Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Shoulder Elbow Surg ; 24(11): 1764-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26251198

RESUMEN

BACKGROUND: A new scaffold design combined with a peptide growth factor was tested prospectively for safety and for improved tendon healing in sheep. METHODS: The infraspinatus tendon was detached and then surgically repaired to the humerus using sutures and anchors in 50 adult sheep. The repairs in 40 of these sheep were reinforced with a scaffold containing F2A, a peptide mimetic of basic fibroblast growth factor. The sheep were examined after 8 or 26 weeks with magnetic resonance imaging, full necropsy, and histopathologic analysis. A second cohort of 30 sheep underwent surgical repair--20 with scaffolds containing F2A. The 30 shoulders were tested mechanically after 8 weeks. RESULTS: The scaffold and F2A showed no toxicity. Scaffold-repaired tendons were 31% thicker than surgically repaired controls (P = .037) at 8 weeks. There was more new bone formed at the tendon footprint in sheep treated with F2A. Surgically repaired tendons delaminated from the humerus across 14% of the footprint area. The extent of delamination decreased to 1.3% with increasing doses of F2A (P = .004). More of the repair tissue at the footprint was tendon-like in the peptide-treated sheep. On mechanical testing, only 7 shoulders tore at the repair site. The repairs in the other 23 shoulders were already stronger than the midsubstance tendon at 8 weeks. CONCLUSIONS: The new scaffold and peptide safely improved tendon healing.


Asunto(s)
Implantes Absorbibles , Colágeno Tipo I/administración & dosificación , Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Tendones/cirugía , Andamios del Tejido , Animales , Regeneración Ósea , Imagen por Resonancia Magnética , Modelos Animales , Estudios Prospectivos , Ovinos , Tendones/patología , Resistencia a la Tracción
2.
J Craniofac Surg ; 25(2): 657-61, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24577306

RESUMEN

The purpose of this study was to compare the osteogenic potential of a synthetic and a demineralized bone matrix (DBM) putty using a cranial defect model in New Zealand white rabbits. Paired, bilateral critical-size defects (10 mm) were prepared in the frontal bones of 12 rabbits and filled with either OsteoSelect DBM Putty or NovaBone calcium-phosphosilicate putty. At days 43 and 91, 6 rabbits were killed and examined via semiquantitative histology and quantitative histomorphometry. Defects filled with the DBM putty were histologically associated with less inflammation and fibrous tissue in the defect and more new bone than the synthetic counterpart at both time points. Histomorphometric analysis revealed that the defects filled with DBM putty were associated with significantly more bone formation at day 43 (70.7% vs 40.7%, P = 0.043) and at day 91 (70.4% vs 39.9%, P = 0.0044). The amount of residual implant was similar for both test groups at each time point.


Asunto(s)
Matriz Ósea/trasplante , Sustitutos de Huesos/uso terapéutico , Hueso Frontal/cirugía , Fracturas Craneales/cirugía , Animales , Materiales Biocompatibles/uso terapéutico , Fosfatos de Calcio , Cerámica , Modelos Animales de Enfermedad , Femenino , Hueso Frontal/lesiones , Osteogénesis/fisiología , Conejos , Fracturas Craneales/patología
3.
Innov Surg Sci ; 9(1): 25-35, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38826630

RESUMEN

Objectives: Intraoperative monitoring of blood flow (BF) remains vital to guiding surgical decisions. Here, we report the use of SurgeON™ Blood Flow Monitor (BFM), a prototype system that attaches to surgical microscopes and implements laser speckle contrast imaging (LSCI) to noninvasively obtain and present vascular BF information in real-time within the microscope's eyepiece. Methods: The ability of SurgeON BFM to monitor BF status during reversible vascular occlusion procedures was investigated in two large animal models: occlusion of saphenous veins in six NZW rabbit hindlimbs and clipping of middle cerebral artery (MCA) branches in four Dorset sheep brain hemispheres. SurgeON BFM acquired, presented, and stored LSCI-based blood flow velocity index (BFVi) data and performed indocyanine green video angiography (ICG-VA) for corroboration. Results: Stored BFVi data were analyzed for each phase: pre-occlusion (baseline), with the vessel occluded (occlusion), and after reversal of occlusion (re-perfusion). In saphenous veins, BFVi relative to baseline reduced to 5.2±3.7 % during occlusion and returned to 102.9±14.9 % during re-perfusion. Unlike ICG-VA, SurgeON BFM was able to monitor reduced BFVi and characterize re-perfusion robustly during five serial occlusion procedures conducted 2-5 min apart on the same vessel. Across four sheep MCA vessels, BFVi reduced to 18.6±7.7 % and returned to 120.1±27.8 % of baseline during occlusion and re-perfusion phases, respectively. Conclusions: SurgeON BFM can noninvasively monitor vascular occlusion status and provide intuitive visualization of BF information in real-time to an operating surgeon. This technology may find application in vascular, plastic, and neurovascular surgery.

4.
Ann Plast Surg ; 66(4): 403-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21042180

RESUMEN

Biologic prostheses have emerged to address the limitations of synthetic materials for ventral hernia repairs; however, they lack experimental comparative data. Fifteen swine were randomly assigned to 1 of 3 bioprosthetic groups (DermaMatrix, AlloDerm, and Permacol) after creation of a full thickness ventral fascial defect. At 15 weeks, host incorporation, hernia recurrence, adhesion formation, neovascularization, inflammation, and biomechanical properties were assessed. No animals had hernia recurrence or eventration. DermaMatrix and Alloderm implants demonstrated more adhesions, greater inflammatory infiltration, and more longitudinal laxity, but near identical neovascularization and tensile strength to Permacol. We found that porcine acellular dermal products (Permacol) contain following essential properties of an ideal ventral hernia repair material: low inflammation, less elastin and stretch, lower adhesion rates and cost, and more contracture. The addition of lower cost xenogeneic acellular dermal products to the repertoire of available acellular dermal products demonstrates promise, but requires long-term clinical studies to verify advantages and efficacy.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Bioprótesis , Colágeno/administración & dosificación , Colágeno/uso terapéutico , Hernia Ventral/cirugía , Piel Artificial , Mallas Quirúrgicas , Animales , Modelos Animales , Procedimientos Quirúrgicos Operativos/métodos , Técnicas de Sutura , Porcinos , Resultado del Tratamiento
5.
Cell Tissue Bank ; 12(2): 135-45, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21380733

RESUMEN

Incisional hernias commonly occur following abdominal wall surgery. Human acellular dermal matrices (HADM) are widely used in abdominal wall defect repair. Xenograft acellular dermal matrices, particularly those made from porcine tissues (PADM), have recently experienced increased usage. The purpose of this study was to compare the effectiveness of HADM and PADM in the repair of incisional abdominal wall hernias in a rabbit model. A review from earlier work of differences between human allograft acellular dermal matrices (HADM) and porcine xenograft acellular dermal matrices (PADM) demonstrated significant differences (P < 0.05) in mechanical properties: Tensile strength 15.7 MPa vs. 7.7 MPa for HADM and PADM, respectively. Cellular (fibroblast) infiltration was significantly greater for HADM vs. PADM (Armour). The HADM exhibited a more natural, less degraded collagen by electrophoresis as compared to PADM. The rabbit model surgically established an incisional hernia, which was repaired with one of the two acellular dermal matrices 3 weeks after the creation of the abdominal hernia. The animals were euthanized at 4 and 20 weeks and the wounds evaluated. Tissue ingrowth into the implant was significantly faster for the HADM as compared to PADM, 54 vs. 16% at 4 weeks, and 58 vs. 20% for HADM and PADM, respectively at 20 weeks. The original, induced hernia defect (6 cm(2)) was healed to a greater extent for HADM vs. PADM: 2.7 cm(2) unremodeled area for PADM vs. 1.0 cm² for HADM at 20 weeks. The inherent uniformity of tissue ingrowth and remodeling over time was very different for the HADM relative to the PADM. No differences were observed at the 4-week end point. However, the 20-week data exhibited a statistically different level of variability in the remodeling rate with the mean standard deviation of 0.96 for HADM as contrasted to a mean standard deviation of 2.69 for PADM. This was significant with P < 0.05 using a one tail F test for the inherent variability of the standard deviation. No significant differences between the PADM and HADM for adhesion, inflammation, fibrous tissue or neovascularization were noted.


Asunto(s)
Pared Abdominal/cirugía , Dermis/trasplante , Hernia Abdominal/cirugía , Pared Abdominal/patología , Animales , Dermis/patología , Hernia Abdominal/patología , Humanos , Conejos , Porcinos , Resistencia a la Tracción , Trasplante Heterólogo , Trasplante Homólogo
6.
Knee ; 19(4): 422-30, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21620711

RESUMEN

The aim of this study was to evaluate a new collagen-GAG-calcium phosphate biphasic scaffold for the repair of surgically created osteochondral defects in goats. Comparison of morphological, histological and mechanical performance of the repair tissue was made with defects repaired using a synthetic polymer scaffold. Defects were created in the medial femoral condyle (MFC) and lateral trochlear sulcus (LTS) of Boer Cross goats and evaluated at 12 and 26 weeks. It was found that the total histology score of the collagen-GAG based biomaterial (23.8; SD 1.7) provided a significant improvement (p<0.05) over the biphasic PLGA material (19;3) and the empty control defect (17.3;1.2) in the LTS. The overall trajectory of histological and morphological improvement between 12 and 26 weeks was found to be higher for the collagen-GAG scaffold compared to the PLGA material. The occurrence of sub-chondral bone cysts was lower for the collagen-GAG scaffold with an incidence of 17% of defects, compared to 67% for the PLGA material at 26 weeks. The cartilage repair tissue for both materials evaluated was superior after 26 weeks implantation than the empty control with 75% of the collagen-GAG-treated defects showing markedly more hyaline-like cartilage and 50% of the PLGA sites exhibiting hyaline-like appearances, compared to 17% for the empty control. These early stage data indicate biphasic scaffolds based on collagen-GAG and PLGA both provide indications of satisfactory development of a structural repair to surgically prepared osteochondral defects. Furthermore, the biomaterial composition of the collagen-GAG may provide a more favourable environment for osteochondral repair.


Asunto(s)
Cartílago Articular/patología , Colágeno , Glicosaminoglicanos , Andamios del Tejido , Animales , Cabras , Masculino , Ensayo de Materiales , Polímeros
7.
Cartilage ; 3(3)2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24224069

RESUMEN

OBJECTIVE: The articular cartilage of autologous osteochondral grafts is typically different in structure and function from local host cartilage and thereby presents a remodeling challenge. The hypothesis of this study was that properties of the articular cartilage of trochlear autografts and adjacent femoral condyle are associated with the 3-D geometrical match between grafted and contralateral joints at 6 and 12 months after surgery. DESIGN: Autografts were transferred unilaterally from the lateral trochlea (LT) to the medial femoral condyle (MFC) in adult Spanish goats. Operated and contralateral Non-Operated joints were harvested at 6 and 12 months, and analyzed by indentation testing, micro-computed tomography, and histology to compare (1) histological indices of repair, (2) 3-D structure (articular surface deviation, bone-cartilage interface deviation, cartilage thickness), (3) indentation stiffness, and (4) correlations between stiffness and 3-D structure. RESULTS: Cartilage deterioration was present in grafts at 6 months and more severe at 12 months. Cartilage thickness and normalized stiffness of Operated MFC were lower than Non-Operated MFC within the graft and proximal adjacent host regions. Operated MFC articular surfaces were recessed relative to Non-Operated MFC and exhibited lower cartilage stiffness with increasing recession. Sites with large bone-cartilage interface deviations, both proud and recessed, were associated with recessed articular surfaces and low cartilage stiffness. CONCLUSION: The effectiveness of cartilage repair by osteochondral grafting is associated with the match of 3-D cartilage and bone geometry to the native osteochondral structure.

8.
Tissue Eng Part B Rev ; 16(1): 65-79, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19728790

RESUMEN

The aging human population is experiencing increasing numbers of symptoms related to its degenerative articular cartilage (AC), which has stimulated the investigation of methods to regenerate or repair AC. However, the seemingly inherent limited capacity for AC to regenerate persists to confound the various repair treatment strategies proposed or studied. Animal models for testing AC implant devices and reparative materials are an important and required part of the Food and Drug Administration approval process. Although final testing is ultimately performed in humans, animal testing allows for a wider range of parameters and combinations of test materials subjected to all the biological interactions of a living system. We review here considerations, evaluations, and experiences with selection and use of animal models and describe two untreated lesion models useful for testing AC repair strategies. These created lesion models, one deep (6 mm and through the subchondral plate) the other shallow (to the level of the subchondral bone plate) were placed in the middle one-third of the medial femoral condyle of the knee joints of goats. At 1-year neither the deep nor the shallow full-thickness chondral defects generated a repair that duplicated natural AC. Moreover, progressive deleterious changes occurred in the AC surrounding the defects. There are challenges in translation from animals to humans as anatomy and structures are different and immobilization to protect delicate repairs can be difficult. The tissues potentially generated by proposed cartilage repair strategies must be compared with the spontaneous changes that occur in similarly created untreated lesions. The prevention of the secondary changes in the surrounding cartilage and subchondral bone described in this article should be addressed with the introduction of treatments for repairs of the articulating surface.


Asunto(s)
Cartílago Articular/fisiología , Regeneración/fisiología , Cicatrización de Heridas/fisiología , Animales , Modelos Animales de Enfermedad , Investigación Biomédica Traslacional
9.
J Biomed Mater Res B Appl Biomater ; 86(1): 56-62, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18098201

RESUMEN

The aim of this study was to determine the impact of barium sulfate on remodeling and regeneration in standard tibial defects in rabbits treated with the Norian skeletal repair system (SRS). Two formulations of SRS (with and without barium sulfate) were injected into the medullary canal of the tibia of New Zealand white rabbits. Animals were sacrificed at 6 weeks, 6 months, 1 year, and 2 years. Over the 2-year duration of the study, standard SRS and SRS with barium sulfate appeared to be biocompatible and osteoconductive with no evidence of either inflammation or fibrous tissue around the implant materials or at the bone-material interfaces. This outcome underscores the osteophilic property of the SRS. A difference we observed between the standard SRS and the SRS with barium sulfate was the appearance of acellular material contiguous to the SRS with barium sulfate. Energy dispersive X-ray spectroscopy (EDX) analysis was conducted and confirmed that the acellular material was barium sulfate. Pathological examination of additional tissues including regional lymph nodes revealed neither dissemination of calcium phosphate nor barium sulfate. We concluded that the residual barium sulfate detected by EDX was localized to the intramedullary canal of the tibia.


Asunto(s)
Sulfato de Bario/farmacología , Materiales Biocompatibles/química , Cementos para Huesos/farmacología , Remodelación Ósea/efectos de los fármacos , Fosfatos de Calcio/farmacología , Curación de Fractura/efectos de los fármacos , Fracturas de la Tibia/tratamiento farmacológico , Animales , Materiales Biocompatibles/farmacología , Regeneración Ósea , Sustitutos de Huesos , Femenino , Inflamación , Conejos , Tibia/efectos de los fármacos , Rayos X
10.
Plast Reconstr Surg ; 120(6): 1487-1495, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18040178

RESUMEN

BACKGROUND: Choice of bone replacement materials is important when reconstructing large craniofacial defects. Hydroxyapatite cements are often used for such reconstructions. Recent advances in the development of these cements have produced locally applied, in situ hardening materials excellent for use in craniofacial defects. To date, there has been a paucity of data comparing the use of calcium phosphate cements in combination with titanium or resorbable plating systems and their combined biocompatibility. An experimental dog model was used to compare these systems. METHODS: Two 4 x 4-cm calvarial defects were created in each of 18 mongrel dogs, and defects were reconstructed with calcium phosphate cement with either titanium or resorbable mesh sheets to evaluate their interaction. Specimens were harvested and evaluated histologically for the development of new bone formation at 3, 6, and 12 months. RESULTS: At 3 months, no differences were noted in the amount of bone formed between titanium and resorbable plating. By 6 months, the resorbable mesh sheet showed delayed bone formation compared with the titanium mesh. At 12 months, bone formation over the resorbable mesh accelerated to be no different from the titanium mesh. Importantly, new bone formation was seen within the monocalcium phosphate cement Norian Craniofacial Repair System on a reliable basis, regardless of mesh plate used. CONCLUSIONS: There are no long-term adverse effects with the use of Norian cement with either titanium or resorbable mesh. However, further studies need to be conducted to determine why there is an arrested healing phase between 3 and 6 months with the Norian cement and resorbable plating materials.


Asunto(s)
Placas Óseas , Procedimientos de Cirugía Plástica/métodos , Cráneo/cirugía , Animales , Materiales Biocompatibles , Perros , Masculino , Diseño de Prótesis , Factores de Tiempo
12.
Arch Orthop Trauma Surg ; 123(1): 28-35, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12582793

RESUMEN

BACKGROUND: The purpose of the study was to evaluate the influence of a proximal hydroxyapatite (HA) coating in comparison with a grit-blasted titanium surface of an anatomic hip stem in an animal model over a maximum duration of 2 years. METHODS: Thirty adult dogs underwent implantation of either a proximally HA-coated or a grit-blasted anatomic titanium stem. The animals were clinically evaluated for their walking ability, and serial radiographs were taken. The femora were assessed histomorphologically at set time points from 6 weeks to 2 years postoperatively. Undecalcified thin section specimens through the proximal and distal portion of the coating or grit blasting were prepared. The percentage of implant surface with direct bone contact without connective tissue involvement was determined. RESULTS: Radiographically, animals with uncoated prostheses showed characteristic signs of loosening more frequently. Histomorphometrically, an average of 65% of the surface of HA-coated implants had bone contact, but only 14.7% of the surface of grit-blasted prostheses ( p=0.0001). There was no relationship between bone contact and the duration of implantation of the prosthesis, either for the coated or for the uncoated prostheses. HA coating enhances osseointegration of an anatomic hip stem. CONCLUSION: Anatomic stems with rounded design require a surface coating or surface structure, since the mere grit-blasting of the titanium surface does not ensure osseointegration in this animal model.


Asunto(s)
Durapatita/farmacología , Titanio , Animales , Materiales Biocompatibles Revestidos , Modelos Animales de Enfermedad , Perros , Prótesis de Cadera , Implantes Experimentales , Oseointegración/fisiología , Diseño de Prótesis , Falla de Prótesis , Sensibilidad y Especificidad , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA