Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 590(7847): 635-641, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33429418

RESUMEN

Some patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop severe pneumonia and acute respiratory distress syndrome1 (ARDS). Distinct clinical features in these patients have led to speculation that the immune response to virus in the SARS-CoV-2-infected alveolus differs from that in other types of pneumonia2. Here we investigate SARS-CoV-2 pathobiology by characterizing the immune response in the alveoli of patients infected with the virus. We collected bronchoalveolar lavage fluid samples from 88 patients with SARS-CoV-2-induced respiratory failure and 211 patients with known or suspected pneumonia from other pathogens, and analysed them using flow cytometry and bulk transcriptomic profiling. We performed single-cell RNA sequencing on 10 bronchoalveolar lavage fluid samples collected from patients with severe coronavirus disease 2019 (COVID-19) within 48 h of intubation. In the majority of patients with SARS-CoV-2 infection, the alveolar space was persistently enriched in T cells and monocytes. Bulk and single-cell transcriptomic profiling suggested that SARS-CoV-2 infects alveolar macrophages, which in turn respond by producing T cell chemoattractants. These T cells produce interferon-γ to induce inflammatory cytokine release from alveolar macrophages and further promote T cell activation. Collectively, our results suggest that SARS-CoV-2 causes a slowly unfolding, spatially limited alveolitis in which alveolar macrophages containing SARS-CoV-2 and T cells form a positive feedback loop that drives persistent alveolar inflammation.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Macrófagos Alveolares/inmunología , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2/patogenicidad , Linfocitos T/inmunología , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , COVID-19/genética , Estudios de Cohortes , Humanos , Interferón gamma/inmunología , Interferones/inmunología , Interferones/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Neumonía Viral/genética , RNA-Seq , SARS-CoV-2/inmunología , Transducción de Señal/inmunología , Análisis de la Célula Individual , Linfocitos T/metabolismo , Factores de Tiempo
2.
Nature ; 565(7740): 495-499, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626970

RESUMEN

Regulatory T cells (Treg cells), a distinct subset of CD4+ T cells, are necessary for the maintenance of immune self-tolerance and homeostasis1,2. Recent studies have demonstrated that Treg cells exhibit a unique metabolic profile, characterized by an increase in mitochondrial metabolism relative to other CD4+ effector subsets3,4. Furthermore, the Treg cell lineage-defining transcription factor, Foxp3, has been shown to promote respiration5,6; however, it remains unknown whether the mitochondrial respiratory chain is required for the T cell-suppression capacity, stability and survival of Treg cells. Here we report that Treg cell-specific ablation of mitochondrial respiratory chain complex III in mice results in the development of fatal inflammatory disease early in life, without affecting Treg cell number. Mice that lack mitochondrial complex III specifically in Treg cells displayed a loss of T cell-suppression capacity without altering Treg cell proliferation and survival. Treg cells deficient in complex III showed decreased expression of genes associated with Treg function, whereas Foxp3 expression remained stable. Loss of complex III in Treg cells increased DNA methylation as well as the metabolites 2-hydroxyglutarate (2-HG) and succinate that inhibit the ten-eleven translocation (TET) family of DNA demethylases7. Thus, Treg cells require mitochondrial complex III to maintain immune regulatory gene expression and suppressive function.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Mitocondrias/enzimología , Autotolerancia/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Desmetilación del ADN , Metilación de ADN , Transporte de Electrón , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Glutaratos/metabolismo , Inflamación/genética , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Autotolerancia/genética , Ácido Succínico/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/enzimología
3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33972447

RESUMEN

Pulmonary fibrosis is a relentlessly progressive and often fatal disease with a paucity of available therapies. Genetic evidence implicates disordered epithelial repair, which is normally achieved by the differentiation of small cuboidal alveolar type 2 (AT2) cells into large, flattened alveolar type 1 (AT1) cells as an initiating event in pulmonary fibrosis pathogenesis. Using models of pulmonary fibrosis in young adult and old mice and a model of adult alveologenesis after pneumonectomy, we show that administration of ISRIB, a small molecule that restores protein translation by EIF2B during activation of the integrated stress response (ISR), accelerated the differentiation of AT2 into AT1 cells. Accelerated epithelial repair reduced the recruitment of profibrotic monocyte-derived alveolar macrophages and ameliorated lung fibrosis. These findings suggest a dysfunctional role for the ISR in regeneration of the alveolar epithelium after injury with implications for therapy.


Asunto(s)
Acetamidas/farmacología , Células Epiteliales Alveolares/efectos de los fármacos , Ciclohexilaminas/farmacología , Proteostasis/efectos de los fármacos , Fibrosis Pulmonar/tratamiento farmacológico , Acetamidas/uso terapéutico , Factores de Edad , Células Epiteliales Alveolares/citología , Animales , Amianto , Bleomicina , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ciclohexilaminas/uso terapéutico , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/fisiología , Ratones , Ratones Endogámicos C57BL , Proteostasis/fisiología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Estrés Fisiológico/efectos de los fármacos
4.
J Allergy Clin Immunol ; 149(5): 1666-1674, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34953792

RESUMEN

BACKGROUND: Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is well characterized by type 2 (T2) inflammation characterized by eosinophilia in Western countries. However, the presence and roles of neutrophils in T2 CRSwNP are poorly understood. OBJECTIVE: We sought to clarify accumulation and inflammatory roles of neutrophils in CRSwNP in a Western population. METHODS: Sinonasal tissues and nasal lavage fluids were obtained from control patients and patients with CRS, and neutrophil markers were determined by ELISA. The presence of neutrophils in tissue was determined by flow cytometry. The gene expression profiles in neutrophils were determined by RNA sequencing. RESULTS: A neutrophil marker elastase was selectively elevated in nasal polyp (NP) tissue, whereas eosinophilic cationic protein (an eosinophil marker) was elevated in both uncinate and NP tissues of CRSwNP patients. Nasal lavage fluid myeloperoxidase (another neutrophil marker) was also significantly elevated in CRSwNP compared to control patients. Neutrophil markers were more greatly elevated in CRSwNP patients with recurrent disease. Flow cytometric analysis confirmed that neutrophil numbers were significantly elevated in NPs compared to control tissues. RNA sequencing analysis found that 344 genes were >3-fold and significantly elevated in NP neutrophils compared to peripheral blood neutrophils. Gene Ontology analysis suggested that the elevated genes in NP neutrophils were significantly associated with activation. Results suggest that neutrophils are accumulated in T2 NP tissues and that accumulated neutrophils are highly activated and contribute to inflammation in NPs. CONCLUSIONS: Neutrophils may play a heretofore unrecognized meaningful role in the pathogenesis of CRSwNP in Western countries and may be a potentially important therapeutic target in T2 CRSwNP.


Asunto(s)
Pólipos Nasales , Rinitis , Sinusitis , Biomarcadores , Enfermedad Crónica , Humanos , Inflamación/patología , Pólipos Nasales/patología , Neutrófilos/patología , Rinitis/patología , Sinusitis/patología
5.
Am J Respir Cell Mol Biol ; 66(2): 206-222, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731594

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 180 million people since the onset of the pandemic. Despite similar viral load and infectivity rates between children and adults, children rarely develop severe illness. Differences in the host response to the virus at the primary infection site are among the mechanisms proposed to account for this disparity. Our objective was to investigate the host response to SARS-CoV-2 in the nasal mucosa in children and adults and compare it with the host response to respiratory syncytial virus (RSV) and influenza virus. We analyzed clinical outcomes and gene expression in the nasal mucosa of 36 children with SARS-CoV-2, 24 children with RSV, 9 children with influenza virus, 16 adults with SARS-CoV-2, and 7 healthy pediatric and 13 healthy adult controls. In both children and adults, infection with SARS-CoV-2 led to an IFN response in the nasal mucosa. The magnitude of the IFN response correlated with the abundance of viral reads, not the severity of illness, and was comparable between children and adults infected with SARS-CoV-2 and children with severe RSV infection. Expression of ACE2 and TMPRSS2 did not correlate with age or presence of viral infection. SARS-CoV-2-infected adults had increased expression of genes involved in neutrophil activation and T-cell receptor signaling pathways compared with SARS-CoV-2-infected children, despite similar severity of illness and viral reads. Age-related differences in the immune response to SARS-CoV-2 may place adults at increased risk of developing severe illness.


Asunto(s)
Envejecimiento/inmunología , COVID-19/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Mucosa , Mucosa Nasal/inmunología , SARS-CoV-2/inmunología , Adolescente , Factores de Edad , Enzima Convertidora de Angiotensina 2/inmunología , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mucosa Nasal/virología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Serina Endopeptidasas/inmunología
6.
J Immunol ; 204(2): 438-448, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31818982

RESUMEN

In inflamed human tissues, we often find intact eosinophilic granules, but not eosinophils themselves. Eosinophils, tissue-dwelling granulocytes with several homeostatic roles, have a surprising association with fibrinogen and tissue remodeling. Fibrinogen is a complex glycoprotein with regulatory roles in hemostasis, tumor development, wound healing, and atherogenesis. Despite its significance, the functional link between eosinophils and fibrinogen is not understood. We tested IL-5-primed mouse bone marrow-derived and human blood-sorted eosinophil activity against FITC-linked fibrinogen substrates. The interactions between these scaffolds and adhering eosinophils were quantified using three-dimensional laser spectral, confocal, and transmission electron microscopy. Eosinophils were labeled with major basic protein (MBP) Ab to visualize granules and assessed by flow cytometry. Both mouse and human eosinophils showed firm adhesion and degraded up to 27 ± 3.1% of the substrate area. This co-occurred with active MBP-positive granule release and the expression of integrin CD11b. Mass spectrometry analysis of fibrinogen proteolytic reactions detected the presence of eosinophil peroxidase, MBP, and fibrin α-, ß-, and γ-chains. Eosinophil activity was adhesion dependent, as a blocking Ab against CD11b significantly reduced adhesion, degranulation, and fibrinogenolysis. Although adhered, eosinophils exhibited no proteolytic activity on collagen matrices. Cytolytic degranulation was defined by loss of membrane integrity, cell death, and presence of cell-free granules. From transmission electron microscopy images, we observed only fibrinogen-exposed eosinophils undergoing this process. To our knowledge, this is the first report to show that fibrinogen is a specific trigger for cytolytic eosinophil degranulation with implications in human disease.


Asunto(s)
Eosinófilos/inmunología , Fibrinógeno/metabolismo , Inflamación/metabolismo , Animales , Antígeno CD11b/metabolismo , Adhesión Celular , Muerte Celular , Degranulación de la Célula , Células Cultivadas , Citotoxicidad Inmunológica , Proteína Mayor Básica del Eosinófilo/metabolismo , Humanos , Inflamación/inmunología , Interleucina-5/metabolismo , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Vesículas Secretoras/metabolismo
7.
J Allergy Clin Immunol ; 147(2): 600-612, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32371071

RESUMEN

BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is characterized by asthma, chronic rhinosinusitis with nasal polyps (CRSwNP), and an intolerance of medications that inhibit cyclooxygenase-1. Patients with AERD have more severe upper and lower respiratory tract disease than do aspirin-tolerant patients with CRSwNP. A dysregulation in arachidonic acid metabolism is thought to contribute to the enhanced sinonasal inflammation in AERD. OBJECTIVE: Our aim was to utilize an unbiased approach investigating arachidonic acid metabolic pathways in AERD. METHODS: Single-cell RNA sequencing (10× Genomics, Pleasanton, Calif) was utilized to compare the transcriptional profile of nasal polyp (NP) cells from patients with AERD and patients with CRSwNP and map differences in the expression of select genes among identified cell types. Findings were confirmed by traditional real-time PCR. Lipid mediators in sinonasal tissue were measured by mass spectrometry. Localization of various proteins within NPs was assessed by immunofluorescence. RESULTS: The gene encoding for 15-lipooxygenase (15-LO), ALOX15, was significantly elevated in NPs of patients with AERD compared to NPs of patients with CRSwNP (P < .05) or controls (P < .001). ALOX15 was predominantly expressed by epithelial cells. Expression levels significantly correlated with radiographic sinus disease severity (r = 0.56; P < .001) and were associated with asthma. The level of 15-oxo-eicosatetraenoic acid (15-Oxo-ETE), a downstream product of 15-LO, was significantly elevated in NPs from patients with CRSwNP (27.93 pg/mg of tissue) and NPs from patients with AERD (61.03 pg/mg of tissue) compared to inferior turbinate tissue from controls (7.17 pg/mg of tissue [P < .001]). Hydroxyprostaglandin dehydrogenase, an enzyme required for 15-Oxo-ETE synthesis, was predominantly expressed in mast cells and localized near 15-LO+ epithelium in NPs from patients with AERD. CONCLUSIONS: Epithelial and mast cell interactions, leading to the synthesis of 15-Oxo-ETE, may contribute to the dysregulation of arachidonic acid metabolism via the 15-LO pathway and to the enhanced sinonasal disease severity observed in AERD.


Asunto(s)
Araquidonato 15-Lipooxigenasa/inmunología , Asma Inducida por Aspirina/inmunología , Trastornos Respiratorios/inmunología , Adulto , Araquidonato 15-Lipooxigenasa/metabolismo , Asma Inducida por Aspirina/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Respiratorios/metabolismo
8.
Int Arch Allergy Immunol ; 182(8): 663-678, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34077948

RESUMEN

Concomitant dramatic increase in prevalence of allergic and metabolic diseases is part of a modern epidemic afflicting technologically advanced societies. While clinical evidence points to clear associations between various metabolic factors and atopic disease, there is still a very limited understanding of the mechanisms that link the two. Dysregulation of central metabolism in metabolic syndrome, obesity, diabetes, and dyslipidemia has a systemic impact on multiple tissues and organs, including cells of the epithelial barrier. While much of epithelial research in allergy has focused on the immune-driven processes, a growing number of recent studies have begun to elucidate the role of metabolic components of disease. This review will revisit clinical evidence for the relationship between metabolic and allergic diseases, as well as discuss potential mechanisms driving metabolic dysfunction of the epithelial barrier. Among them, novel studies highlight links between dysregulation of the insulin pathway, glucose metabolism, and loss of epithelial differentiation in asthma. Studies of mitochondrial structure and bioenergetics in lean and obese asthmatic phenotypes recently came to light to provide a novel framework linking changes in tricarboxylic acid cycle and oxidative phosphorylation with arginine metabolism and nitric oxide bioavailability. New research established connections between arachidonate metabolism, autophagy, and airway disease, as well as systemic dyslipidemia in atopic dermatitis and ceramide changes in the epidermis. Taken together, studies of metabolism have a great potential to open doors to a new class of therapeutic strategies, better characterization of disease endotypes, as well as enable a systems biology approach to mechanisms of allergic disease.


Asunto(s)
Susceptibilidad a Enfermedades , Metabolismo Energético , Células Epiteliales/metabolismo , Homeostasis , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Animales , Biomarcadores , Diabetes Mellitus/metabolismo , Humanos , Resistencia a la Insulina , Redes y Vías Metabólicas , Mitocondrias , Obesidad/complicaciones , Obesidad/etiología , Obesidad/metabolismo , Transducción de Señal
9.
Am J Respir Cell Mol Biol ; 63(5): 652-664, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32692928

RESUMEN

Pulmonary hypertension (PH) and right ventricular (RV) hypertrophy frequently develop in patients with hypoxic lung disease. Chronic alveolar hypoxia (CH) promotes sustained pulmonary vasoconstriction and pulmonary artery (PA) remodeling by acting on lung cells, resulting in the development of PH. RV hypertrophy develops in response to PH, but coronary arterial hypoxemia in CH may influence that response by activating HIF-1α (hypoxia-inducible factor 1α) and/or HIF-2α in cardiomyocytes. Indeed, other studies show that the attenuation of PH in CH fails to prevent RV remodeling, suggesting that PH-independent factors regulate RV hypertrophy. Therefore, we examined the role of HIFs in RV remodeling in CH-induced PH. We deleted HIF-1α and/or HIF-2α in hearts of adult mice that were then housed under normoxia or CH (10% O2) for 4 weeks. RNA-sequencing analysis of the RV revealed that HIF-1α and HIF-2α regulate the transcription of largely distinct gene sets during CH. RV systolic pressure increased, and RV hypertrophy developed in CH. The deletion of HIF-1α in smooth muscle attenuated the CH-induced increases in RV systolic pressure but did not decrease hypertrophy. The deletion of HIF-1α in cardiomyocytes amplified RV remodeling; this was abrogated by the simultaneous loss of HIF-2α. CH decreased stroke volume and cardiac output in wild-type but not in HIF-1α-deficient hearts, suggesting that CH may cause cardiac dysfunction via HIF-dependent signaling. Collectively, these data reveal that HIF-1 and HIF-2 act together in RV cardiomyocytes to orchestrate RV remodeling in CH, with HIF-1 playing a protective role rather than driving hypertrophy.


Asunto(s)
Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/complicaciones , Función Ventricular Derecha/fisiología , Remodelación Ventricular/fisiología , Animales , Enfermedad Crónica , Eliminación de Gen , Regulación de la Expresión Génica , Ontología de Genes , Hipertensión Pulmonar/genética , Integrasas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Transcripción Genética , Función Ventricular Derecha/genética , Remodelación Ventricular/genética
10.
Am J Respir Crit Care Med ; 199(10): 1225-1237, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30398927

RESUMEN

Rationale: The identification of informative elements of the host response to infection may improve the diagnosis and management of bacterial pneumonia. Objectives: To determine whether the absence of alveolar neutrophilia can exclude bacterial pneumonia in critically ill patients with suspected infection and to test whether signatures of bacterial pneumonia can be identified in the alveolar macrophage transcriptome. Methods: We determined the test characteristics of alveolar neutrophilia for the diagnosis of bacterial pneumonia in three cohorts of mechanically ventilated patients. In one cohort, we also isolated macrophages from alveolar lavage fluid and used the transcriptome to identify signatures of bacterial pneumonia. Finally, we developed a humanized mouse model of Pseudomonas aeruginosa pneumonia to determine if pathogen-specific signatures can be identified in human alveolar macrophages. Measurements and Main Results: An alveolar neutrophil percentage less than 50% had a negative predictive value of greater than 90% for bacterial pneumonia in both the retrospective (n = 851) and validation cohorts (n = 76 and n = 79). A transcriptional signature of bacterial pneumonia was present in both resident and recruited macrophages. Gene signatures from both cell types identified patients with bacterial pneumonia with test characteristics similar to alveolar neutrophilia. Conclusions: The absence of alveolar neutrophilia has a high negative predictive value for bacterial pneumonia in critically ill patients with suspected infection. Macrophages can be isolated from alveolar lavage fluid obtained during routine care and used for RNA-Seq analysis. This novel approach may facilitate a longitudinal and multidimensional assessment of the host response to bacterial pneumonia.


Asunto(s)
Antibacterianos/uso terapéutico , Interacciones Huésped-Patógeno/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Neumonía Bacteriana/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Respiración Artificial , Anciano , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Estudios Retrospectivos
11.
Am J Respir Crit Care Med ; 199(12): 1517-1536, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30554520

RESUMEN

Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.


Asunto(s)
Células Cultivadas/patología , Células Epiteliales/patología , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Análisis de Secuencia de ARN , Células Madre/patología , Transcriptoma , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino
12.
J Biol Chem ; 293(30): 11772-11783, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29866884

RESUMEN

Pediatric acute lung injury, usually because of pneumonia, has a mortality rate of more than 20% and an incidence that rivals that of all childhood cancers combined. CD4+ T-cells coordinate the immune response to pneumonia but fail to function robustly among the very young, who have poor outcomes from lung infection. We hypothesized that DNA methylation represses a mature CD4+ T-cell transcriptional program in neonates with pneumonia. Here, we found that neonatal mice (3-4 days old) aspirated with Escherichia coli bacteria had a higher mortality rate than juvenile mice (11-14 days old). Transcriptional profiling with an unsupervised RNA-Seq approach revealed that neonates displayed an attenuated lung CD4+ T-cell transcriptional response to pneumonia compared with juveniles. Unlike neonates, juveniles up-regulated a robust set of canonical T-cell immune response genes. DNA methylation profiling with modified reduced representation bisulfite sequencing revealed 44,119 differentially methylated CpGs, which preferentially clustered around transcriptional start sites and CpG islands. A methylation difference-filtering algorithm detected genes with a high likelihood of differential promoter methylation regulating their expression; these 731 loci encoded important immune response and tissue-protective T-cell pathway components. Disruption of DNA methylation with the hypomethylating agent decitabine induced plasticity in the lung CD4+ T-cell marker phenotype. Altogether, multidimensional profiling suggested that DNA methylation within the promoters of a core set of CD4+ T-cell pathway genes contributes to the hyporesponsive neonatal immune response to pneumonia. These findings also suggest that DNA methylation could serve as a mechanistic target for disease-modifying therapies in pediatric lung infection and injury.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Metilación de ADN , Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Neumonía/inmunología , Animales , Animales Recién Nacidos , Linfocitos T CD4-Positivos/metabolismo , Islas de CpG , Epigénesis Genética , Infecciones por Escherichia coli/genética , Ratones , Ratones Endogámicos C57BL , Neumonía/genética , Activación Transcripcional
13.
Respir Res ; 19(1): 233, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30477498

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring of the lung parenchyma, leading to respiratory failure and death. High resolution computed tomography of the chest is often diagnostic for IPF, but its cost and the risk of radiation exposure limit its use as a screening tool even in patients at high risk for the disease. In patients with lung cancer, investigators have detected transcriptional signatures of disease in airway and nasal epithelial cells distal to the site of disease that are clinically useful as screening tools. Here we assessed the feasibility of distinguishing patients with IPF from age-matched controls through transcriptomic profiling of nasal epithelial curettage samples, which can be safely and repeatedly sampled over the course of a patient's illness. We recruited 10 patients with IPF and 23 age-matched healthy control subjects. Using 3' messenger RNA sequencing (mRNA-seq), we identified 224 differentially expressed genes, most of which were upregulated in patients with IPF compared with controls. Pathway enrichment analysis revealed upregulation of pathways related to immune response and inflammatory signaling in IPF patients compared with controls. These findings support the concept that fibrosis is associated with upregulation of inflammatory pathways across the respiratory epithelium with possible implications for disease detection and pathobiology.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Mediadores de Inflamación/metabolismo , Mucosa Nasal/metabolismo , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Masculino , Persona de Mediana Edad , Mucosa Nasal/patología
15.
J Immunol ; 195(4): 1377-87, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26136426

RESUMEN

Mast cells are critical in the pathogenesis of allergic disease due to the release of preformed and newly synthesized mediators, yet the mechanisms controlling mast cell activation are not well understood. Members of the tetraspanin family are recently emerging as modulators of FcεRI-mediated mast cell activation; however, mechanistic understanding of their function is currently lacking. The tetraspanin CD151 is a poorly understood member of this family and is specifically induced on mouse and human mast cells upon FcεRI aggregation but its functional effects are unknown. In this study, we show that CD151 deficiency significantly exacerbates the IgE-mediated late phase inflammation in a murine model of passive cutaneous anaphylaxis. Ex vivo, FcεRI stimulation of bone marrow-derived mast cells from CD151(-/-) mice resulted in significantly enhanced expression of proinflammatory cytokines IL-4, IL-13, and TNF-α compared with wild-type controls. However, FcεRI-induced mast cell degranulation was unaffected. At the molecular signaling level, CD151 selectively regulated IgE-induced activation of ERK1/2 and PI3K, associated with cytokine production, but had no effect on the phospholipase Cγ1 signaling, associated with degranulation. Collectively, our data indicate that CD151 exerts negative regulation over IgE-induced late phase responses and cytokine production in mast cells.


Asunto(s)
Inmunomodulación , Mastocitos/inmunología , Mastocitos/metabolismo , Receptores de IgE/metabolismo , Tetraspanina 24/metabolismo , Anafilaxia/genética , Anafilaxia/inmunología , Anafilaxia/metabolismo , Animales , Degranulación de la Célula/genética , Degranulación de la Célula/inmunología , Diferenciación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Inmunoglobulina E/inmunología , Inmunofenotipificación , Mediadores de Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas , Mastocitos/citología , Ratones , Ratones Noqueados , Anafilaxis Cutánea Pasiva , Fosfatidilinositol 3-Quinasas , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Tetraspanina 24/deficiencia , Tetraspanina 24/genética
16.
Am J Physiol Lung Cell Mol Physiol ; 310(8): L759-71, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26801566

RESUMEN

γ-Tocopherol increases responses to allergen challenge in allergic adult mice, but it is not known whether γ-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether γ-tocopherol augments development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with γ-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to allergen challenge. The γ-tocopherol supplementation of allergic female mice increased the numbers of eosinophils twofold in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also about a twofold increase in pup lung CD11b(+) subsets of CD11c(+) dendritic cells and in numbers of these dendritic cells expressing the transcription factor IRF4. There was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with γ-tocopherol increased the number of fetal liver CD11b(+)CD11c(+) dendritic cells twofold in utero. In the pups, γ-tocopherol increased lung expression of the inflammatory mediators CCL11, amphiregulin, activin A, and IL-5. In conclusion, maternal supplementation with γ-tocopherol increased fetal development of subsets of dendritic cells that are critical for allergic responses and increased development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with γ-tocopherol in prenatal vitamins.


Asunto(s)
Asma/inmunología , Células Dendríticas/inmunología , Suplementos Dietéticos/efectos adversos , Neumonía/inmunología , gamma-Tocoferol/efectos adversos , Animales , Asma/inducido químicamente , Antígenos CD11/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Exposición Materna , Intercambio Materno-Fetal , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/inmunología , gamma-Tocoferol/administración & dosificación
17.
Thorax ; 71(10): 954-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27257004

RESUMEN

Prospective epidemiological studies, observational cross-sectional studies and some randomised prevention trials have demonstrated inconsistent findings of the impact of vitamin E on asthma risk. The goals of this study were to explore whether this differing association of vitamin E on asthma risk is due to an interaction of vitamin E isoforms. To address this question, in a population-based asthma incidence study we assessed the interaction between the plasma concentrations of vitamin E isoforms α-tocopherol and γ-tocopherol on asthma risk. Second, to understand the mechanisms of any interaction of these isoforms, we conducted experimental supplementation of α-tocopherol and γ-tocopherol isoforms in mice on the outcome of allergic airway inflammation. We found that in the highest γ-tocopherol tertile, low levels of α-tocopherol were associated with increased asthma risk, while highest tertile α-tocopherol levels trended to be protective. Similarly, in a mouse model of asthma, diet supplementation with α-tocopherol decreased lung inflammation in response to house dust mite (HDM) challenge. In contrast, diet supplementation with γ-tocopherol increased lung inflammation in response to HDM. These human and animal studies provide evidence for the competing effects of the vitamin E isoforms, in physiological concentrations, on asthma and allergic airway disease.


Asunto(s)
Asma/sangre , alfa-Tocoferol/sangre , gamma-Tocoferol/sangre , Animales , Humanos , Ratones , Isoformas de Proteínas/sangre , Hipersensibilidad Respiratoria/sangre
18.
Am J Physiol Lung Cell Mol Physiol ; 309(6): L573-83, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26209276

RESUMEN

Tissue transglutaminase 2 (TG2) is an enzyme with multiple functions, including catalysis of serotonin conjugation to proteins (serotonylation). Previous research indicates that TG2 expression is upregulated in human asthma and in the lung endothelium of ovalbumin (OVA)-challenged mice. It is not known whether endothelial cell TG2 is required for allergic inflammation. Therefore, to determine whether endothelial cell TG2 regulates allergic inflammation, mice with an endothelial cell-specific deletion of TG2 were generated, and these mice were sensitized and challenged in the airways with OVA. Deletion of TG2 in endothelial cells blocked OVA-induced serotonylation in lung endothelial cells, but not lung epithelial cells. Interestingly, deletion of endothelial TG2 reduced allergen-induced increases in respiratory system resistance, number of eosinophils in the bronchoalveolar lavage, and number of eosinophils in the lung tissue. Endothelial cell deletion of TG2 did not alter expression of adhesion molecules, cytokines, or chemokines that regulate leukocyte recruitment, consistent with other studies, demonstrating that deletion of endothelial cell signals does not alter lung cytokines and chemokines during allergic inflammation. Taken together, the data indicate that endothelial cell TG2 is required for allergic inflammation by regulating the recruitment of eosinophils into OVA-challenged lungs. In summary, TG2 functions as a critical signal for allergic lung responses. These data identify potential novel targets for intervention in allergy/asthma.


Asunto(s)
Asma/enzimología , Células Endoteliales/enzimología , Proteínas de Unión al GTP/fisiología , Pulmón/enzimología , Transglutaminasas/fisiología , Animales , Asma/patología , Quimiocinas/metabolismo , Eosinófilos/inmunología , Femenino , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Glutamina Gamma Glutamiltransferasa 2
19.
Am J Physiol Lung Cell Mol Physiol ; 307(6): L482-96, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015974

RESUMEN

α-Tocopherol blocks responses to allergen challenge in allergic adult mice, but it is not known whether α-tocopherol regulates the development of allergic disease. Development of allergic disease often occurs early in life. In clinical studies and animal models, offspring of allergic mothers have increased responsiveness to allergen challenge. Therefore, we determined whether α-tocopherol blocked development of allergic responses in offspring of allergic female mice. Allergic female mice were supplemented with α-tocopherol starting at mating. The pups from allergic mothers developed allergic lung responses, whereas pups from saline-treated mothers did not respond to the allergen challenge, and α-tocopherol supplementation of allergic female mice resulted in a dose-dependent reduction in eosinophils in the pup bronchoalveolar lavage and lungs after allergen challenge. There was also a reduction in pup lung CD11b(+) dendritic cell subsets that are critical to development of allergic responses, but there was no change in several CD11b(-) dendritic cell subsets. Furthermore, maternal supplementation with α-tocopherol reduced the number of fetal liver CD11b(+) dendritic cells in utero. In the pups, there was reduced allergen-induced lung mRNA expression of IL-4, IL-33, TSLP, CCL11, and CCL24. Cross-fostering pups at the time of birth demonstrated that α-tocopherol had a regulatory function in utero. In conclusion, maternal supplementation with α-tocopherol reduced fetal development of subsets of dendritic cells that are critical for allergic responses and reduced development of allergic responses in pups from allergic mothers. These results have implications for supplementation of allergic mothers with α-tocopherol.


Asunto(s)
Antioxidantes/farmacología , Antígeno CD11b/inmunología , Antígeno CD11c/inmunología , Células Dendríticas/inmunología , Suplementos Dietéticos , Hipersensibilidad/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , alfa-Tocoferol/farmacología , Animales , Animales Recién Nacidos , Citocinas/inmunología , Células Dendríticas/patología , Femenino , Hipersensibilidad/inmunología , Hipersensibilidad/patología , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/patología
20.
J Immunol ; 188(2): 874-84, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22156494

RESUMEN

It is reported that PTP1B limits cytokine signaling in vitro. However, PTP1B's function during inflammation in vivo is not known. In this report, we determined whether PTP1B deficiency affects allergic inflammation in vivo. Briefly, lungs of OVA-challenged PTP1B(-/-) mice had elevated numbers of eosinophils and eosinophil progenitors at 6 h after one OVA challenge and at 24 h after a third OVA challenge as compared with OVA-challenged wild-type mice. There was also an increase in numbers of CD11b(+)SiglecF(+)CD34(+)IL-5Rα(+) eosinophil progenitors in the bone marrow, peripheral blood, and spleens of OVA-challenged PTP1B(-/-) mice. Intravital microscopy revealed that, in OVA-challenged PTP1B(-/-) mice, blood leukocytes rapidly bound to endothelium (5-30 min), whereas, in wild-type mice, blood leukocytes bound to endothelium at the expected 6-18 h. Consistent with early recruitment of leukocytes, lung eotaxin and Th2 cytokine levels were elevated early in the PTP1B(-/-) mice. Interestingly, spleen leukocytes from PTP1B(-/-) mice exhibited an increased chemotaxis, chemokinesis, and transendothelial migration in vitro. In summary, PTP1B functions as a critical negative regulator to limit allergic responses.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Regulación hacia Abajo/inmunología , Hematopoyesis/inmunología , Mediadores de Inflamación/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/deficiencia , Regulación hacia Arriba/inmunología , Alérgenos/toxicidad , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/patología , Línea Celular , Quimiocinas/biosíntesis , Quimiotaxis de Leucocito/genética , Dermatitis Atópica/genética , Dermatitis Atópica/inmunología , Dermatitis Atópica/patología , Regulación hacia Abajo/genética , Eosinófilos/inmunología , Eosinófilos/patología , Femenino , Hematopoyesis/genética , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ovalbúmina/toxicidad , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Receptores de Quimiocina/biosíntesis , Células Th2/inmunología , Células Th2/metabolismo , Células Th2/patología , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA