Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306231

RESUMEN

Thiamin and its phosphate derivatives are ubiquitous molecules involved as essential cofactors in many cellular processes. The de novo biosynthesis of thiamin employs the parallel synthesis of 4-methyl-5-(2-hydroxyethyl)thiazole (THZ-P) and 4-amino-2-methyl-5(diphosphooxymethyl) pyrimidine (HMP) pyrophosphate (HMP-PP), which are coupled to generate thiamin phosphate. Most organisms that can biosynthesize thiamin employ a kinase (HMPK or ThiD) to generate HMP-PP. In nearly all cases, this enzyme is bifunctional and can also salvage free HMP, producing HMP-P, the monophosphate precursor of HMP-PP. Here we present high-resolution crystal structures of an HMPK from Acinetobacter baumannii (AbHMPK), both unliganded and with pyridoxal 5-phosphate (PLP) noncovalently bound. Despite the similarity between HMPK and pyridoxal kinase enzymes, our kinetics analysis indicates that AbHMPK accepts HMP exclusively as a substrate and cannot turn over pyridoxal, pyridoxamine, or pyridoxine nor does it display phosphatase activity. PLP does, however, act as a weak inhibitor of AbHMPK with an IC50 of 768 µM. Surprisingly, unlike other HMPKs, AbHMPK catalyzes only the phosphorylation of HMP and does not generate the diphosphate HMP-PP. This suggests that an additional kinase is present in A. baumannii, or an alternative mechanism is in operation to complete the biosynthesis of thiamin.

2.
Antimicrob Agents Chemother ; 67(4): e0160722, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36920188

RESUMEN

Mycobacterium fortuitum represents one of the most clinically relevant rapid-growing mycobacterial species. Treatments are complex due to antibiotic resistance and to severe side effects of effective drugs, prolonged time of treatment, and co-infection with other pathogens. Herein, we explored the activity of NITD-916, a direct inhibitor of the enoyl-ACP reductase InhA of the type II fatty acid synthase in Mycobacterium tuberculosis. We found that this compound displayed very low MIC values against a panel of M. fortuitum clinical strains and exerted potent antimicrobial activity against M. fortuitum in macrophages. Remarkably, the compound was also highly efficacious in a zebrafish model of infection. Short duration treatments were sufficient to significantly protect the infected larvae from M. fortuitum-induced killing, which correlated with reduced bacterial burdens and abscesses. Biochemical analyses demonstrated an inhibition of de novo synthesis of mycolic acids. Resolving the crystal structure of the InhAMFO in complex with NAD and NITD-916 confirmed that NITD-916 is a direct inhibitor of InhAMFO. Importantly, single nucleotide polymorphism leading to a G96S substitution in InhAMFO conferred high resistance levels to NITD-916, thus resolving its target in M. fortuitum. Overall, these findings indicate that NITD-916 is highly active against M. fortuitum both in vitro and in vivo and should be considered in future preclinical evaluations for the treatment of M. fortuitum pulmonary diseases.


Asunto(s)
Mycobacterium fortuitum , Mycobacterium tuberculosis , Animales , Pez Cebra , Ácidos Micólicos/farmacología , Oxidorreductasas
3.
PLoS Pathog ; 17(9): e1009887, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34525130

RESUMEN

Brucellosis is one of the most widespread bacterial zoonoses worldwide. Here, our aim was to identify the effector mechanisms controlling the early stages of intranasal infection with Brucella in C57BL/6 mice. During the first 48 hours of infection, alveolar macrophages (AMs) are the main cells infected in the lungs. Using RNA sequencing, we identified the aconitate decarboxylase 1 gene (Acod1; also known as Immune responsive gene 1), as one of the genes most upregulated in murine AMs in response to B. melitensis infection at 24 hours post-infection. Upregulation of Acod1 was confirmed by RT-qPCR in lungs infected with B. melitensis and B. abortus. We observed that Acod1-/- C57BL/6 mice display a higher bacterial load in their lungs than wild-type (wt) mice following B. melitensis or B. abortus infection, demonstrating that Acod1 participates in the control of pulmonary Brucella infection. The ACOD1 enzyme is mostly produced in mitochondria of macrophages, and converts cis-aconitate, a metabolite in the Krebs cycle, into itaconate. Dimethyl itaconate (DMI), a chemically-modified membrane permeable form of itaconate, has a dose-dependent inhibitory effect on Brucella growth in vitro. Interestingly, structural analysis suggests the binding of itaconate into the binding site of B. abortus isocitrate lyase. DMI does not inhibit multiplication of the isocitrate lyase deletion mutant ΔaceA B. abortus in vitro. Finally, we observed that, unlike the wt strain, the ΔaceA B. abortus strain multiplies similarly in wt and Acod1-/- C57BL/6 mice. These data suggest that bacterial isocitrate lyase might be a target of itaconate in AMs.


Asunto(s)
Brucelosis/inmunología , Carboxiliasas/inmunología , Enfermedades Pulmonares/inmunología , Macrófagos Alveolares/inmunología , Animales , Isocitratoliasa/metabolismo , Ratones , Ratones Endogámicos C57BL
4.
Biochemistry ; 61(7): 563-574, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35315646

RESUMEN

The ammonia-oxidizing bacterium Nitrosomonas europaea expresses two cytochromes in the P460 superfamily that are predicted to be structurally similar. In one, cytochrome (cyt) P460, the substrate hydroxylamine (NH2OH) is converted to nitric oxide (NO) and nitrous oxide (N2O) requiring a unique heme-lysyl cross-link in the catalytic cofactor. In the second, cyt c'ß-Met, the cross-link is absent, and the cytochrome instead binds H2O2 forming a ferryl species similar to compound II of peroxidases. Here, we report the 1.80 Å crystal structure of cyt c'ß-Met─a well-expressed protein in N. europaea with a lysine to a methionine replacement at the cross-linking position. The structure of cyt c'ß-Met is characterized by a large ß-sheet typical of P460 members; however, several localized structural differences render cyt c'ß-Met distinct. This includes a large lasso-like loop at the "top" of the cytochrome that is not observed in other structurally characterized members. Active site variation is also observed, especially in comparison to its closest homologue cyt c'ß from the methane-oxidizing Methylococcus capsulatus Bath, which also lacks the cross-link. The phenylalanine "cap" which is presumed to control small ligand access to the distal heme iron is replaced with an arginine, reminiscent of the strictly conserved distal arginine in peroxidases and to the NH2OH-oxidizing cytochromes P460. A critical proton-transferring glutamate residue required for NH2OH oxidation is nevertheless missing in the active site. This in part explains the inability of cyt c'ß-Met to oxidize NH2OH. Our structure also rationalizes the absence of a methionyl cross-link, although the side chain's spatial position in the structure does not eliminate the possibility that it could form under certain conditions.


Asunto(s)
Amoníaco , Nitrosomonas europaea , Amoníaco/metabolismo , Citocromos/química , Peróxido de Hidrógeno , Oxidación-Reducción
5.
Antimicrob Agents Chemother ; 66(6): e0237321, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35604214

RESUMEN

Infection with pathogenic free-living amoebae, including Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris, can lead to life-threatening illnesses, primarily because of catastrophic central nervous system involvement. Efficacious treatment options for these infections are lacking, and the mortality rate due to infection is high. Previously, we evaluated the N. fowleri glucokinase (NfGlck) as a potential target for therapeutic intervention, as glucose metabolism is critical for in vitro viability. Here, we extended these studies to the glucokinases from two other pathogenic free-living amoebae, including Acanthamoeba castellanii (AcGlck) and B. mandrillaris (BmGlck). While these enzymes are similar (49.3% identical at the amino acid level), they have distinct kinetic properties that distinguish them from each other. For ATP, AcGlck and BmGlck have apparent Km values of 472.5 and 41.0 µM, while Homo sapiens Glck (HsGlck) has a value of 310 µM. Both parasite enzymes also have a higher apparent affinity for glucose than the human counterpart, with apparent Km values of 45.9 µM (AcGlck) and 124 µM (BmGlck) compared to ~8 mM for HsGlck. Additionally, AcGlck and BmGlck differ from each other and other Glcks in their sensitivity to small molecule inhibitors, suggesting that inhibitors with pan-amoebic activity could be challenging to generate.


Asunto(s)
Acanthamoeba , Amebiasis , Amoeba , Balamuthia mandrillaris , Naegleria fowleri , Amebiasis/tratamiento farmacológico , Amebiasis/parasitología , Glucoquinasa , Humanos
6.
J Antimicrob Chemother ; 77(6): 1625-1634, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35245364

RESUMEN

BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.


Asunto(s)
Proteínas Bacterianas , Bacterias Gramnegativas , Leishmania major , Isomerasa de Peptidilprolil , Proteínas Protozoarias , Proteínas Bacterianas/antagonistas & inhibidores , Bacterias Gramnegativas/efectos de los fármacos , Leishmania major/efectos de los fármacos , Macrófagos/metabolismo , Neisseria meningitidis , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Recombinantes
7.
Biochem J ; 477(2): 567-581, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31913442

RESUMEN

Pathogenic and opportunistic mycobacteria have a distinct class of non-heme di-iron hemerythrin-like proteins (HLPs). The first to be isolated was the Rv2633c protein, which plays a role in infection by Mycobacterium tuberculosis (Mtb), but could not be crystallized. This work presents the first crystal structure of an ortholog of Rv2633c, the mycobacterial HLP from Mycobacterium kansasii (Mka). This structure differs from those of hemerythrins and other known HLPs. It consists of five α-helices, whereas all other HLP domains have four. In contrast with other HLPs, the HLP domain is not fused to an additional protein domain. The residues ligating and surrounding the di-iron site are also unique among HLPs. Notably, a tyrosine occupies the position normally held by one of the histidine ligands in hemerythrin. This structure was used to construct a homology model of Rv2633c. The structure of five α-helices is conserved and the di-iron site ligands are identical in Rv2633c. Two residues near the ends of helices in the Mka HLP structure are replaced with prolines in the Rv2633c model. This may account for structural perturbations that decrease the solubility of Rv2633c relative to Mka HLP. Clusters of residues that differ in charge or polarity between Rv2633c and Mka HLP that point outward from the helical core could reflect a specificity for potential differential interactions with other protein partners in vivo, which are related to function. The Mka HLP exhibited weaker catalase activity than Rv2633c. Evidence was obtained for the interaction of Mka HLP irons with nitric oxide.


Asunto(s)
Hemeritrina/ultraestructura , Mycobacterium kansasii/ultraestructura , Mycobacterium tuberculosis/ultraestructura , Conformación Proteica , Tuberculosis/microbiología , Secuencia de Aminoácidos/genética , Cristalografía por Rayos X , Hemeritrina/química , Hemeritrina/genética , Humanos , Hierro/química , Modelos Moleculares , Simulación de Dinámica Molecular , Mycobacterium kansasii/genética , Mycobacterium kansasii/patogenicidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Dominios Proteicos , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Tuberculosis/genética , Tuberculosis/patología
8.
J Infect Dis ; 221(7): 1185-1193, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31677380

RESUMEN

Targeting virulence factors represents a promising alternative approach to antimicrobial therapy, through the inhibition of pathogenic pathways that result in host tissue damage. Yet, virulence inhibition remains an understudied area in parasitology. Several medically important protozoan parasites such as Plasmodium, Entamoeba, Toxoplasma, and Leishmania secrete an inflammatory macrophage migration inhibitory factor (MIF) cytokine homolog, a virulence factor linked to severe disease. The aim of this study was to investigate the effectiveness of targeting parasite-produced MIF as combination therapy with standard antibiotics to reduce disease severity. Here, we used Entamoeba histolytica as the model MIF-secreting protozoan, and a mouse model that mirrors severe human infection. We found that intestinal inflammation and tissue damage were significantly reduced in mice treated with metronidazole when combined with anti-E. histolytica MIF antibodies, compared to metronidazole alone. Thus, this preclinical study provides proof-of-concept that combining antiparasite MIF-blocking antibodies with current standard-of-care antibiotics might improve outcomes in severe protozoan infections.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antiprotozoarios , Interacciones Huésped-Parásitos/efectos de los fármacos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Antiprotozoarios/inmunología , Antiprotozoarios/farmacología , Entamoeba histolytica/efectos de los fármacos , Entamoeba histolytica/inmunología , Entamoeba histolytica/metabolismo , Entamoeba histolytica/patogenicidad , Entamebiasis , Células HCT116 , Humanos , Ratones , Modelos Moleculares
9.
Proteins ; 88(1): 47-56, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31237717

RESUMEN

The bacterial fatty acid pathway is essential for membrane synthesis and a range of other metabolic and cellular functions. The ß-ketoacyl-ACP synthases carry out the initial elongation reaction of this pathway, utilizing acetyl-CoA as a primer to elongate malonyl-ACP by two carbons, and subsequent elongation of the fatty acyl-ACP substrate by two carbons. Here we describe the structures of the ß-ketoacyl-ACP synthase I from Brucella melitensis in complex with platencin, 7-hydroxycoumarin, and (5-thiophen-2-ylisoxazol-3-yl)methanol. The enzyme is a dimer and based on structural and sequence conservation, harbors the same active site configuration as other ß-ketoacyl-ACP synthases. The platencin binding site overlaps with the fatty acyl compound supplied by ACP, while 7-hydroxyl-coumarin and (5-thiophen-2-ylisoxazol-3-yl)methanol bind at the secondary fatty acyl binding site. These high-resolution structures, ranging between 1.25 and 1.70 å resolution, provide a basis for in silico inhibitor screening and optimization, and can aid in rational drug design by revealing the high-resolution binding interfaces of molecules at the malonyl-ACP and acyl-ACP active sites.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/antagonistas & inhibidores , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , Aminofenoles/farmacología , Brucella melitensis/enzimología , Inhibidores Enzimáticos/farmacología , Compuestos Policíclicos/farmacología , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Secuencia de Aminoácidos , Aminofenoles/química , Brucella melitensis/química , Brucella melitensis/metabolismo , Brucelosis/tratamiento farmacológico , Brucelosis/microbiología , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Compuestos Policíclicos/química , Conformación Proteica/efectos de los fármacos , Especificidad por Sustrato
10.
Biochem Biophys Res Commun ; 533(4): 1323-1329, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33097187

RESUMEN

Leptospira is a genus of spirochete bacteria highly motile that includes pathogenic species responsible to cause leptospirosis disease. Chemotaxis and motility are required for Leptospira infectivity, pathogenesis, and invasion of bacteria into the host. In prokaryotes, the most common chemoreceptors are methyl-accepting chemotaxis proteins that have a role play to detect the chemical signals and move to a favorable environment for its survival. Here, we report the first crystal structure of CACHE domain of the methyl-accepting chemotaxis protein (McpA) of L. interrogans. The structural analysis showed that McpA adopts similar α/ß architecture of several other bacteria chemoreceptors. We also found a typical dimerization interface that appears to be functionally crucial for signal transmission and chemotaxis. In addition to McpA structural analyses, we have identified homologous proteins and conservative functional regions using bioinformatics techniques. These results improve our understanding the relationship between chemoreceptor structures and functions of Leptospira species.


Asunto(s)
Leptospira interrogans/química , Proteínas Quimiotácticas Aceptoras de Metilo/química , Biología Computacional , Cristalografía por Rayos X , Modelos Moleculares , Filogenia , Dominios Proteicos , Homología Estructural de Proteína
11.
Artículo en Inglés | MEDLINE | ID: mdl-30783001

RESUMEN

Infection with the free-living amoeba Naegleria fowleri leads to life-threatening primary amoebic meningoencephalitis. Efficacious treatment options for these infections are limited, and the mortality rate is very high (∼98%). Parasite metabolism may provide suitable targets for therapeutic design. Like most other organisms, glucose metabolism is critical for parasite viability, being required for growth in culture. The first enzyme required for glucose metabolism is typically a hexokinase (HK), which transfers a phosphate from ATP to glucose. The products of this enzyme are required for both glycolysis and the pentose phosphate pathway. However, the N. fowleri genome lacks an obvious HK homolog and instead harbors a glucokinase (Glck). The N. fowleri Glck (NfGlck) shares limited (25%) amino acid identity with the mammalian host enzyme (Homo sapiens Glck), suggesting that parasite-specific inhibitors with anti-amoeba activity can be generated. Following heterologous expression, NfGlck was found to have a limited hexose substrate range, with the greatest activity observed with glucose. The enzyme had apparent Km values of 42.5 ± 7.3 µM and 141.6 ± 9.9 µM for glucose and ATP, respectively. The NfGlck structure was determined and refined to 2.2-Å resolution, revealing that the enzyme shares greatest structural similarity with the Trypanosoma cruzi Glck. These similarities include binding modes and binding environments for substrates. To identify inhibitors of NfGlck, we screened a small collection of inhibitors of glucose-phosphorylating enzymes and identified several small molecules with 50% inhibitory concentration values of <1 µM that may prove useful as hit chemotypes for further leads and therapeutic development against N. fowleri.


Asunto(s)
Glucoquinasa/química , Glucoquinasa/metabolismo , Naegleria fowleri/enzimología , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Glucosa/metabolismo , Humanos , Trypanosoma cruzi/enzimología
12.
Nucleic Acids Res ; 45(10): 6217-6227, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28369538

RESUMEN

Deoxyribonuclease II (DNase II) is also known as acid deoxyribonuclease because it has optimal activity at the low pH environment of lysosomes where it is typically found in higher eukaryotes. Interestingly, DNase II has also been identified in a few genera of bacteria and is believed to have arisen via horizontal transfer. Here, we demonstrate that recombinant Burkholderia thailandensis DNase II is highly active at low pH in the absence of divalent metal ions, similar to eukaryotic DNase II. The crystal structure of B. thailandensis DNase II shows a dimeric quaternary structure which appears capable of binding double-stranded DNA. Each monomer of B. thailandensis DNase II exhibits a similar overall fold as phospholipase D (PLD), phosphatidylserine synthase (PSS) and tyrosyl-DNA phosphodiesterase (TDP), and conserved catalytic residues imply a similar mechanism. The structural and biochemical data presented here provide insights into the atomic structure and catalytic mechanism of DNase II.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia/enzimología , Endodesoxirribonucleasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cobre/farmacología , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/metabolismo , Células Eucariotas/enzimología , Evolución Molecular , Transferencia de Gen Horizontal , Concentración de Iones de Hidrógeno , Modelos Moleculares , Simulación del Acoplamiento Molecular , Filogenia , Células Procariotas/enzimología , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
Bioorg Med Chem Lett ; 28(8): 1376-1380, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29551481

RESUMEN

Methionine aminopeptidase (MetAP) is a dinuclear metalloprotease responsible for the cleavage of methionine initiator residues from nascent proteins. MetAP activity is necessary for bacterial proliferation and is therefore a projected novel antibacterial target. A compound library consisting of 294 members containing metal-binding functional groups was screened against Rickettsia prowazekii MetAP to determine potential inhibitory motifs. The compounds were first screened against the target at a concentration of 10 µM and potential hits were determined to be those exhibiting greater than 50% inhibition of enzymatic activity. These hit compounds were then rescreened against the target in 8-point dose-response curves and 11 compounds were found to inhibit enzymatic activity with IC50 values of less than 10 µM. Finally, compounds (1-5) were docked against RpMetAP with AutoDock to determine potential binding mechanisms and the results were compared with crystal structures deposited within the PDB.


Asunto(s)
Antibacterianos/química , Metaloproteasas/antagonistas & inhibidores , Metionil Aminopeptidasas/antagonistas & inhibidores , Inhibidores de Proteasas/química , Bibliotecas de Moléculas Pequeñas/química , Dominio Catalítico , Pruebas de Enzimas , Metaloproteasas/química , Metionil Aminopeptidasas/química , Simulación del Acoplamiento Molecular , Rickettsia prowazekii/enzimología
14.
Proc Natl Acad Sci U S A ; 112(49): 15196-201, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598693

RESUMEN

The hepatitis B virus (HBV) core protein is essential for HBV replication and an important target for antiviral drug discovery. We report the first, to our knowledge, high-resolution crystal structure of an antiviral compound bound to the HBV core protein. The compound NVR-010-001-E2 can induce assembly of the HBV core wild-type and Y132A mutant proteins and thermostabilize the proteins with a Tm increase of more than 10 °C. NVR-010-001-E2 binds at the dimer-dimer interface of the core proteins, forms a new interaction surface promoting protein-protein interaction, induces protein assembly, and increases stability. The impact of naturally occurring core protein mutations on antiviral activity correlates with NVR-010-001-E2 binding interactions determined by crystallography. The crystal structure provides understanding of a drug efficacy mechanism related to the induction and stabilization of protein-protein interactions and enables structure-guided design to improve antiviral potency and drug-like properties.


Asunto(s)
Antivirales/química , Virus de la Hepatitis B/fisiología , Proteínas del Núcleo Viral/metabolismo , Replicación Viral/efectos de los fármacos , Antivirales/metabolismo , Antivirales/farmacología , Cristalografía por Rayos X , Conformación Proteica
15.
Bioorg Med Chem ; 25(3): 813-824, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28089350

RESUMEN

Methionine aminopeptidase (MetAP) is a class of ubiquitous enzymes essential for the survival of numerous bacterial species. These enzymes are responsible for the cleavage of N-terminal formyl-methionine initiators from nascent proteins to initiate post-translational modifications that are often essential to proper protein function. Thus, inhibition of MetAP activity has been implicated as a novel antibacterial target. We tested this idea in the present study by targeting the MetAP enzyme in the obligate intracellular pathogen Rickettsia prowazekii. We first identified potent RpMetAP inhibitory species by employing an in vitro enzymatic activity assay. The molecular docking program AutoDock was then utilized to compare published crystal structures of inhibited MetAP species to docked poses of RpMetAP. Based on these in silico and in vitro screens, a subset of 17 compounds was tested for inhibition of R. prowazekii growth in a pulmonary vascular endothelial cell (EC) culture infection model system. All compounds were tested over concentration ranges that were determined to be non-toxic to the ECs and 8 of the 17 compounds displayed substantial inhibition of R. prowazekii growth. These data highlight the therapeutic potential for inhibiting RpMetAP as a novel antimicrobial strategy and set the stage for future studies in pre-clinical animal models of infection.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Metionil Aminopeptidasas/antagonistas & inhibidores , Rickettsia prowazekii/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Metionil Aminopeptidasas/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Arteria Pulmonar/efectos de los fármacos , Ratas , Rickettsia prowazekii/enzimología , Relación Estructura-Actividad
16.
Biochemistry ; 55(51): 7099-7111, 2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-27936614

RESUMEN

The complex life cycle of Mycobacterium tuberculosis requires diverse energy mobilization and utilization strategies facilitated by a battery of lipid metabolism enzymes. Among lipid metabolism enzymes, the Lip family of mycobacterial serine hydrolases is essential to lipid scavenging, metabolic cycles, and reactivation from dormancy. On the basis of the homologous rescue strategy for mycobacterial drug targets, we have characterized the three-dimensional structure of full length LipW from Mycobacterium marinum, the first structure of a catalytically active Lip family member. LipW contains a deep, expansive substrate-binding pocket with only a narrow, restrictive active site, suggesting tight substrate selectivity for short, unbranched esters. Structural alignment reinforced this strict substrate selectivity of LipW, as the binding pocket of LipW aligned most closely with the bacterial acyl esterase superfamily. Detailed kinetic analysis of two different LipW homologues confirmed this strict substrate selectivity, as each homologue selected for unbranched propionyl ester substrates, irrespective of the alcohol portion of the ester. Using comprehensive substitutional analysis across the binding pocket, the strict substrate selectivity of LipW for propionyl esters was assigned to a narrow funnel in the acyl-binding pocket capped by a key hydrophobic valine residue. The polar, negatively charged alcohol-binding pocket also contributed to substrate orientation and stabilization of rotameric states in the catalytic serine. Together, the structural, enzymatic, and substitutional analyses of LipW provide a connection between the structure and metabolic properties of a Lip family hydrolase that refines its biological function in active and dormant tuberculosis infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ésteres/metabolismo , Hidrolasas/metabolismo , Mycobacterium marinum/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Ésteres/química , Hidrolasas/química , Hidrolasas/genética , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Estructura Molecular , Mutación , Mycobacterium marinum/genética , Unión Proteica , Dominios Proteicos , Serina/química , Serina/genética , Serina/metabolismo , Especificidad por Sustrato , Temperatura , Valina/química , Valina/genética , Valina/metabolismo
17.
J Struct Funct Genomics ; 16(2): 91-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25832174

RESUMEN

The methylmalonyl Co-A mutase-associated GTPase MeaB from Methylobacterium extorquens is involved in glyoxylate regulation and required for growth. In humans, mutations in the homolog methylmalonic aciduria associated protein (MMAA) cause methylmalonic aciduria, which is often fatal. The central role of MeaB from bacteria to humans suggests that MeaB is also important in other, pathogenic bacteria such as Mycobacterium tuberculosis. However, the identity of the mycobacterial MeaB homolog is presently unclear. Here, we identify the M. tuberculosis protein Rv1496 and its homologs in M. smegmatis and M. thermoresistibile as MeaB. The crystal structures of all three homologs are highly similar to MeaB and MMAA structures and reveal a characteristic three-domain homodimer with GDP bound in the G domain active site. A structure of Rv1496 obtained from a crystal grown in the presence of GTP exhibited electron density for GDP, suggesting GTPase activity. These structures identify the mycobacterial MeaB and provide a structural framework for therapeutic targeting of M. tuberculosis MeaB.


Asunto(s)
Proteínas Bacterianas/química , GTP Fosfohidrolasas/química , Mycobacterium tuberculosis/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/aislamiento & purificación , Mycobacterium tuberculosis/genética
18.
J Biol Chem ; 289(4): 2139-47, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24311791

RESUMEN

Ribonucleases (RNases) maintain the cellular RNA pool by RNA processing and degradation. In many bacteria, including the human pathogen Mycobacterium tuberculosis (Mtb), the enzymes mediating several central RNA processing functions are still unknown. Here, we identify the hypothetical Mtb protein Rv2179c as a highly divergent exoribonuclease. Although the primary sequence of Rv2179c has no detectable similarity to any known RNase, the Rv2179c crystal structure reveals an RNase fold. Active site residues are equivalent to those in the DEDD family of RNases, and Rv2179c has close structural homology to Escherichia coli RNase T. Consistent with the DEDD fold, Rv2179c has exoribonuclease activity, cleaving the 3' single-strand overhangs of duplex RNA. Functional orthologs of Rv2179c are prevalent in actinobacteria and found in bacteria as phylogenetically distant as proteobacteria. Thus, Rv2179c is the founding member of a new, large RNase family with hundreds of members across the bacterial kingdom.


Asunto(s)
Proteínas Bacterianas/química , Exorribonucleasas/química , Mycobacterium tuberculosis/enzimología , Filogenia , Factores de Virulencia/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Humanos , Mycobacterium tuberculosis/genética , Homología Estructural de Proteína , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
J Biol Chem ; 289(34): 23596-608, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-24970892

RESUMEN

Plasma kallikrein (pKal) proteolytically cleaves high molecular weight kininogen to generate the potent vasodilator and the pro-inflammatory peptide, bradykinin. pKal activity is tightly regulated in healthy individuals by the serpin C1-inhibitor, but individuals with hereditary angioedema (HAE) are deficient in C1-inhibitor and consequently exhibit excessive bradykinin generation that in turn causes debilitating and potentially fatal swelling attacks. To develop a potential therapeutic agent for HAE and other pKal-mediated disorders, we used phage display to discover a fully human IgG1 monoclonal antibody (DX-2930) against pKal. In vitro experiments demonstrated that DX-2930 potently inhibits active pKal (Ki = 0.120 ± 0.005 nM) but does not target either the zymogen (prekallikrein) or any other serine protease tested. These findings are supported by a 2.1-Å resolution crystal structure of pKal complexed to a DX-2930 Fab construct, which establishes that the pKal active site is fully occluded by the antibody. DX-2930 injected subcutaneously into cynomolgus monkeys exhibited a long half-life (t½ ∼ 12.5 days) and blocked high molecular weight kininogen proteolysis in activated plasma in a dose- and time-dependent manner. Furthermore, subcutaneous DX-2930 reduced carrageenan-induced paw edema in rats. A potent and long acting inhibitor of pKal activity could be an effective treatment option for pKal-mediated diseases, such as HAE.


Asunto(s)
Anticuerpos/inmunología , Calicreínas/inmunología , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Humanos , Calicreínas/sangre , Datos de Secuencia Molecular , Ratas , Ratas Sprague-Dawley , Resonancia por Plasmón de Superficie
20.
Antimicrob Agents Chemother ; 58(3): 1458-67, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24366729

RESUMEN

Macrophage infectivity potentiators (Mips) are immunophilin proteins and essential virulence factors for a range of pathogenic organisms. We applied a structural biology approach to characterize a Mip from Burkholderia pseudomallei (BpML1), the causative agent of melioidosis. Crystal structure and nuclear magnetic resonance analyses of BpML1 in complex with known macrocyclics and other derivatives led to the identification of a key chemical scaffold. This scaffold possesses inhibitory potency for BpML1 without the immunosuppressive components of related macrocyclic agents. Biophysical characterization of a compound series with this scaffold allowed binding site specificity in solution and potency determinations for rank ordering the set. The best compounds in this series possessed a low-micromolar affinity for BpML1, bound at the site of enzymatic activity, and inhibited a panel of homologous Mip proteins from other pathogenic bacteria, without demonstrating toxicity in human macrophages. Importantly, the in vitro activity of BpML1 was reduced by these compounds, leading to decreased macrophage infectivity and intracellular growth of Burkholderia pseudomallei. These compounds offer the potential for activity against a new class of antimicrobial targets and present the utility of a structure-based approach for novel antimicrobial drug discovery.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas Bacterianas/efectos de los fármacos , Burkholderia pseudomallei/efectos de los fármacos , Descubrimiento de Drogas/métodos , Inmunofilinas/efectos de los fármacos , Antiinfecciosos/uso terapéutico , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Cristalografía por Rayos X , Inmunofilinas/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA