RESUMEN
The synthesis, structure, and catalytic activity of a Ti(II)/Ti(III) inverted sandwich compound are presented in this study. Synthesis of the arene-bridged dititanium compound begins with the preparation of the titanium(IV) precursor [TiCl2(MesPDA)(thf)2] (MesPDA = N,N'-bis(2,4,6-trimethylphenyl)-o-phenylenediamide) (2). The reduction of 2 with sodium metal results in species [{Ti(MesPDA)(thf)}2(µ-Cl)3{Na}] (3) in oxidation state III. To achieve the lower oxidation state II, 2 undergoes reduction through alkylation with lithium cyclopentyl. This alkylation approach triggers a cascade of reactions, including ß-hydride abstraction/elimination, hydrogen evolution, and chemical reduction, to generate the Ti(II)/Ti(III) compound [Li(thf)4][(TiMesPDA)2(µ-η6: η6-C6H6)] (4). X-ray and EPR characterization confirms the mixed-valence states of the titanium species. Compound 4 catalyzes a mild, efficient, and regiospecific cyclotrimerization of alkynes to form 1,3,5-substituted arenes. Kinetic data support a mechanism involving a binuclear titanium arene compound, similar to compound 4, as the resting state. The active catalyst promotes the oxidative coupling of two alkynes in the rate-limiting step, followed by a rapid [4 + 2] cycloaddition to form the arene product. Computational analysis of the resting state for the cycloaddition of trimethylsilylacetylene indicates a thermodynamic preference for stabilizing the 1,3,5-arene within the space between the two [TiMesPDA] fragments, consistent with the observed regioselectivity.
RESUMEN
The reaction of [TaCpRX4] (CpR = η5-C5Me5, η5-C5H4SiMe3, η5-C5HMe4; X = Cl, Br) with SiH3Ph resulted in the formation of the dinuclear hydride tantalum(IV) compounds [(TaCpRX2)2(µ-H)2], structurally identified by single-crystal X-ray analyses. These species react with azobenzene to give the mononuclear imide complex [TaCpRX2(NPh)] along with the release of molecular hydrogen. Analogous reactions between the [{Ta(η5-C5Me5)X2}2(µ-H)2] derivatives and the cyclic diazo reagent benzo[c]cinnoline afford the biphenyl-bridged (phenylimido)tantalum complexes [{Ta(η5-C5Me5)X2}2(µ-NC6H4C6H4N)] along with the release of molecular hydrogen. When the compounds [(TaCpRX2)2(µ-H)2] (CpR = η5-C5H4SiMe3, η5-C5HMe4; X = Cl, Br) were employed, we were able to trap the side-on-bound diazo derivatives [(TaCpRX)2{µ-(η2,η2-NC6H4C6H4N)}] (CpR = η5-C5H4SiMe3, η5-C5HMe4; X = Cl, Br) as intermediates in the NâN bond cleavage process. DFT calculations provide insights into the NâN cleavage mechanism, in which the ditantalum(IV) fragment can promote two-electron reductions of the NâN bond at two different metal-metal bond splitting stages.