Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(15): e2306353, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37997226

RESUMEN

Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.

2.
Inorg Chem ; 63(12): 5642-5651, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38469751

RESUMEN

Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs' molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2]n (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3-), and -OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn-V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm-2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen.

3.
Inorg Chem ; 63(27): 12667-12680, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38916987

RESUMEN

Several measures, including crude oil recovery improvement and carbon dioxide (CO2) conversion into valuable chemicals, have been considered to decrease the greenhouse effect and ensure a sustainable low-carbon future. The Knoevenagel condensation and CO2 fixation have been introduced as two principal solutions to these challenges. In the present study for the first time, bio-metal-organic frameworks (MOF)(Cu)/graphene oxide (GO) nanocomposites have been used as catalytic agents for these two reactions. In view of the attendance of amine groups, biological MOFs with NH2 functional groups as Lewis base sites protruding on the channels' internal surface were used. The bio-MOF(Cu)/20%GO performs efficaciously in CO2 fixation, leading to more than 99.9% conversion with TON = 525 via a solvent-free reaction under a 1 bar CO2 atmosphere. It has been shown that these frameworks are highly catalytic due to the Lewis basic sites, i.e., NH2, pyrimidine, and C═O groups. Besides, the Lewis base active sites exert synergistic effects and render bio-MOF(Cu)/10%GO nanostructures as highly efficient catalysts, significantly accelerating Knoevenagel condensation reactions of aldehydes and malononitrile as substrates, thanks to the high TOF (1327 h-1) and acceptable reusability. Bio-MOFs can be stabilized in reactions using GO with oxygen-containing functional groups that contribute as efficient substitutes, leading to an expeditious reaction speed and facilitating substrate absorption.

4.
Small ; 19(43): e2300673, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37376842

RESUMEN

Urea oxidation reaction (UOR) is one of the promising alternative anodic reactions to water oxidation that has attracted extensive attention in green hydrogen production. The application of specifically designed electrocatalysts capable of declining energy consumption and environmental consequences is one of the major challenges in this field. Therefore, the goal is to achieve a resistant, low-cost, and environmentally friendly electrocatalyst. Herein, a water-stable fluorinated Cu(II) metalorganic framework (MOF) {[Cu2 (L)(H2 O)2 ]·(5DMF)(4H2 O)}n (Cu-FMOF-NH2 ; H4 L = 3,5-bis(2,4-dicarboxylic acid)-4-(trifluoromethyl)aniline) is developed utilizing an angular tetracarboxylic acid ligand that incorporates both trifluoromethyl (-CF3 ) and amine (-NH2 ) groups. The tailored structure of Cu-FMOF-NH2 where linkers are connected by fluoride bridges and surrounded by dicopper nodes reveals a 4,24T1 topology. When employed as electrocatalyst, Cu-FMOF-NH2 requires only 1.31 V versus reversible hydrogen electrode (RHE) to deliver 10 mA cm-2 current density in 1.0 m KOH with 0.33 m urea electrolyte and delivered an even higher current density (50 mA cm-2 ) at 1.47 V versus RHE. This performance is superior to several reported catalysts including commercial RuO2 catalyst with overpotential of 1.52 V versus RHE. This investigation opens new opportunities to develop and utilize pristine MOFs as a potential electrocatalyst for various catalytic reactions.

5.
Inorg Chem ; 62(45): 18680-18688, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37907390

RESUMEN

Photocatalytic H2 evolution has recently attracted much attention due to the reduction of nonrenewable energy sources and the increasing demand for renewable sustainable energies. Meanwhile, metal-organic frameworks (MOFs) are emerging potential photocatalysts due to their structural adaptability, porous configuration, several active sites, and a wide range of performance. Nevertheless, there are still limitations in the photocatalytic H2 evolution reaction of MOFs with higher charge recombination rates. Herein, a copper-organic framework with dual-functionalized linkers {[Cu2(L)(H2O)2]·(5DMF)(4H2O)}n (fluorinated MOF(Cu)-NH2; H4L = 3,5-bis(2,4-dicarboxylic acid)-4-(trifluoromethyl)aniline) and with a rare 2-nodal 4,12-connected shp topology has been synthesized by a ligand-functionalization strategy and evaluated for the photocatalytic production of H2 to overcome this issue. According to the photocatalytic H2 evolution results, fluorinated MOF(Cu)-NH2 showed a hydrogen evolution rate of 63.64 mmol·g-1·h-1 exposed to light irradiation, indicating values 12 times that of the pure ligand when cocatalyst Pt and photosensitizer Rhodamine B were present. In addition, this MOF showed a maximum water absorption of 205 cm3·g-1. When dual-functionalized linkers are introduced to the structure of this MOF, its visible-light absorption increases considerably, which can be associated with nearly narrower energy band gaps (2.18 eV). More importantly, this MOF contributes to water absorption and electron collection and transport, acting as a bridge that helps to separate and transfer photogenerated charges while shortening the electron migration path because of the functional group in its configuration. The current paper seeks to shed light on the design of advanced visible-light photocatalysts with no MOF calcination for H2 photocatalytic production.

6.
Inorg Chem ; 61(8): 3396-3405, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35157424

RESUMEN

The development of cost-effective and efficient oxygen evolution reaction (OER) catalysts has found increasing popularity due to the sluggish kinetics of OER, which has hampered the H2 production by H2O electrolysis. In this study, Fe2Ni MIL-88 (denoted FeNi) was composited by reduced graphene oxide (rGO, denoted R). Owing to the high porosity and abundant active sites of bimetallic MOF, proper conductivity of rGO, and the synergistic impact of Ni and Fe, the optimal composite (R@FeNi (1:1)) offered remarkable OER activity in alkaline environments. The obtained composite was employed in the OER, which led to a low overpotential of 264 mV at a current density of 10 mA cm-2 with a Tafel slope of 62 mV dec-1. Also, the bimetallic Fe2Ni MIL-88 nanorods grown on rGO led to a reduction in the onset potential of the OER. These findings exceeded the results of standard IrO2-based catalysts; they are also comparable or even better than the previously reported MOF-based catalysts.

7.
Inorg Chem ; 61(47): 18873-18882, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36375112

RESUMEN

For the advancement of laser technologies and optical engineering, various types of new inorganic and organic materials are emerging. Metal-organic frameworks (MOFs) reveal a promising use in nonlinear optics, given the presence of organic linkers, metal cluster nodes, and possible delocalization of π-electron systems. These properties can be further enhanced by the inclusion of solely inorganic materials such as polyoxometalates as prospective low-cost electron-acceptor species. In this study, a novel hybrid nanocomposite, namely, SiW12@NU-1000 composed of SiW12 (H4SiW12O40) and Zr-based MOF (NU-1000), was assembled, completely characterized, and thoroughly investigated in terms of its nonlinear optical (NLO) performance. The third-order NLO behavior of the developed system was assessed by Z-scan measurements using a 532 nm laser. The effect of two-photon absorption and self-focusing was significant in both NU-1000 and SiW12@NU-1000. Experimental studies suggested a much superior NLO performance of SiW12@NU-1000 if compared to that of NU-1000, which can be assigned to the charge-energy transfer between SiW12 and NU-1000. Negligible light scattering, good stability, and facile postsynthetic fabrication method can promote the applicability of the SiW12@NU-1000 nanocomposite for various optoelectronic purposes. This research may thus open new horizons to improve and enhance the NLO performance of MOF-based materials through π-electron delocalization and compositing metal-organic networks with inorganic molecules as electron acceptors, paving the way for the generation of novel types of hybrid materials for prospective NLO applications.

8.
Inorg Chem ; 61(25): 9514-9522, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35699592

RESUMEN

Electrocatalytic generation of oxygen is of great significance for sustainable, clean, and efficient energy production. Multiple electron transfer in oxygen evolution reaction (OER) and its slow kinetics represent a serious hedge for efficient water splitting, requiring the design and development of advanced electrocatalysts with porous structures, high surface areas, abundant electroactive sites, and low overpotentials. These requisites are common for metal-organic frameworks (MOFs) and derived materials that are promising electrocatalysts for OER. The present work reports on the synthesis and full characterization of a heteroleptic 3D MOF, [Zn2(µ4-odba)2(µ-bpdh)]n·nDMF (Zn-MUM-1), assembled from 4,4'-oxydibenzoic acid and 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (bpdh). Besides, a series of heterometallic MnZn-MUM-1 frameworks (abbreviated as Mn0.5Zn0.5-MUM-1, Mn0.66Zn0.33-MUM-1, and Mn0.33Zn0.66-MUM-1) was also prepared, characterized, and used for the fabrication of working electrodes based on Ni foam (NF), followed by their exploration in OER. These noble-metal-free and robust electrocatalysts are stable and do not require pyrolysis or calcination while exhibiting better electrocatalytic performance than the parent Zn-MUM-1/NF electrode. The experimental results show that the Mn0.5Zn0.5-MUM-1/NF electrocatalyst features the best OER activity with a low overpotential (253 mV at 10 mA cm-2) and Tafel slope (73 mV dec-1) as well as significant stability after 72 h or 6000 cycles. These excellent results are explained by a synergic effect of two different metals present in the Mn-Zn MOF as well as improved charge and ion transfer, conductivity, and stability characteristics. The present study thus widens the application of heterometallic MOFs as prospective and highly efficient electrocatalysts for OER.

9.
Inorg Chem ; 61(51): 20913-20922, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36521012

RESUMEN

Oxygen evolution reaction (OER) represents a highly important electrochemical transformation in energy storage and conversion technologies. Considering the low rate of this four-electron half-reaction, there is a demand for efficient, stable, and noble-metal-free electrocatalysts to improve the kinetic and economical parameters. In this work, a new pillared-MOF@NiV-LDH nanocomposite based on a CoII metal-organic framework (pillared-MOF) and heterometallic Ni/V-layered double hydroxide (NiV-LDH) was assembled via a simple protocol, characterized, and explored as an electrocatalyst in OER. A remarkable electrocatalytic efficiency of pillared-MOF@NiV-LDH in 1 M KOH is evidenced by a low overpotential (238 mV at 10 mA cm-2 current density) and a small value of the Tafel slope (62 mV dec-1). These parameters are very close to those of the reference IrO2 electrocatalyst and are superior to the majority of the LDH- and MOF-based systems previously applied for OER. Excellent stability of pillared-MOF@NiV-LDH was confirmed by the chronopotentiometry tests for 70 h and linear-sweep voltammetry after 7000 cycles. Features such as rich electroactive sites, porous structure, high surface area, and synergic effect between pillared-MOF and NiV-LDH are likely responsible for the remarkable electrocatalytic efficiency of this electrocatalyst in OER. Despite prior reports on the application of NiV-LDH in OER, the present study describes the first example where this type of LDH is blended with MOF to generate a nanocomposite material. The interface between the two components of the composite can improve the electronic structure and, in turn, the electrocatalytic behavior. The introduction of this composite paves the way toward the synthesis of other multicomponent materials with potential applications in different energy fields.

10.
Inorg Chem ; 60(13): 9660-9672, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34161079

RESUMEN

The universal pollution of diverse water bodies and declined water quality represent very important environmental problems. The development of new and efficient photocatalytic water treatment systems based on the Z-scheme mechanisms can contribute to tackling such problems. This study reports the preparation, full characterization, and detailed sonophotocatalytic activity of a new series of hybrid NU@ZIS nanocomposites, which comprise a p-n heterojunction of 3D Zr(IV) metal-organic framework nanorods (NU-1000) and photoactive ZnIn2S4 (ZIS) nanostars. Among the obtained materials with varying content of ZIS (5, 10, 20, and 30%) on the surface of NU-1000, the NU@ZIS20 nanocomposite revealed an ultrahigh catalytic performance and recyclability in a quick visible-light-induced degradation of the tetracycline antibiotic in water under sonophotocatalytic conditions. Moreover, increased activity of NU@ZIS20 can be ascribed to the formation of a p-n heterojunction between NU-1000 and ZIS, and a synergistic effect of these components, leading to a high level of radical production, facilitating a Z-scheme charge carrier transfer and reducing the recombination of charge carriers. The radical trapping tests revealed that •OH, •O2-, and h+ are the major active species in the sonophotocatalytic degradation of tetracycline. Possible mechanism and mineralization pathways were introduced. Cytotoxicity of NU@ZIS20 and aquatic toxicity of water samples after tetracycline degradation were also assessed, showing good biocompatibility of the catalyst and efficacy of sonophotocatalytic protocols to produce water that does not affect the growth of bacteria. Finally, the obtained nanocomposites and developed photocatalytic processes can represent an interesting approach toward diverse environmental applications in water remediation and the elimination of other types of organic pollutants.

11.
Inorg Chem ; 60(3): 2056-2067, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33448845

RESUMEN

Carbon dioxide (CO2) fixation to generate chemicals and fuels is of high current importance, especially toward finding mild and efficient strategies for catalytic CO2 transformation to value added products. Herein, we report a novel Lewis acid-base bifunctional amine-functionalized dysprosium(III) metal-organic framework [Dy3(data)3·2DMF]·DMF (2,5-data: 2,5-diamino-terephthalate), NH2-TMU-73. This compound was fully characterized and its crystal structure reveals a 3D metal-organic framework (MOF) with micropores and free NH2 groups capable of promoting the chemical fixation of CO2 to cyclic carbonates. NH2-TMU-73 is built from the Dy(III) centers and data2- blocks, which are arranged into an intricate underlying net with a rare type of xah topology. After activation, NH2-TMU-73 and its terephthalate-based analogue (TMU-73) were applied for CO2-to-epoxide coupling reactions to produce cyclic carbonates. Important features of this catalytic process concern high efficiency and activity in the absence of cocatalyst, use of solvent-free medium, atmospheric CO2 pressure, and ambient temperature conditions. Also, NH2-TMU-73 features high structural stability and can be recycled and reused in subsequent catalytic tests. An important role of free amino groups and open metal sites in the MOF catalyst was highlighted when suggesting a possible reaction mechanism.

12.
Inorg Chem ; 60(13): 9700-9708, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34120443

RESUMEN

A new metal-organic framework (MOF), [Zn4(µ4-O)(µ6-L)2(H2O)2]n·nDMF (ZSTU-10), was assembled from zinc(II) nitrate and N,N',N″-bis(4-carboxylate)trimesicamide linkers and fully characterized. Its crystal structure discloses an intricate two-fold 3D+3D interpenetrated MOF driven by the [Zn4(µ4-O)]-based tetragonal secondary building units and the C3-symmetric tris-amide-tricarboxylate linkers (µ6-L3-). Topological analysis of ZSTU-10 reveals two interpenetrated 3,6-connected nets with an rtl (rutile) topology. Z-Scan analysis at 532 nm was conducted to study a nonlinear optical (NLO) behavior of ZSTU-10. The nonlinear responses of ZSTU-10 were explored under various laser intensities, revealing notable third-order NLO properties in the visible region. A large two-photon absorption at lower incident intensities highlights the fact that ZSTU-10 can be applied in optical limiting devices as well as optical modulators. Moreover, a nonlinear refractive index (n2) is indicative of a self-defocusing behavior. This work thus expands a family of novel MOF materials with remarkable optical properties.

13.
Angew Chem Int Ed Engl ; 60(20): 11048-11067, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32910529

RESUMEN

Supercapacitors (SCs), showing excellent power density, long service life, and high reversibility, have received great attention because of the increasing demand for energy storage devices. To further improve their performance, it is essential to develop advanced electrode materials. One group of materials, porous crystalline solids referred to as metal-organic frameworks (MOFs), have proved to be excellent templates for synthesizing functional materials to be employed in the preparation of electrodes for SCs. In comparison to monometallic MOFs, bimetallic MOFs and their derivatives offer a number of advantages, including tunable electrochemical activity, high charge capacity, and improved electrical conductivity. This review focuses on the use of MOF-derived bimetallic materials in SCs, the origin of the improved performance, and the latest developments in the field. Furthermore, the challenges and perspectives in this research area are discussed.

14.
Inorg Chem ; 58(23): 16100-16111, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31725272

RESUMEN

In this work, a new 3D metal-organic framework (MOF) {[Co3(µ4-tpa)3(µ-dapz)(DMF)2]·2DMF}n (Co(II)-TMU-63; H2tpa = terephthalic acid, dapz = pyrazine-2,5-diamine, DMF = dimethylformamide) containing low-cost and readily available ligands was generated, fully characterized, and used as an electrode material in supercapacitors without the need for a calcination process. Thus, the synthesis of this material represents an economical and cost-effective method in the energy field. The crystal structure of Co(II)-TMU-63 is assembled from two types of organic building blocks (µ4-tpa2- and µ-dapz ligands), which arrange the cobalt nodes into a complex layer-pillared net with an unreported 4,4,4,6T14 topology. The presence of open sites in this MOF is promising for studying electrochemical activity and other types of applications. In fact, Co(II)-TMU-63 as a novel electrode material when comparing with pristine MOFs shows great cycling stability, large capacity, and high energy density and so acts as an excellent supercapacitor (384 F g-1 at 6 A g-1). In addition, there was a stable cycling performance (90% capacitance) following 6000 cycles at 12 A g-1 current density. Also, the Co(II)-TMU-63//activated carbon (AC) asymmetric supercapacitor acted in a broad potential window of 1.7 V (0-1.7 V), exhibiting a high performance with 4.42 kW kg-1 power density (PD) and 24.13 Whkg-1 energy density (ED). These results show that the pristine MOFs have great potential toward improving different high-performance electrochemical energy storage devices, without requiring the pyrolysis or calcination stages. Hence, such materials are very promising for future advancement of the energy field.

15.
Inorg Chem ; 58(3): 1834-1849, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30648385

RESUMEN

Pollution of water resources by antibiotics is a growing environmental concern. In this work, nanocomposites of g-C3N4@Ni-Ti layered double hydroxides (g-C3N4@Ni-Ti LDH NCs) with high surface areas were synthesized through an optimized hydrothermal method, in the presence of NH4F. Application of various characterization techniques unraveled that the prepared nanocomposites are composed of porous Ni-Ti LDH nanoparticles and hierarchical g-C3N4 nanosheets. Further, these NCs were employed for photocatalytic and sonophotocatalytic removal of amoxicillin (AMX), as a model antibiotic, from aqueous solutions. In addition, sonocatalysis was performed. It was found out that the g-C3N4@Ni-Ti LDH NCs outperform their pure g-C3N4 and Ni-Ti LDH components in photocatalytic degradation of AMX under visible light irradiation. Also, the following order was determined for efficiency of the three adopted processes: sonocatalysis < photocatalysis < sonophotocatalysis. Furthermore, variation of the sonophotocatalysis conditions specified 500 W light intensity, 9 s on/1 s off ultrasound pulse modem and 1.25 g/L g-C3N4-20@Ni-Ti LDH as the optimal conditions. In this way, optimization of the highly efficient sonophotocatalytic process resulted in 99.5% AMX degradation within 75 min. Moreover, a TOC analyzer was employed to estimate the rate of AMX degradation over the nanocomposites. In addition, formation of hydroxyl radicals (•OH) on the surface of the g-C3N4-20@Ni-Ti LDH particles was approved using the terephthalic acid probe in photoluminescence (PL) spectroscopy. No significant loss was observed in the sonophotocatalytic activity of the nanocomposites even after five consecutive runs. Also, a plausible mechanism was proposed for the sonophotocatalysis reaction. In general, our findings can be considered as a starting point for synthesis of other g-C3N4-based NCs and application of the resultant nanocomposites to environmental remediation.


Asunto(s)
Antibacterianos/química , Hidróxidos/química , Nanoestructuras/química , Níquel/química , Nitrilos/química , Titanio/química , Catálisis , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie
16.
Inorg Chem ; 57(5): 2529-2545, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29446935

RESUMEN

A visible light-driven amine-functionalized Al-based MOF#@ yxSm2O3-ZnO nanocomposite (NH2-MOF#@ yxSm2O3-ZnO NCP) was synthesized as an effective photocatalyst for AMX degradation in the presence of ultrasound, in which # is MOF synthesis conditions from MOFI to MOFXII and x and y stand for the weight percentages of Sm2O3-to-ZnO and Sm2O3-ZnO-to-MOF, respectively. The ß-lactam antibiotic AMX, which is widely used for treating Gram-positive and Gram-negative bacterial infections in both animals and humans, was employed as a model pollutant. Using different detection techniques, the synthesized materials were characterized. Furthermore, effects of different synthesis methods, ultrasonic time, precursor concentration, sonication amplitude, and modulators on the MOFs photocatalytic behavior were taken into account. Also, catalytic dose and recycling, H2O2 usage, and operating pH effects were investigated. Compared to the pure forms of NH2-MOF-53(Al) and Sm2O3-ZnO, the NCPs having the optimal Sm2O3-ZnO and NH2-MOF-53(Al) contents highly influenced the photocatalytic activity due to the synergetic impacts of the high charge mobility and the red shift in the NH2-MOF@Sm2O3-ZnO NCPs absorption edge compared to the Sm2O3-ZnO nanoflowers. We used a TOC analyzer, UV/vis spectroscopy, and HPLC chromatogram to estimate the rate of AMX elimination in water over NH2-MOFXII@307Sm2O3-ZnO NCPs as our optimal sample. In addition, after the AMX pollutant degradation, the NH2-MOF@Sm2O3-ZnO NCPs were structurally stable and maintained the majority of their photocatalytic properties even after five runs of recycling process The NH2-MOFXII@307Sm2O3-ZnO NCPs as the superior photocatalysts were more examined and a mechanism for the AMX degradation was suggested. As a suggestion, our obtained results can be used as a starting point for the preparation of the other heterogeneous MOF-based NCPs combined with the Sm2O3-ZnO for a variety of applications such as the environmental remediation.

17.
Inorg Chem ; 57(14): 8681-8691, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29957932

RESUMEN

One of the major challenges in photodegradation of organic dyes is designing a visible light active and highly efficient photocatalyst that can degrade both cationic and anionic dyes. To design such an ideal catalyst, this work synthesized graphitic-C3N4@NiAl layered double hydroxide nanocomposites (g-C3N4@NiAl-LDH NCPs) with various g-C3N4 contents through a convenient and high-yield method. The photocatalytic process was optimized by evaluating the impacts of type of dye (cationic and anionic), photocatalyst dosage, pH, and contact time. According to the results, the photocatalytic performance of g-C3N4@NiAl-LDH NCPs in degradation of cationic and anionic dyes is more noticeable than the photocatalytic activities of its discrete components. The observed improvement in the photocatalytic performance of the g-C3N4@NiAl-LDH NCPs can be attributed to the intimacy of their contact interfaces and a synergistic effect between pristine g-C3N4 and NiAl-LDH, which results in effective mass transfer and separation of photogenerated charge carriers. The impact of some charge scavengers on the process was evaluated to define the role of each active species and propose a possible photodegradation mechanism. The g-C3N4@Ni-Al LDH NCPs could be reused for four cycles without any significant loss in efficiency.

18.
Inorg Chem ; 57(21): 13364-13379, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351060

RESUMEN

In this work, a bio-metal-organic framework (Bio-MOF) coated with a monodispersed layer of chitosan (CS; CS/Bio-MOF) was synthesized and applied as a pH-responsive and target-selective system for delivery of doxorubicin (DOX) in the treatment of breast cancer. The efficiency of the nanocarrier in loading and releasing DOX was assessed at different pH levels. To monitor the in vitro drug release behavior of the drug-loaded carrier, the carrier was immersed in a phosphate buffered saline solution (PBS, pH 7.4) at 37 °C. According to the observations, the nanocarrier presents a slow and continuous release profile as well as a noticeable drug loading capacity. In addition, the carrier demonstrates a pH-responsive and target-selective behavior by releasing a high amount of DOX at pH 6.8, which is indicative of tumor cells and inflamed tissues and releasing a substantially lower amount of DOX at higher pH values. In addition, the results indicated that pH is effective on DOX uptake by CS/Bio-MOF. A 3.6 mg amount of DOX was loaded into 10 mg of CS/Bio-MOF, resulting in a 21.7% removal at pH 7.4 and 93.0% at pH 6.8. The collapsing and swelling of the CS layers coated on the surface of the Bio-MOFs were found to be responsible for the observed pH dependence of DOX delivery. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the trypan blue test were performed on the MCF-7 (breast cancer) cell line in the presence of the CS/Bio-MOF carrier to confirm its biological compatibility. In addition, Annexin V staining was conducted to evaluate the cytotoxicity of the free and loaded DOX molecules. On the basis of the obtained optical microscopy, MTT assay, fluorescence microscopy, and dyeing results, the CS/Bio-MOF carrier greatly enhances cellular uptake of the drug by the MCF-7 cells and, therefore, apoptosis of the cells due to its biocompatibility and pH-responsive behavior.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Quitosano/química , Doxorrubicina/metabolismo , Portadores de Fármacos/química , Liberación de Fármacos , Estructuras Metalorgánicas/química , Nanoestructuras/química , Antibióticos Antineoplásicos/síntesis química , Antibióticos Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Estructuras Metalorgánicas/síntesis química , Estructuras Metalorgánicas/farmacología , Tamaño de la Partícula , Relación Estructura-Actividad , Propiedades de Superficie
19.
Chem Commun (Camb) ; 60(23): 3129-3137, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38404151

RESUMEN

Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts.

20.
ACS Omega ; 9(4): 4581-4593, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313520

RESUMEN

The issue of water resource pollution resulting from the discharge of dyes is a matter of great concern for the environment. In this investigation, a new ternary heterogeneous Mg-Al LDH@g-C3N4X@Ag3PO4Y (X = wt % of g-C3N4 with respect to Mg-Al layered double hydroxide (LDH) and Y = wt % of Ag3PO4 loaded on Mg-Al LDH@g-C3N430) nanocomposite was prepared with the aim of increasing charge carrier separation and enhancement of photocatalytic performance to degrade methylene blue (MB) dye. The prepared samples were subjected to characterization via Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence, and photoelectrochemical analysis. It was observed that in the presence of the composite of Mg-Al LDH and g-C3N4, the photocatalytic decomposition of MB under 150 W mercury lamp illumination increases significantly as opposed to Mg-Al LDH alone, and the Mg-Al LDH@g-C3N4 level with Ag3PO4 coating causes the complete degradation of MB to occur in less time. The outcomes show that the Mg-Al LDH@g-C3N430@Ag3PO45 nanocomposite demonstrated the highest photodegradation activity (99%). Scavenger tests showed that the two most effective agents in the photodegradation of MB are holes and hydroxyl radicals, respectively. Finally, a type II heterojunction photocatalytic degradation mechanism for MB by Mg-Al LDH@g-C3N430@Ag3PO45 was proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA