Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35684301

RESUMEN

The present work reports the synthesis, characterization, and antimicrobial activities of adipic acid-capped silver nanoparticles (AgNPs@AA) and their utilization for selective detection of Hg2+ ions in an aqueous solution. The AgNPs were synthesized by the reduction of Ag+ ions with NaBH4 followed by capping with adipic acid. Characterization of as-synthesized AgNPs@AA was carried out by different techniques, including UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Dynamic Light Scattering (DLS), and zeta potential (ZP). In the UV-Vis absorption spectrum, the characteristic absorption band for AgNPs was observed at 404 nm. The hydrodynamic size of as-synthesized AgNPs was found to be 30 ± 5.0 nm. ZP values (-35.5 ± 2.4 mV) showed that NPs possessed a negative charge due to carboxylate ions and were electrostatically stabilized. The AgNPs show potential antimicrobial activity against clinically isolated pathogens. These AgNPs were found to be selectively interacting with Hg2+ in an aqueous solution at various concentrations. A calibration curve was constructed by plotting concentration as abscissa and absorbance ratio (AControl - AHg/AControl) as ordinate. The linear range and limit of detection (LOD) of Hg2+ were 0.6-1.6 µM and 0.12 µM, respectively. A rapid response time of 4 min was found for the detection of Hg2+ by the nano-probe. The effect of pH and temperature on the detection of Hg2+ was also investigated. The nano-probe was successfully applied for the detection of Hg2+ from tap and river water.


Asunto(s)
Antiinfecciosos , Mercurio , Nanopartículas del Metal , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Ácidos Carboxílicos , Colorimetría , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
2.
Entropy (Basel) ; 24(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37420506

RESUMEN

Bitcoin (BTC)-the first cryptocurrency-is a decentralized network used to make private, anonymous, peer-to-peer transactions worldwide, yet there are numerous issues in its pricing due to its arbitrary nature, thus limiting its use due to skepticism among businesses and households. However, there is a vast scope of machine learning approaches to predict future prices precisely. One of the major problems with previous research on BTC price predictions is that they are primarily empirical research lacking sufficient analytical support to back up the claims. Therefore, this study aims to solve the BTC price prediction problem in the context of both macroeconomic and microeconomic theories by applying new machine learning methods. Previous work, however, shows mixed evidence of the superiority of machine learning over statistical analysis and vice versa, so more research is needed. This paper applies comparative approaches, including ordinary least squares (OLS), Ensemble learning, support vector regression (SVR), and multilayer perceptron (MLP), to investigate whether the macroeconomic, microeconomic, technical, and blockchain indicators based on economic theories predict the BTC price or not. The findings point out that some technical indicators are significant short-run BTC price predictors, thus confirming the validity of technical analysis. Moreover, macroeconomic and blockchain indicators are found to be significant long-term predictors, implying that supply, demand, and cost-based pricing theories are the underlying theories of BTC price prediction. Likewise, SVR is found to be superior to other machine learning and traditional models. This research's innovation is looking at BTC price prediction through theoretical aspects. The overall findings show that SVR is superior to other machine learning models and traditional models. This paper has several contributions. It can contribute to international finance to be used as a reference for setting asset pricing and improved investment decision-making. It also contributes to the economics of BTC price prediction by introducing its theoretical background. Moreover, as the authors still doubt whether machine learning can beat the traditional methods in BTC price prediction, this research contributes to machine learning configuration and helping developers use it as a benchmark.

3.
Biochem Biophys Res Commun ; 533(4): 631-637, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33004177

RESUMEN

BACKGROUND: More than 170 post-transcriptional RNA modifications regulate the localization, processing and function of cellular RNAs, and aberrant RNA modifications have been linked to a range of human diseases. The RNA modification landscape in atherosclerosis, the main underlying cause of cardiovascular diseases, is still largely unknown. METHODS: We used mass spectrometry to analyse a selection of RNA-modifying enzymes and the N6-methyladenosine (m6A) in carotid atherosclerotic lesion samples representing early and advanced stages of atherosclerosis as compared to non-atherosclerotic arteries from healthy controls. FINDINGS: (i) the detection of different levels of several enzymes involved in methylations occurring in rRNA and mRNA; (ii) these findings included changes in the levels of methyltransferases ('writers'), binding proteins ('readers') and demethylases ('erasers') during atherosclerosis as compared to non-atherosclerotic control arteries, with generally the most prominent differences in samples from early atherosclerotic lesions; and (iii) these changes were accompanied by a marked downregulation of m6A in rRNA, the most abundant and well-studied modification in mRNA with a wide range of effects on cell biology. INTERPRETATION: We show for the first time that RNA-modifying enzymes and the well-studied RNA modification m6A are differentially regulated in atherosclerotic lesions, which potentially could help creating new prognostic and treatment strategies.


Asunto(s)
Adenosina/análogos & derivados , Enfermedades de las Arterias Carótidas/metabolismo , Metiltransferasas/metabolismo , Placa Aterosclerótica/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Adenosina/análisis , Adenosina/metabolismo , Enfermedades de las Arterias Carótidas/enzimología , Enfermedades de las Arterias Carótidas/genética , Cromatografía Liquida , Humanos , Metilación , Oxidorreductasas N-Desmetilantes/metabolismo , Placa Aterosclerótica/enzimología , Placa Aterosclerótica/genética , Espectrometría de Masas en Tándem
4.
Bioorg Chem ; 82: 163-177, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30321779

RESUMEN

Benzohydrazide derivatives 1-43 were synthesized via "one-pot" reaction and structural characterization of these synthetic derivatives was carried out by different spectroscopic techniques such as 1H NMR and EI-MS. The synthetic molecules were evaluated for their in vitro urease inhibitory activity. All synthetic derivatives showed good inhibitory activities in the range of (IC50 = 0.87 ±â€¯0.31-19.0 ±â€¯0.25 µM) as compared to the standard thiourea (IC50 = 21.25 ±â€¯0.15 µM), except seven compounds 17, 18, 23, 24, 29, 30, and 41 which were found to be inactive. The most active compound of the series was compound 36 (IC50 = 0.87 ±â€¯0.31 µM) having two chloro groups at meta positions of ring A and methoxy group at para position of ring B. The structure-activity relationship (SAR) of the active compounds was established on the basis of different substituents and their positions in the molecules. Kinetic studies of the active compounds revealed that compounds can inhibit enzyme via competitive and noncompetitive modes. In silico study was also performed to understand the binding interactions of the molecules (ligand) with the active site of enzyme.


Asunto(s)
Inhibidores Enzimáticos/química , Hidrazinas/química , Ureasa/antagonistas & inhibidores , Dominio Catalítico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Hidrazinas/síntesis química , Hidrazinas/farmacocinética , Enlace de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Electricidad Estática , Relación Estructura-Actividad , Ureasa/química
6.
Stroke ; 46(3): 793-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25649806

RESUMEN

BACKGROUND AND PURPOSE: Interleukin (IL)-23 is a cytokine in the IL-12 family, mainly produced by antigen-presenting cells with a central role in inflammation. We hypothesize that IL-23 is also important in atherogenesis and investigate this in a population with carotid atherosclerosis. METHODS: Plasma levels of IL-23 were measured in patients with carotid artery stenosis and in healthy controls. The mRNA levels of IL-23 and its receptor, IL-23R, were measured in atherosclerotic plaques, nonatherosclerotic vessels, peripheral blood mononuclear cells, and plasmacytoid dendritic cells. RESULTS: Our findings were as follows: (1) patients with carotid atherosclerosis (n=177) had significantly raised plasma levels of IL-23 when compared with healthy controls (n=24) with particularly high levels in those with the most recent symptoms. (2) mRNA levels of IL-23 and IL-23R were markedly increased in carotid plaques (n=68) when compared with nonatherosclerotic vessels (n=8-10). Immunostaining showed colocalization to plaque macrophages. (3) Patients with carotid atherosclerosis had increased mRNA levels of both IL-23 and IL-23R in plasmacytoid dendritic cells, but not in peripheral blood mononuclear cells. (4) IL-23 increased IL-17 release in monocytes and particularly in peripheral blood mononuclear cells from patients with carotid atherosclerosis, but not in cells from healthy controls. (5) IL-23 gave a prominent tumor necrosis factor release in monocytes from patients with carotid atherosclerosis but not in cells from healthy controls. (6) High plasma levels of IL-23 were associated with increased mortality during follow-up. CONCLUSIONS: We have shown an association between IL-23 and disease progression in patients with carotid atherosclerosis, potentially involving IL-17-related mechanisms.


Asunto(s)
Enfermedades de las Arterias Carótidas/sangre , Estenosis Carotídea/sangre , Regulación de la Expresión Génica , Interleucina-17/sangre , Interleucina-23/sangre , Anciano , Aterosclerosis/sangre , Aterosclerosis/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Estenosis Carotídea/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Inflamación , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Placa Aterosclerótica/metabolismo , ARN Mensajero/metabolismo , Receptores de Interleucina/sangre , Accidente Cerebrovascular/sangre
7.
J Environ Sci (China) ; 37: 51-8, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26574087

RESUMEN

Chemically modified pullulan was evaluated for its sorption efficiency and selectivity to remove cadmium (Cd) from spiked high-hardness groundwater (GW). Pullulan esterified with succinic anhydride using dimethylaminopyridine showed a fairly high degree of substitution value as confirmed by (1)H NMR spectroscopy. Pullulan succinate (Pull-Suc) was converted into the sodium salt (Pull-Suc-Na). The effect of contact time (5-200min) and pH (2-8) on Cd-uptake by the sorbent (Pull-Suc-Na) was investigated. The sorbent showed more than 90% Cd-removal in first 15min from distilled water (DW) and GW solution, respectively. Comparison of Pull-Suc-Na with other polysaccharidal sorbents suggested its high efficiency (DW 476.2mg/g and GW 454.5mg/g) and selectivity for the removal of Cd by an ion exchange mechanism, which is further supported by the negative Gibbs free energy values calculated from Langmuir isotherms. A Langmuir isotherm kinetic model provided the best fit for the sorption of Cd using Pull-Suc-Na. The sorbent showed a negligible decrease in Cd-uptake over three regeneration cycles. The thermal stability testing of the sorbents indicated that Pull-Suc-Na (sorbent) is more stable than Pull-Suc.


Asunto(s)
Cadmio/química , Cadmio/aislamiento & purificación , Glucanos/química , Agua Subterránea/química , Ácido Succínico/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Termodinámica , Purificación del Agua
8.
Int J Biol Macromol ; 256(Pt 1): 128009, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995781

RESUMEN

Water contamination by several aquatic pollutants such as dyes, heavy metal ions and microbes is a prevalent concern to health and environment. Thus, developing facile, economical, and eco-friendly strategies to tackle this problem have become paramount. Hence, this study reports the synthesis of hydroxyethylcellulose phthalate-capped silver nanoparticles (HEC-PA@AgNPs) using a simple sunlight-assisted route. The multifunctional applications of the synthesized particles as an efficient nanoprobe for the selective sensing of Hg2+ as well as their photocatalytic and antimicrobial activities were demonstrated. HEC-PA@AgNPs were systematically characterized by various advanced analytical techniques such as FTIR, UV-Vis spectroscopy, X-ray diffraction (XRD), zeta potential (ZP) and dynamic light scattering (DLS). The successful functionalization of AgNPs with HEC-PA was manifested using FTIR. SEM and XRD revealed the formation of spherical AgNPs with a face centered cubic structure and a crystallite size of 14 nm. The particles demonstrated a hydrodynamic size of 40 nm with a good colloidal stability as evidenced from the ZP value of -35 mV, suggesting the effective role of the negatively charged HEC-PA capping agent in stabilizing the NPs. HEC-PA@AgNPs exhibited fast naked-eye colorimetric detection, high selectivity, and sensitivity to Hg2+ in spiked real water samples over a wide range of pH (3-9) and temperatures (298-328 K), achieving a detection limit of 119 nM. The presence of other diverse metal ions didn't affect the specificity of the particles toward Hg ions. Further, the sensing mechanism is based on a characteristic redox reaction between Hg2+ and AgNPs. Further, HEC-PA@AgNPs showcased a more noxious antimicrobial activity to gram-positive bacteria (B. subtilis and S. aureus) than gram-negative bacteria (E. coli). Besides, AgNPs exhibited high photocatalytic potential under sunlight irradiation with a degradation efficiency of 79 % for methylene blue dye in only 80 min following pseudo-1st order kinetics with a rate constant of 0.019 min-1. The photocatalyst exhibited good reusability after five recycling runs. These results render our approach promising multifunctional analytical probe for environmental and biomedical applications.


Asunto(s)
Celulosa/análogos & derivados , Mercurio , Nanopartículas del Metal , Ácidos Ftálicos , Plata/química , Nanopartículas del Metal/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/química , Colorantes/química , Agua , Iones , Extractos Vegetales/química
9.
Int J Biol Macromol ; 259(Pt 2): 128879, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145696

RESUMEN

Herein, the hydrogel from the leaf of the Aloe vera plant (ALH) was succinylated (SALH) and saponified (NaSALH). The FTIR, solid-state CP/MAS 13C NMR, and SEM-EDX spectroscopic analyses witnessed the formation of SALH and NaSALH from ALH. The pHZPC for NaSALH was found to be 4.90, indicating the presence of -ve charge on its surface. The Cd2+ sorption efficiency of NaSALH was found to be dependent on pH, NaALH dose, Cd2+ concentration, contact time, and temperature. The maximum Cd2+ removal from DW and HGW was found to be 227.27 and 212.77 mg g-1 according to the Langmuir isothermal model (>0.99) at pH of 6, NaSALH dose of 40 mg g-1, Cd2+ concentration of 90 mg L-1, contact time of 30 min, and temperature of 298 K. The kinetic analysis of Cd2+ sorption data witnessed that the Cd2+ removal by chemisorption mechanism and followed pseudo-second-order kinetics (>0.99). The -ve values of ΔG° and ΔH° assessed the spontaneous and exothermic nature of sorption of Cd2+ by NaSALH. The regeneration and sorption/desorption studies indicated that the sorbent NaSALH is regenerable.


Asunto(s)
Aloe , Agua Subterránea , Contaminantes Químicos del Agua , Cadmio/química , Cinética , Hidrogeles , Dureza , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Agua Subterránea/química , Termodinámica
10.
Artículo en Inglés | MEDLINE | ID: mdl-36901464

RESUMEN

China is currently experiencing a phase of high-quality development, and fostering the resilience of the urban economy is key to promoting this development. The growth of the digital economy is seen as critical to achieving this goal. Therefore, it is necessary to study the mechanism by which the digital economy affects urban economic resilience and the impact of carbon emissions. To this end, this paper empirically analyzes the mechanisms and impacts of the digital economy on urban economic resilience using panel data from 258 prefecture-level cities in China between 2004 and 2017. The study employs a two-way fixed effect model and a moderated mediation model. The results show that: (1) The development of the digital economy can significantly improve the resilience of the urban economy in different periods and different city sizes; (2) The development of the digital economy promotes the economic resilience of developed cities and eastern cities more significantly; (3) In the context of carbon emissions, the digital economy positively contributes to urban economic resilience through population quality and industrial structure but negatively contributes to urban economic resilience through above-scale enterprises; (4) Carbon emissions have a positive moderation effect on the historical path of the industrial structure, above-scale enterprises, and the front path of population quality in the mechanism of the role of the digital economy on the economic resilience of cities, and a negative moderation effect on the front path of above-scale enterprises. Based on these findings this paper proposes several suggestions, such as revolutionizing the digital development of cities, optimizing regional industrial collaboration, accelerating the training of digital talents, and preventing the disorderly expansion of capital.


Asunto(s)
Carbono , Remodelación Urbana , China , Ciudades , Industrias , Desarrollo Económico
11.
RSC Adv ; 13(17): 11537-11545, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37063710

RESUMEN

Simple detection of acetone is indispensable due to its health and environmental concerns. Surface-modified electrodes are promising for the detection of acetone. In the present study, the facile fabrication of ZnO nanoflakes on carbon cloth (CC) is reported. The electrode was fabricated by decorating the CC with ZnO nanoparticles (ZnO NPs), followed by the hydrothermal treatment and modification with diazonium salt using linear sweep voltammetry (LSV) forming ZnO nanoflakes (ZnO NFs) on ZnO NPs/CC. The as-prepared ZnO/CC electrode was used for the detection of acetone at room temperature using cyclic voltammetry. Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analyses were used for the chemical and physical characterization of the CC before and after each modification step. The obtained data manifested that ZnO NFs functionalized with diazonium salt increased the roughness of the CC surface, which was advantageous to promote the interaction between CC and acetone target. The modified sensing platform showed excellent performance in terms of the wide working range (0.1-2000 ppm) and low detection limit (0.03 ppm), making it a promising and cost-effective sensor of acetone in the liquid phase.

12.
Behav Sci (Basel) ; 13(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37504025

RESUMEN

The world faced COVID-19, which was a threat to public health and disturbed the educational system and economic stability. Educational institutes were closed for a longer period, and students faced difficulty to complete their syllabus. The government adopted a policy of "suspending classes without stopping learning" to continue education activities. However, student satisfaction with online education is a growing concern. Satisfaction of students is an important indicator of academic quality. Therefore, this study attempts to investigate the influencing factors behind learning satisfaction using information from 335 students from various institutes in Pakistan. This research examined the impact of computer and internet knowledge, instructor and course material, and Learning Management Systems (LMS) on learning satisfaction. The path coefficients were obtained via Partial Least Square-Structural Equation Modeling (PLS-SEM). The LMS is a tool that facilitates the learning process with the provision of all types of educational material. The path coefficient was more in the case of LMS (0.489), which indicates its positive and significant role to attain learning satisfaction. The instructor and course material ordered second (0.261), which shows that the quality of an instructor and course material also plays a positive role to attain learning satisfaction. The computer and internet are essential ingredients of online education, showing a significant and positive path coefficient (0.123), implying that computer and internet knowledge could enhance learning satisfaction. The universities should develop their LMS to implement online education with quality course materials. It is also vital that the instructor should be up to date with modern learning techniques while ensuring internet connectivity, especially in rural areas. The government should provide an internet connection to students at discounted rates.

13.
Front Chem ; 11: 1202252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324561

RESUMEN

The green synthesis of nanomaterials is of utmost interest as it offers an eco-friendly approach over chemical synthetic routes. However, the reported biosynthesis methods are often time-consuming and require heating or mechanical stirring. The current study reports a facile one-pot biosynthesis of silver nanoparticles (AgNPs) mediated by olive fruit extract (OFE) and sunlight irradiation of only 20 s. OFE acts as both a reducing and a capping agent for the formation of OFE-capped AgNPs (AgNPs@OFE). The as-synthesized NPs were systematically characterized by UV-vis spectrometry, Fourier transform infrared (FTIR) spectroscopy, scanning electrochemical microscopy with energy-dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), dynamic light scattering (DLS), and cyclic voltammetry. SEM images confirmed the successful formation of monodispersed spherical AgNPs@OFE of approximately 77 nm. FTIR spectroscopy suggested the involvement of functional groups of phytochemicals from the OFE in the capping and reduction of Ag+ to Ag. The particles revealed excellent colloidal stability as evidenced from the high zeta potential (ZP) value (-40 mV). Interestingly, using the disk diffusion method, AgNPs@OFE revealed higher inhibition efficiency against Gram-negative bacteria (Escherichia coli, Klebsiella oxytoca, and extensively drug-resistant (XDR) Salmonella typhi) than Gram-positive bacteria (Staphylococcus aureus), with Escherichia coli showing the highest inhibition zone of 27 mm. In addition, AgNPs@OFE exhibited maximum potent antioxidant scavenging potential against H2O2, followed by DPPH, O2 -, and OH- free radicals. Overall, OFE can be considered an effective source for the sustainable production of stable AgNPs with potential antioxidant and antibacterial activities for biomedical applications.

14.
Environ Sci Pollut Res Int ; 30(17): 49930-49947, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787064

RESUMEN

This study aimed to determine the farmers' perceived impact of climate change on irrigation water and the adaptation measure adopted to mitigate its adverse effects. A binary logistic regression model was used to identified factors affecting the selection of adaptation measures. Partial Least Square-Structural Equation Modelling (PLS-SEM) was employed to compute the benefits of adaptation strategies. The study was conducted in two major cropping systems, i.e., the Cotton Wheat Cropping System (CWCS) and Rice Wheat Cropping System (RWCS) of Punjab, Pakistan, using primary data of 1080 farmers collected through a multistage sampling technique. Due to climate change there was deterioration in surface water and groundwater quality in CWCS than in RWCS. The farmer uses different adaptation strategies like water harvesting, crop diversification, increasing use of irrigation, laser land leveling to save water, making ridges, building a water harvesting scheme, changing irrigation time, high-efficiency irrigation system and water-saving technologies. Adaptation strategies used by farmer were affected by different socioeconomic, demographic and agronomic factors. Results of the binary logistic regression showed that age, farming experience, education, household size, farm size, tenancy status of owner, access to farm credit, information on weather forecasting, soil quality, tube well ownership, remittances, off-farm income, agricultural extension services provided for irrigation water, and information on climatic and natural hazards played a significant role in the selection of adaptation strategies for irrigation water. Results of PLS-SEM showed that adaptation strategies mitigate the adverse effects of climate change on irrigation water. Farmers' awareness regarding the impact of climatic variability on irrigation water should be enhanced. Availability of credit to farmers should be improved on easy terms to facilitate the adoption of interventions for better irrigation water management. It is high time for policymakers to design effective, affordable, and workable policies to mitigate climate change vulnerabilities against irrigation water to improve the wellbeing of the farmers.


Asunto(s)
Cambio Climático , Agricultores , Humanos , Pakistán , Granjas , Agricultura , Percepción
15.
Nat Prod Res ; : 1-15, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38146228

RESUMEN

The current study reports the synthesis of silver nanoparticles (Ag NPs) using a polar extract of Cotoneaster nummularia leaves. Various analytical techniques, like UV-Vis spectrophotometry, FT-IR spectroscopy, XRD, SEM, and EDX were employed for characterisation. These techniques confirmed the stability of Ag NPs in solution and endorsed the interaction between different groups and Ag, crystal phase, surface morphology, and size of Ag NPs. UV-Vis spectrophotometer displayed SPR absorption bands ranging from 380 to 470 nm, characteristic of Ag NPs, within 1.0 h exposure to sunlight. XRD and SEM discovered the face-centered cubic crystals of Ag NPs with a 122.8 ± 1.1 nm average diameter. The bands at 525 cm-1 in FT-IR spectrum supported the development of Ag NPs. The Ag NPs showed antimicrobial potential against three pathogenic bacterial strains and two fungal strains. The wound healing results, as studied by tissue re-development and wound closure in rabbits were comparable to standard Sufre tulle® dressing.

16.
Antioxidants (Basel) ; 12(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37371931

RESUMEN

Photodegradation is an efficient strategy for the removal of organic pollutants from wastewater. Due to their distinct properties and extensive applications, semiconductor nanoparticles have emerged as promising photocatalysts. In this work, olive (Olea Europeae) fruit extract-based zinc oxide nanoparticles (ZnO@OFE NPs) were successfully biosynthesized using a one-pot sustainable method. The prepared ZnO NPs were systematically characterized using UV-Vis, FTIR, SEM, EDX and XRD and their photocatalytic and antioxidant activity was evaluated. SEM demonstrated the formation of spheroidal nanostructures (57 nm) of ZnO@OFE and the EDX analysis confirmed its composition. FTIR suggested the modification/capping of the NPs with functional groups of phytochemicals from the extract. The sharp XRD reflections revealed the crystalline nature of the pure ZnO NPs with the most stable hexagonal wurtzite phase. The photocatalytic activity of the synthesized catalysts was evaluated by measuring the degradation of methylene blue (MB) and methyl orange (MO) dyes under sunlight irradiation. Improved degradation efficiencies of 75% and 87% were achieved within only 180 min with photodegradation rate constant k of 0.008 and 0.013 min-1 for MB and MO, respectively. The mechanism of degradation was proposed. Additionally, ZnO@OFE NPs exhibited potent antioxidant activity against DPPH, hydroxyl, peroxide and superoxide radicals. Hence, ZnO@OFE NPs may have potential as a cost-effective and green photocatalyst for wastewater treatment.

17.
RSC Adv ; 13(41): 28666-28675, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37790097

RESUMEN

Plasmonic nanoparticles such as Ag have gained great interest in the biomedical domain and chemical analysis due to their unique optical properties. Herein, we report a simple, cost-effective, and highly selective colorimetric sensor of mercury(ii) based on E. diffusum (horsetail) extract-functionalized Ag nanoparticles (ED-AgNPs). The ED-AgNPs were synthesized by exploiting the coordination of Ag+ with the various functional groups of ED extract under sunlight exposure for only tens of seconds. ED-AgNPs (63 nm) were characterized using various techniques such as UV-vis, FTIR, DLS, SEM and EDX. FTIR spectra suggested the successful encapsulation of the AgNPs surface with ED extract and XRD confirmed its crystalline nature. This ED-AgNPs colorimetric sensor revealed remarkable selectivity towards Hg2+ in aqueous solution among other transition metal ions through a redox reaction mechanism. Besides, the sensor exhibited high sensitivity with rapid response and a detection limit of 70 nM. The sensor demonstrated feasibility for Hg(ii) detection in spiked tap and river water samples. In addition, the synthesized ED-AgNPs revealed enhanced antimicrobial activity with higher efficacy against the Gram-positive bacterium (L. monocytogenes with an inhibition zone of 18 mm) than the Gram-negative bacterium (E. coli with an inhibition zone of 10 mm). The simplicity and adaptability of this colorimetric sensor render it a promising candidate for on-site and point-of-care detection of heavy metal ions in diverse conditions.

18.
Stroke ; 43(5): 1347-53, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22382154

RESUMEN

BACKGROUND AND PURPOSE: Atherosclerosis is a progressive chronic disease, in which inflammation plays a key role. The calcium-binding proteins calgranulins including S100A8, S100A9, and S100A12 are involved in many cellular activities and pathological processes including inflammation. We therefore hypothesized that calgranulins may be markers of plaque instability in patients with carotid atherosclerosis. METHODS: Plasma levels of S100A8/A9 and S100A10 were measured in 159 consecutive patients with high-grade carotid stenosis and in 22 healthy control subjects. The mRNA levels of calgranulins were also measured within the atherosclerotic carotid plaques, and their regulation was analyzed in vitro in monocytes. RESULTS: Our main findings were: (1) plasma levels of S100A12 were significantly higher in patients with carotid atherosclerosis compared with healthy control subjects with the highest levels in patients with the most recent symptoms (ie, within 2 months); (2) plasma levels of S100A8/S100A9 showed a modest increase in patients with symptoms in the previous 2 to 6 months but not in the other patients; (3) mRNA levels of S100A8, S100A9, and S100A12 showed increased expression in atherosclerotic carotid plaques from patients with the most recent symptoms compared with the remaining patients; (4) in THP-1 monocytes, activation of Toll-like receptors 2 and 4 increased mRNA levels of S100A8, S100A9, and S10012 and interleukin-1ß, interferon γ, and releasate from thrombin-activated platelets significantly enhanced the expression of S100A12. CONCLUSIONS: Our findings support a link between calgranulins and atherogenesis and suggest that these mediators, and in particular S100A12, may be related to plaque instability.


Asunto(s)
Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/sangre , Estenosis Carotídea/diagnóstico por imagen , Proteínas S100/sangre , Anciano , Biomarcadores/sangre , Calgranulina A/sangre , Calgranulina B/sangre , Estudios de Casos y Controles , Femenino , Humanos , Complejo de Antígeno L1 de Leucocito/sangre , Masculino , Persona de Mediana Edad , ARN Mensajero/sangre , Proteína S100A12 , Receptor Toll-Like 2/sangre , Receptor Toll-Like 4/sangre , Ultrasonografía Doppler en Color
19.
Artículo en Inglés | MEDLINE | ID: mdl-35564736

RESUMEN

Livestock plays a vital role in humans' food and nutrition security under rapidly changing climatic scenarios. This study investigates the nature and factors affecting livestock farmers' choices of climate-smart livestock practices by using a multivariate probit model and then estimates the average effect of these adopted strategies on per capita daily dietary (calorie, protein, and calcium) intake among livestock herders. For this purpose, data were collected from 196 livestock farmers residing in the Punjab province of Pakistan, selected through multistage purposive and random sampling. The Simpson diversity index results revealed that farmers used diversified food in their daily diet. The results also showed that farmers consumed more protein-rich food items as compared to calorie and calcium-rich food items in their daily diet. Moreover, the average per capita calorie intake of livestock farmers was 2413.19 kcal/day. Livestock farmers adopting a higher number of climate-smart livestock practices consumed more daily per capita calories, protein, and calcium compared to those who adopted a lower number of climate-smart livestock practices on livestock farms. Moreover, climate-smart livestock practices produced more and better nutritional outcomes in combination with each other than in isolation. Livestock training was found to be positively associated with the adoption of more climate-smart practices. Therefore, livestock training is necessary to expedite the adoption of climate-smart practices and to improve the nutritional security of the farmers.


Asunto(s)
Agricultores , Ganado , Agricultura , Animales , Calcio , Calcio de la Dieta , Cambio Climático , Humanos , Pakistán
20.
Artículo en Inglés | MEDLINE | ID: mdl-36497713

RESUMEN

A sustainable and pleasant environment is deemed to offer various positive externalities such as scenic, visual and behavioral archetypes and patterns exhibiting in various forms. Such a scenario can significantly relieve households from many psychological and personal complications such as depression. Depression has aroused great concerns in recent years due to its personal and social burdens and unforeseeable damage. Many studies have explored the effects of air pollution caused by traditional fuel consumption on depression. However, limited evidence is available on how household non-traditional fuel choices affect depression. Based on a nationally representative dataset collected from China Family Panel Studies (CFPS) in 2012, this paper employs an endogenous switching regression (ESR) model and an endogenous switching probit (ESP) model to address the endogenous issue and to estimate the treatment effects of non-traditional fuel choices on depression in rural China. The empirical results show that non-traditional fuel users have significantly lower Epidemiologic Studies Depression Scale (CES-D) scores, indicating non-traditional fuel users face a lower risk of depression. Compared to solid fuels, employing non-traditional fuels will lead to a 3.659 reduction in depression score or decrease the probability of depression by 8.2%. In addition, the results of the mechanism analysis show that household non-traditional fuel choices affect depression by reducing the probability of physical discomfort and chronic disease. This study provides new insight into understanding the impact of air pollution in the house on depression and how to avoid the risk of depression in rural China effectively.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Humanos , Contaminación del Aire Interior/análisis , Culinaria , Composición Familiar , China/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA