied to cardiovascular disease and covers the main contributions to date, ongoing efforts, the main challenges and current limitations of MSI.


Asunto(s)
Arterias/metabolismo , Aterosclerosis/diagnóstico , Animales , Arterias/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/metabolismo , Diagnóstico por Imagen , Humanos , Espectrometría de Masas
11.
Cardiovasc Diabetol ; 15: 8, 2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-26772976

RESUMEN

BACKGROUND: Hypertension is a multi-factorial disease of increasing prevalence and a major risk factor for cardiovascular mortality even in the presence of adequate treatment. Progression of cardiovascular disease (CVD) occurs frequently during chronic renin-angiotensin-system (RAS) suppression, and albuminuria is a marker of CV risk. High prevalence of albuminuria in treated hypertensive patients has been demonstrated, but there are no available markers able to predict evolution. The aim of this study was the identification of novel indicators of albuminuria progression measurable in urine of diabetic and non-diabetic patients. METHODS: 1143 hypertensive patients under chronic treatment were followed for a minimum period of 3 years. Among them, 105 diabetic and non-diabetic patients were selected and classified in three groups according to albuminuria development during follow-up: (a) patients with persistent normoalbuminuria; (b) patients developing de novo albuminuria; (c) patients with maintained albuminuria. Differential urine analysis was performed by 2D gel electrophoresis (2D-DIGE) and further confirmed by liquid chromatography-mass spectrometry. Non-parametric statistical tests were applied. RESULTS: CD59 glycoprotein and alpha-1 antitrypsin (AAT) resulted already altered in patients developing albuminuria de novo, with a similar response in those with maintained albuminuria. A prospective study in a sub-group of normoalbuminuric patients who were clinically followed up for at least 1 year from urine sampling, revealed CD59 and AAT proteins significantly varied in the urine collected from normoalbuminurics who will negatively progress, serving as predictors of future albuminuria development. CONCLUSIONS: CD59 and AAT proteins are significantly altered in hypertensive patients developing albuminuria. Interestingly, CD59 and AAT are able to predict, in normoalbuminuric individuals, who will develop albuminuria in the future, being potential predictors of vascular damage and CV risk. These findings contribute to early identify patients at risk of developing albuminuria even when this classical predictor is still in the normal range, constituting a novel strategy towards a prompt and more efficient therapeutic intervention with better outcome.


Asunto(s)
Albuminuria/etiología , Antihipertensivos/uso terapéutico , Antígenos CD59/orina , Nefropatías Diabéticas/etiología , Hipertensión/tratamiento farmacológico , Sistema Renina-Angiotensina/efectos de los fármacos , alfa 1-Antitripsina/orina , Anciano , Albuminuria/diagnóstico , Albuminuria/fisiopatología , Albuminuria/orina , Biomarcadores/orina , Estudios de Casos y Controles , Cromatografía Liquida , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/fisiopatología , Nefropatías Diabéticas/orina , Electroforesis en Gel Bidimensional , Femenino , Humanos , Hipertensión/complicaciones , Hipertensión/diagnóstico , Hipertensión/fisiopatología , Hipertensión/orina , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Proteómica/métodos , Medición de Riesgo , Factores de Riesgo , Espectrometría de Masas en Tándem , Factores de Tiempo , Urinálisis
13.
Clin Sci (Lond) ; 130(7): 525-38, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26733721

RESUMEN

Resistant albuminuria, developed under adequate chronic blockade of the renin-angiotensin system, is a clinical problem present in a small number of patients with chronic kidney disease (CKD). The mechanism underlying this resistant albuminuria remains unknown. Matrix metalloproteinases (MMPs) are involved in the pathophysiology of cardiovascular and renal diseases. In the present study we tested the role of MMPs in resistant albuminuria. First we evaluated gelatinase MMP-2 and MMP-9 activity by zymography in the Munich Wistar Frömter (MWF) rat, a model of progressive albuminuria, and subsequently in patients with resistant albuminuria. Markers of oxidative stress were observed in the kidneys of MWF rats, together with a significant increase in pro-MMP-2 and active MMP-9 forms. These changes were normalized together with reduced albuminuria in consomic MWF-8(SHR) rats, in which chromosome 8 of MWF was replaced with the respective chromosome from spontaneously hypertensive rats. The MMP-2 and MMP-9 protein levels were similar in patients with normal and resistant albuminuria; however, high circulating levels of collagen IV, a specific biomarker of tissue collagen IV degradation, were observed in patients with resistant albuminuria. These patients showed a significant increase in gelatinase MMP-2 and MMP-9 activity, but only a significant increase in the active MMP-9 form quantified by ELISA, which correlated significantly with the degree of albuminuria. Although the expression of the tissue inhibitor of MMP-9 (TIMP)-1 was similar, a novel AlphaLISA assay demonstrated that the MMP-9-TIMP-1 interaction was reduced in patients with resistant albuminuria. It is of interest that oxidized TIMP-1 expression was higher in patients with resistant albuminuria. Therefore, increased circulating MMP-9 activity is associated with resistant albuminuria and a deleterious oxidative stress environment appears to be the underlying mechanism. These changes might contribute to the progression of CKD in these patients.


Asunto(s)
Albuminuria/enzimología , Riñón/enzimología , Metaloproteinasa 9 de la Matriz/sangre , Insuficiencia Renal Crónica/enzimología , Anciano , Albuminuria/sangre , Albuminuria/diagnóstico , Albuminuria/genética , Albuminuria/prevención & control , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Antihipertensivos/uso terapéutico , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Femenino , Humanos , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Riñón/efectos de los fármacos , Masculino , Metaloproteinasa 2 de la Matriz/sangre , Persona de Mediana Edad , Oxidación-Reducción , Estrés Oxidativo , Unión Proteica , Ratas Wistar , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/prevención & control , Transducción de Señal , Inhibidor Tisular de Metaloproteinasa-1/sangre
14.
Mol Cell Proteomics ; 12(9): 2426-39, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23704777

RESUMEN

One of the major challenges in cardiovascular medicine is to identify candidate biomarker proteins. Secretome analysis is particularly relevant in this search as it focuses on a subset of proteins released by a cell or tissue under certain conditions. The sample can be considered as a plasma subproteome and it provides a more direct approximation to the in vivo situation. Degenerative aortic stenosis is the most common worldwide cause of valve replacement. Using a proteomic analysis of the secretome from aortic stenosis valves we could identify candidate markers related to this pathology, which may facilitate early diagnosis and treatment. For this purpose, we have designed a method to validate the origin of secreted proteins, demonstrating their synthesis and release by the tissue and ruling out blood origin. The nLC-MS/MS analysis showed the labeling of 61 proteins, 82% of which incorporated the label in only one group. Western blot and selective reaction monitoring differential analysis, revealed a notable role of the extracellular matrix. Variation in particular proteins such as PEDF, cystatin and clusterin emphasizes the link between aortic stenosis and atherosclerosis. In particular, certain proteins variation in secretome levels correlates well, not only with label incorporation trend (only labeled in aortic stenosis group) but, more importantly, with alterations found in plasma from an independent cohort of samples, pointing to specific candidate markers to follow up in diagnosis, prognosis, and therapeutic intervention.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Proteínas de la Matriz Extracelular/metabolismo , Mediadores de Inflamación/metabolismo , Péptido Hidrolasas/metabolismo , Anciano , Estenosis de la Válvula Aórtica/sangre , Western Blotting , Femenino , Humanos , Marcaje Isotópico , Masculino , Espectrometría de Masas , Mapas de Interacción de Proteínas , Proteoma/clasificación , Proteoma/metabolismo , Proteómica , Reproducibilidad de los Resultados , Factores de Tiempo
15.
Kidney Int ; 85(1): 103-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24048377

RESUMEN

The prevalence of chronic kidney disease (CKD) is increasing and frequently progresses to end-stage renal disease. There is an urgent demand to discover novel markers of disease that allow monitoring disease progression and, eventually, response to treatment. To identify such markers, and as a proof of principle, we determined if a metabolite signature corresponding to CKD can be found in urine. In the discovery stage, we analyzed the urine metabolome by NMR of 15 patients with CKD and compared that with the metabolome of 15 healthy individuals and found a classification pattern clearly indicative of CKD. A validation cohort of urine samples from an additional 16 patients with CKD and 15 controls was then analyzed by (Selected Reaction Monitoring) liquid chromatography-triple quadrupole mass spectrometry and indicated that a group of seven urinary metabolites differed between CKD and non-CKD urine samples. This profile consisted of 5-oxoproline, glutamate, guanidoacetate, α-phenylacetylglutamine, taurine, citrate, and trimethylamine N-oxide. Thus, we identified a panel of urine metabolites differentially present in urine that may help identify and monitor patients with CKD.


Asunto(s)
Biomarcadores/orina , Fallo Renal Crónico/orina , Metaboloma , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad
16.
Electrophoresis ; 35(18): 2634-41, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24913465

RESUMEN

Urine is a source of potential markers of disease. In the context of renal disease, urine is particularly important as it may directly reflect kidney injury. Current markers of renal dysfunction lack both optimal specificity and sensitivity, and improved technologies and approaches are needed. There is no clear consensus about the best sample pretreatment procedure for 2DE analysis of the urine proteome. Sample pretreatment conditions spots resolution and detection sensitivity, critically. As a first goal, we exhaustively compared eight different sample cleaning and protein purification methodologies for 2DE analysis of urine from healthy individuals. Oasis® HLB cartridges allowed the detection of the highest number of low molecular weight proteins; while PD10 desalting columns resulted in the highest number of detected spots in the high molecular weight area. Sample pretreatment strategies were also explored in the context of proteinuria, a clinical condition often associated to renal damage. Testing of urine samples from 13 patients with hypertension or kidney disease and different levels of proteinuria identified Oasis® HLB cartridge purification in combination with albumin depletion by ProteoPrep kit as the best option for urine proteome profiling from patients with proteinuric (> 30 mg/L albumin in urine) renal disease.


Asunto(s)
Biomarcadores/orina , Electroforesis en Gel Bidimensional/métodos , Enfermedades Renales/metabolismo , Proteoma/análisis , Proteómica/métodos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas/química , Proteínas/aislamiento & purificación , Proteinuria/metabolismo , Proteoma/química
17.
Nefrologia (Engl Ed) ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39054239

RESUMEN

BACKGROUND AND OBJECTIVE: Extracellular vesicles (EV) reflect the pathophysiological state of their cells of origin and are a reservoir of renal information accessible in urine. When biopsy is not an option, EV present themselves as sentinels of function and damage, providing a non-invasive approach. However, the analysis of EV in urine requires prior isolation, which slows down and hinders transition into clinical practice. The aim of this study is to show the applicability of the "single particle interferometric reflectance imaging sensor" (SP-IRIS) technology through the ExoView® platform for the direct analysis of urine EV and proteins involved in renal function. MATERIALS AND METHODS: The ExoView® technology enables the quantification and phenotyping of EV present in urine and the quantification of their membrane and internal proteins. We have applied this technology to the quantification of urinary EV and their proteins with renal tubular expression, amnionless (AMN) and secreted frizzled-related protein 1 (SFRP1), using only 5 µl of urine. Tubular expression was confirmed by immunohistochemistry. RESULTS: The mean size of the EV analysed was 59 ± 16 nm for those captured by tetraspanin CD63, 61 ± 16 nm for those captured by tetraspanin CD81, and 59 ± 10 for tetraspanin CD9, with CD63 being the majority EV subpopulation in urine (48.92%). The distribution of AMN and SFRP1 in the three capture tetraspanins turned out to be similar for both proteins, being expressed mainly in CD63 (48.23% for AMN and 52.1% for SFRP1). CONCLUSIONS: This work demonstrates the applicability and advantages of the ExoView® technique for the direct analysis of urine EV and their protein content in relation to the renal tubule. The use of minimum volumes, 5 µl, and the total analysis time not exceeding three hours facilitate the transition of EV into daily clinical practice as sources of diagnostic information.

18.
Mol Cell Proteomics ; 10(4): M110.003517, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21248247

RESUMEN

Coronary atherosclerosis still represents the major cause of mortality in western societies. Initiation of atherosclerosis occurs within the intima, where major histological and molecular changes are produced during pathogenesis. So far, proteomic analysis of the atherome plaque has been mainly tackled by the analysis of the entire tissue, which may be a challenging approach because of the great complexity of this sample in terms of layers and cell type composition. Based on this, we aimed to study the intimal proteome from the human atherosclerotic coronary artery. For this purpose, we analyzed the intimal layer from human atherosclerotic coronaries, which were isolated by laser microdissection, and compared with those from preatherosclerotic coronary and radial arteries, using a two-dimensional Differential-In-Gel-Electrophoresis (DIGE) approach. Results have pointed out 13 proteins to be altered (seven up-regulated and six down-regulated), which are implicated in the migrative capacity of vascular smooth muscle cells, extracellular matrix composition, coagulation, apoptosis, heat shock response, and intraplaque hemorrhage deposition. Among these, three proteins (annexin 4, myosin regulatory light 2, smooth muscle isoform, and ferritin light chain) constitute novel atherosclerotic coronary intima proteins, because they were not previously identified at this human coronary layer. For this reason, these novel proteins were validated by immunohistochemistry, together with hemoglobin and vimentin, in an independent cohort of arteries.


Asunto(s)
Enfermedad de la Arteria Coronaria/metabolismo , Vasos Coronarios/patología , Proteoma/metabolismo , Túnica Íntima/patología , Anexina A4/metabolismo , Apoferritinas/metabolismo , Estudios de Casos y Controles , Vasos Coronarios/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Hemoglobinas/metabolismo , Humanos , Cadenas Ligeras de Miosina/metabolismo , Análisis de Componente Principal , Espectrometría de Masas en Tándem , Túnica Íntima/metabolismo , Electroforesis Bidimensional Diferencial en Gel/métodos , Vimentina/metabolismo
19.
Methods Mol Biol ; 2668: 57-68, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37140790

RESUMEN

Extracellular vesicle (EV) release and their content are influenced by diverse clinical conditions. EVs participate in inter-cellular communication and have been postulated as reflectors of the pathophysiology of the cells, tissues, organs or the whole system with which they are in contact. Urinary EVs have been proved to reflect pathophysiology not only of renal system related diseases constituting an additional source of potential biomarkers easily accessible in a non-invasive way. The interest in EVs cargo has been mostly focused on proteins and nucleic acids and more recently it has been extended to metabolites. Metabolites represent the downstream changes in the genome, transcriptome, and proteome as a reflection of processes occurring in living organisms. For their study, nuclear magnetic resonance (NMR) and mass spectrometry in tandem (LC-MS/MS) are widely used. NMR is a reproducible and non-destructive technique and we show here methodological protocols for the metabolomics analysis of urinary EVs by NMR. Additionally, we also describe the workflow for a targeted LC-MS/MS analysis that is extensible to untargeted studies.


Asunto(s)
Vesículas Extracelulares , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Espectroscopía de Resonancia Magnética/métodos , Vesículas Extracelulares/metabolismo
20.
Clin Kidney J ; 16(3): 447-455, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36865017

RESUMEN

Kidney transplantation is the treatment of choice for patients with kidney failure. Priority on the waiting list and optimal donor-recipient matching are guided by mathematical scores, clinical variables and macroscopic observation of the donated organ. Despite the increasing rates of successful kidney transplantation, maximizing the number of available organs while ensuring the optimum long-term performance of the transplanted kidney remains both key and challenging, and no unequivocal markers are available for clinical decision making. Moreover, the majority of studies performed thus far has focused on the risk of primary non-function and delayed graft function and subsequent survival and have mainly analysed recipients' samples. Given the increasing use of donors with expanded criteria and/or cardiac death, predicting whether grafts will provide sufficient kidney function is increasingly more challenging. Here we compile the available tools for pre-transplant kidney evaluation and summarize the latest molecular data from donors that may predict short-term (immediate or delayed graft function), medium-term (6 months) and long-term (≥12 months) kidney function. The use of liquid biopsy (urine, serum, plasma) to overcome the limitations of the pre-transplant histological evaluation is proposed. Novel molecules and approaches such as the use of urinary extracellular vesicles are also reviewed and discussed, along with directions for future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA