Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Infect Dis ; 75(1): e403-e409, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35084022

RESUMEN

BACKGROUND: Remdesivir is an antiviral used to treat coronavirus disease 2019 (COVID-19), which improves some clinical outcomes. Dexamethasone has been shown to be effective in reducing mortality. It has been hypothesized that combination of these two drugs can improve mortality. We evaluated the effect of combination on mortality of COVID-19 patients requiring O2 therapy. METHODS: A prospective quasi-experimental study, including two independent, sequential controlled cohorts, one received remdesivir-dexamethasone and the other dexamethasone alone, was designed. All COVID-19 patients requiring supplemental O2 therapy were enrolled consecutively. The sample size to power mortality was a priori calculated. The primary endpoints were 30-day mortality and viral clearance differences. Secondary endpoints were differences in hospitalization times, improvement in respiratory failure (PO2/FiO2) and inflammatory indices (fibrinogen, CRP, neutrophil/lymphocyte ratio, D-Dimer). Kaplan-Meier curves and the log-rank test were used to evaluate significant differences in mortality between groups. RESULTS: In total, 151 COVID-19 patients were enrolled (remdesivir/dexamethasone group, 76, and dexamethasone alone, 75). No differences in demographic, clinical, and laboratory characteristics were observed between the 2 groups at baseline. Faster viral clearance occurred in the remdesivir/dexamethasone group compared to dexamethasone alone (median 6 vs 16 days; P < .001). The 30-day mortality in the remdesivir/dexamethasone group was 1.3%, whereas in dexamethasone alone was 16% (P < .005). In the remdesivir/dexamethasone group compared to dexamethasone alone there was a reduction in hospitalization days (P < .0001) and a faster improvement in both respiratory function and inflammatory markers. CONCLUSIONS: Remdesivir/dexamethasone treatment is associated with significant reduction in mortality, length of hospitalization, and faster SARS-CoV-2 clearance, compared to dexamethasone alone.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales , Dexametasona/uso terapéutico , Humanos , Estudios Prospectivos , SARS-CoV-2
2.
Respir Res ; 23(1): 327, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463178

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is one of the most severe complications of SARS-CoV-2 infection. Non-Invasive Respiratory Support (NRS) as Continuous Positive Airway Pressure (CPAP) and/or Non-Invasive Ventilation (NIV) has been proven as effective in the management of SARS-CoV-2-related ARDS. However, the most appropriate timing for start NRS is unknown. METHODS: We conducted a prospective pilot study including all consecutive patients who developed moderate SARS-CoV-2-related ARDS during hospitalization. Patients were randomly divided into two intervention groups according to ARDS severity (assessed by PaO2/FiO2-P/F) at NRS beginning: group A started CPAP/NIV when P/F was ≤ 200 and group B started CPAP/NIV when P/F was ≤ 150. Eligible patients who did not give their consent to CPAP/NIV until the severe stage of ARDS and started non-invasive treatment when P/F ≤ 100 (group C) was added. The considered outcomes were in-hospital mortality, oro-tracheal intubation (OTI) and days of hospitalization. RESULTS: Among 146 eligible patients, 29 underwent CPAP/NIV when P/F was ≤ 200 (Group A), 68 when P/F was ≤ 150 (Group B) and 31 patients agreed to non-invasive treatment only when P/F was ≤ 100 (Group C). Starting NRS at P/F level between 151 and 200 did not results in significant differences in the outcomes as compared to treatment starting with P/F ranging 101-150. Conversely, patients undergone CPAP/NIV in a moderate stage (P/F 101-200) had a significantly lower in-hospital mortality rate (13.4 vs. 29.0%, p = 0.044) and hospitalization length (14 vs. 15 days, p = 0.038) than those in the severe stage (P/F ≤ 100). Age and need for continuous ventilation were independent predictors of CPAP/NIV failure. CONCLUSIONS: Starting CPAP/NIV in patients with SARS-CoV-2-related ARDS in moderate stage (100 > P/F ≤ 200) is associated to a reduction of both in-hospital mortality and hospitalization length compared to the severe stage (P/F ≤ 100). Starting CPAP/NIV with a P/F > 150 does not appear to be of clinical utility.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , SARS-CoV-2 , Proyectos Piloto , Estudios Prospectivos , COVID-19/terapia , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/terapia
3.
Viruses ; 15(9)2023 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-37766310

RESUMEN

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may be complicated by life-threatening interstitial pneumonia. SARS-CoV-2 infection may also damage several tissues and/or organs beyond the lungs, including the liver. However, controversy still exists as to whether SARS-CoV-2-induced liver alterations can have an impact on the outcome of COVID-19. The aim of this study was therefore to assess whether SARS-CoV-2-infected patients with liver abnormalities at the time of hospital referral had a worse outcome with respect to patients with no liver biochemistry alterations. To this end, the medical records of 123 patients admitted to our COVID center between the end of 2020 and spring 2021 were retrospectively reviewed. Patients were divided into two groups: those with normal liver biochemistries (group 1, 77 patients) and those with altered liver function tests (group 2, 46 patients). Serum levels of aminotransferases (AST and ALT) and bile duct cell injury markers (γ-GT and ALP) were used to dichotomize patients. A higher percentage of patients with liver enzyme alterations were found to develop COVID-19 pneumonia with respect to group 1 patients (74% vs. 65%); moreover, they needed more days of respiratory support and, more importantly, more intensive administration of supplemental oxygen. A statistically significant correlation was also found between aminotransferase levels and duration of respiratory support. The mortality rate was not superior in group 2 vs. group 1 patients. In conclusion, liver abnormalities on admission predisposed COVID-19 patients to development of more severe interstitial pneumonia, because of a longer requirement for supplemental oxygen and a more intensive respiratory support, indicative of a worse disease evolution in these patients.


Asunto(s)
COVID-19 , Hepatopatías , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Estudios Retrospectivos , Alanina Transaminasa , Oxígeno
4.
J Clin Med ; 11(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35566559

RESUMEN

Background Coronavirus disease 2019 (COVID-19) can be complicated by interstitial pneumonia, possibly leading to severe acute respiratory failure and death. Because of variable evolution ranging from asymptomatic cases to the need for invasive ventilation, COVID-19 outcomes cannot be precisely predicted on admission. The aim of this study was to provide a simple tool able to predict the outcome of COVID-19 pneumonia on admission to a low-intensity ward in order to better plan management strategies for these patients. Methods The clinical records of 123 eligible patients were reviewed. The following variables were analyzed on admission: chest computed tomography severity score (CTSS), PaO2/FiO2 ratio, lactate dehydrogenase (LDH), neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio, C-reactive protein (CRP), fibrinogen, D-dimer, aspartate aminotransferase (AST), alanine aminotransferase, alkaline phosphatase, and albumin. The main outcome was the intensity of respiratory support (RS). To simplify the statistical analysis, patients were split into two main groups: those requiring no or low/moderate oxygen support (group 1); and those needing subintensive/intensive RS up to mechanical ventilation (group 2). Results The RS intensity was significantly associated with higher CTSS and NLR scores; lower PaO2/FiO2 ratios; and higher serum levels of LDH, CRP, D-dimer, and AST. After multivariate logistic regression and ROC curve analysis, CTSS and LDH were shown to be the best predictors of respiratory function worsening. Conclusions Two easy-to-obtain parameters (CTSS and LDH) were able to reliably predict a worse evolution of COVID-19 pneumonia with values of >7 and >328 U/L, respectively.

5.
Front Physiol ; 11: 575181, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178043

RESUMEN

INTRODUCTION: Left ventricular (LV) remodeling after ST-segment elevation myocardial infarction (STEMI) is explained only in part by the infarct size, and the inter-patient variability may be ascribed to different inflammatory response to myocardial injury. Epicardial adipose tissue (EAT) is a source of inflammatory mediators which directly modulates the myocardium. EAT increase is associated to several cardiovascular diseases; however, its response to myocardial injury is currently unknown. Among inflammatory mediators, IL-13 seems to play protective role in LV regeneration, but its variations after STEMI have not been described yet. Purpose: In the present study we analyzed the association between infarct-related changes of EAT and IL-13 in post-STEMI LV remodeling. METHODS: We enrolled 100 patients with STEMI undergoing primary angioplasty. At the enrolment (T0) and after 3 months (T1), we measured EAT thickness by echocardiography and circulating levels of IL-13 by ELISA. RESULTS: At T1, the 60% of patients displayed increased EAT thickness (ΔEAT > 0). ΔEAT was directly associated to LV end-diastolic volume (r = 0.42; p = 0.014), LV end-systolic volume (r = 0.42; p = 0.013) and worse LV ejection fraction (LVEF) at T1 (r = -0.44; p = 0.0094), independently of the infarct size. In the overall population IL-13 levels significantly decreased at T1 (p = 0.0002). The ΔIL-13 was directly associated to ΔLVEF (r = 0.42; p = 0.017) and inversely related to ΔEAT (r = -0.51; p = 0.022), thus suggesting a protective role for IL-13. CONCLUSION: The variability of STEMI-induced "inflammatory response" may be associated to the post-infarct LV remodeling. ΔEAT thickness and ΔIL-13 levels could be novel prognostic markers in STEMI patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA