Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(8): e2311522121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38363863

RESUMEN

Symbiosis receptor-like kinase SYMRK is required for root nodule symbiosis between legume plants and nitrogen-fixing bacteria. To understand symbiotic signaling from SYMRK, we determined the crystal structure to 1.95 Å and mapped the phosphorylation sites onto the intracellular domain. We identified four serine residues in a conserved "alpha-I" motif, located on the border between the kinase core domain and the flexible C-terminal tail, that, when phosphorylated, drives organogenesis. Substituting the four serines with alanines abolished symbiotic signaling, while substituting them with phosphorylation-mimicking aspartates induced the formation of spontaneous nodules in the absence of bacteria. These findings show that the signaling pathway controlling root nodule organogenesis is mediated by SYMRK phosphorylation, which may help when engineering this trait into non-legume plants.


Asunto(s)
Fabaceae , Nódulos de las Raíces de las Plantas , Fosforilación , Nódulos de las Raíces de las Plantas/metabolismo , Nodulación de la Raíz de la Planta , Fosfotransferasas/metabolismo , Simbiosis/genética , Fabaceae/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Nat Methods ; 17(7): 717-725, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32601426

RESUMEN

Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Luz , Optogenética , Arabidopsis/genética , Arabidopsis/inmunología , Sistemas CRISPR-Cas/genética , Modelos Teóricos , Plantas Modificadas Genéticamente
3.
Plant Cell ; 32(11): 3388-3407, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32843435

RESUMEN

Proximity labeling is a powerful approach for detecting protein-protein interactions. Most proximity labeling techniques use a promiscuous biotin ligase or a peroxidase fused to a protein of interest, enabling the covalent biotin labeling of proteins and subsequent capture and identification of interacting and neighboring proteins without the need for the protein complex to remain intact. To date, only a few studies have reported on the use of proximity labeling in plants. Here, we present the results of a systematic study applying a variety of biotin-based proximity labeling approaches in several plant systems using various conditions and bait proteins. We show that TurboID is the most promiscuous variant in several plant model systems and establish protocols that combine mass spectrometry-based analysis with harsh extraction and washing conditions. We demonstrate the applicability of TurboID in capturing membrane-associated protein interactomes using Lotus japonicus symbiotically active receptor kinases as a test case. We further benchmark the efficiency of various promiscuous biotin ligases in comparison with one-step affinity purification approaches. We identified both known and novel interactors of the endocytic TPLATE complex. We furthermore present a straightforward strategy to identify both nonbiotinylated and biotinylated peptides in a single experimental setup. Finally, we provide initial evidence that our approach has the potential to suggest structural information of protein complexes.


Asunto(s)
Biotina/química , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas , Arabidopsis/citología , Arabidopsis/metabolismo , Biotina/metabolismo , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lotus/genética , Lotus/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Temperatura , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo
5.
New Phytol ; 208(1): 241-56, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25967282

RESUMEN

Legumes interact with rhizobial bacteria to form nitrogen-fixing root nodules. Host signalling following mutual recognition ensures a specific response, but is only partially understood. Focusing on the stage of epidermal infection with Mesorhizobium loti, we analysed endogenous small RNAs (sRNAs) of the model legume Lotus japonicus to investigate their involvement in host response regulation. We used Illumina sequencing to annotate the L. japonicus sRNA-ome and isolate infection-responsive sRNAs, followed by candidate-based functional characterization. Sequences from four libraries revealed 219 novel L. japonicus micro RNAs (miRNAs) from 114 newly assigned families, and 76 infection-responsive sRNAs. Unlike infection-associated coding genes such as NODULE INCEPTION (NIN), a micro RNA 172 (miR172) isoform showed strong accumulation in dependency of both Nodulation (Nod) factor and compatible rhizobia. The genetics of miR172 induction support the existence of distinct epidermal and cortical signalling events. MIR172a promoter activity followed a previously unseen pattern preceding infection thread progression in epidermal and cortical cells. Nodule-associated miR172a expression was infection-independent, representing the second of two genetically separable activity waves. The combined data provide a valuable resource for further study, and identify miR172 as an sRNA marking successful epidermal infection. We show that miR172 acts upstream of several APETALA2-type (AP2) transcription factors, and suggest that it has a role in fine-tuning AP2 levels during bacterial symbiosis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lotus/genética , Mesorhizobium/crecimiento & desarrollo , MicroARNs/metabolismo , Epidermis de la Planta/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Endófitos/crecimiento & desarrollo , Genes de Plantas , Lotus/metabolismo , Lotus/microbiología , Fenotipo , Epidermis de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas , Rhizobium , Transducción de Señal , Factores de Transcripción/metabolismo
6.
PLoS One ; 18(11): e0291680, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37910566

RESUMEN

For decades, Agrobacterium rhizogenes (now Rhizobium rhizogenes), the causative agent of hairy root disease, has been harnessed as an interkingdom DNA delivery tool for generating transgenic hairy roots on a wide variety of plants. One of the strategies involves the construction of transconjugant R. rhizogenes by transferring gene(s) of interest into previously constructed R. rhizogenes pBR322 acceptor strains; little has been done, however, to improve upon this system since its implementation. We developed a simplified method utilising bi-parental mating in conjunction with effective counterselection for generating R. rhizogenes transconjugants. Central to this was the construction of a new Modular Cloning (MoClo) compatible pBR322-derived integration vector (pIV101). Although this protocol remains limited to pBR322 acceptor strains, pIV101 facilitated an efficient construction of recombinant vectors, effective screening of transconjugants, and RP4-based mobilisation compatibility that enabled simplified conjugal transfer. Transconjugants from this system were tested on Lotus japonicus and found to be efficient for the transformation of transgenic hairy roots and supported infection of nodules by a rhizobia symbiont. The expedited protocol detailed herein substantially decreased both the time and labour for creating transconjugant R. rhizogenes for the subsequent transgenic hairy root transformation of Lotus, and it could readily be applied for the transformation of other plants.


Asunto(s)
Agrobacterium , Rhizobium , Transformación Genética , Agrobacterium/genética , Plantas/genética , Rhizobium/genética , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente/genética
7.
Science ; 379(6629): 272-277, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656954

RESUMEN

Understanding the composition and activation of multicomponent receptor complexes is a challenge in biology. To address this, we developed a synthetic approach based on nanobodies to drive assembly and activation of cell surface receptors and apply the concept by manipulating receptors that govern plant symbiosis with nitrogen-fixing bacteria. We show that the Lotus japonicus Nod factor receptors NFR1 and NFR5 constitute the core receptor complex initiating the cortical root nodule organogenesis program as well as the epidermal program controlling infection. We find that organogenesis signaling is mediated by the intracellular kinase domains whereas infection requires functional ectodomains. Finally, we identify evolutionarily distant barley receptors that activate root nodule organogenesis, which could enable engineering of biological nitrogen-fixation into cereals.


Asunto(s)
Lipopolisacáridos , Lotus , Nódulos de las Raíces de las Plantas , Transducción de Señal , Anticuerpos de Dominio Único , Simbiosis , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/fisiología , Medicago truncatula , Lipopolisacáridos/metabolismo
8.
Science ; 362(6411): 233-236, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30166437

RESUMEN

Nitrogen-fixing root nodules on legumes result from two developmental processes, bacterial infection and nodule organogenesis. To balance symbiosis and plant growth, legume hosts restrict nodule numbers through an inducible autoregulatory process. Here, we present a mechanism where repression of a negative regulator ensures symbiotic susceptibility of uninfected roots of the host Lotus japonicus We show that microRNA miR2111 undergoes shoot-to-root translocation to control rhizobial infection through posttranscriptional regulation of the symbiosis suppressor TOO MUCH LOVE in roots. miR2111 maintains a susceptible default status in uninfected hosts and functions as an activator of symbiosis downstream of LOTUS HISTIDINE KINASE1-mediated cytokinin perception in roots and HYPERNODULATION ABERRANT ROOT FORMATION1, a shoot factor in autoregulation. The miR2111-TML node ensures activation of feedback regulation to balance infection and nodulation events.


Asunto(s)
Lotus/microbiología , MicroARNs/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rhizobium/patogenicidad , Nódulos de las Raíces de las Plantas/microbiología , Regulación Bacteriana de la Expresión Génica , Rhizobium/genética , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA