Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 150(5): 875-7, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939615

RESUMEN

Histone methylation is widely believed to contribute to epigenetic inheritance by persevering through DNA replication and subsequently templating methylation of daughter chromosome regions. However, a report in this issue (Petruk et al.) suggests that chromatin association of the methytransferase complexes themselves persists through replication and re-establishes histone methylation.

2.
Cell ; 142(5): 726-36, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20813260

RESUMEN

In response to extracellular cues, signal transduction activates downstream transcription factors like c-Jun to induce expression of target genes. We demonstrate that the ATAC (Ada two A containing) histone acetyltransferase (HAT) complex serves as a transcriptional cofactor for c-Jun at the Jun N-terminal kinase (JNK) target genes Jra and chickadee. ATAC subunits are required for c-Jun occupancy of these genes and for H4K16 acetylation at the Jra enhancer, promoter, and transcribed sequences. Under conditions of osmotic stress, ATAC colocalizes with c-Jun, recruits the upstream kinases Misshapen, MKK4, and JNK, and suppresses further activation of JNK. Relocalization of these MAPKs and suppression of JNK activation by ATAC are dependent on the CG10238 subunit of ATAC. Thus, ATAC governs the transcriptional response to MAP kinase signaling by serving as both a coactivator of transcription and as a suppressor of upstream signaling.


Asunto(s)
Drosophila/metabolismo , Histona Acetiltransferasas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Sistema de Señalización de MAP Quinasas , Sulfurtransferasas/metabolismo , Animales , Línea Celular , Drosophila/enzimología , Drosophila/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Presión Osmótica , Estructura Terciaria de Proteína , Estrés Fisiológico , Sulfurtransferasas/química
3.
Genes Dev ; 31(15): 1588-1600, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887412

RESUMEN

The Spt-Ada-Gcn5-acetyltransferase (SAGA) chromatin-modifying complex is a transcriptional coactivator that contains four different modules of subunits. The intact SAGA complex has been well characterized for its function in transcription regulation and development. However, little is known about the roles of individual modules within SAGA and whether they have any SAGA-independent functions. Here we demonstrate that the two enzymatic modules of Drosophila SAGA are differently required in oogenesis. Loss of the histone acetyltransferase (HAT) activity blocks oogenesis, while loss of the H2B deubiquitinase (DUB) activity does not. However, the DUB module regulates a subset of genes in early embryogenesis, and loss of the DUB subunits causes defects in embryogenesis. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analysis revealed that both the DUB and HAT modules bind most SAGA target genes even though many of these targets do not require the DUB module for expression. Furthermore, we found that the DUB module can bind to chromatin and regulate transcription independently of the HAT module. Our results suggest that the DUB module has functions within SAGA and independent functions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Oogénesis/genética , Animales , Ataxina-7/genética , Cromatina/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Proteínas de Drosophila/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Histona Acetiltransferasas/genética , Histonas/metabolismo , Microscopía Confocal , Ovario/crecimiento & desarrollo , Unión Proteica , Cigoto/fisiología
4.
Mol Cell ; 63(4): 547-552, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27540855

RESUMEN

Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metabolismo Energético , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acilación , Animales , Humanos , Transducción de Señal , Transcripción Genética
5.
PLoS Genet ; 17(11): e1009668, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34807910

RESUMEN

The Spt/Ada-Gcn5 Acetyltransferase (SAGA) coactivator complex has multiple modules with different enzymatic and non-enzymatic functions. How each module contributes to gene expression is not well understood. During Drosophila oogenesis, the enzymatic functions are not equally required, which may indicate that different genes require different enzymatic functions. An analogy for this phenomenon is the handyman principle: while a handyman has many tools, which tool he uses depends on what requires maintenance. Here we analyzed the role of the non-enzymatic core module during Drosophila oogenesis, which interacts with TBP. We show that depletion of SAGA-specific core subunits blocked egg chamber development at earlier stages than depletion of enzymatic subunits. These results, as well as additional genetic analyses, point to an interaction with TBP and suggest a differential role of SAGA modules at different promoter types. However, SAGA subunits co-occupied all promoter types of active genes in ChIP-seq and ChIP-nexus experiments, and the complex was not specifically associated with distinct promoter types in the ovary. The high-resolution genomic binding profiles were congruent with SAGA recruitment by activators upstream of the start site, and retention on chromatin by interactions with modified histones downstream of the start site. Our data illustrate that a distinct genetic requirement for specific components may conceal the fact that the entire complex is physically present and suggests that the biological context defines which module functions are critical.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Histona Acetiltransferasas/metabolismo , Oogénesis/fisiología , Regiones Promotoras Genéticas , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histona Acetiltransferasas/genética , Oogénesis/genética
6.
Genes Dev ; 30(10): 1198-210, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27198229

RESUMEN

KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and are involved in cell cycle regulation. However, information regarding their roles in regulating cell cycle progression is limited. Here, we report the identification of subunits of the Drosophila Enok complex and demonstrate that all subunits are important for its HAT activity. We further report a novel interaction between the Enok complex and the Elg1 proliferating cell nuclear antigen (PCNA)-unloader complex. Depletion of Enok in S2 cells resulted in a G1/S cell cycle block, and this block can be partially relieved by depleting Elg1. Furthermore, depletion of Enok reduced the chromatin-bound levels of PCNA in both S2 cells and early embryos, suggesting that the Enok complex may interact with the Elg1 complex and down-regulate its PCNA-unloading function to promote the G1/S transition. Supporting this hypothesis, depletion of Enok also partially rescued the endoreplication defects in Elg1-depleted nurse cells. Taken together, our study provides novel insights into the roles of KAT6 HATs in cell cycle regulation through modulating PCNA levels on chromatin.


Asunto(s)
Proteínas de Drosophila/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Histona Acetiltransferasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Animales , Puntos de Control del Ciclo Celular/genética , Células Cultivadas , Cromatina/metabolismo , Regulación hacia Abajo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Histona Acetiltransferasas/genética , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(50): 31861-31870, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257578

RESUMEN

Streamlined characterization of protein complexes remains a challenge for the study of protein interaction networks. Here we describe serial capture affinity purification (SCAP), in which two separate proteins are tagged with either the HaloTag or the SNAP-tag, permitting a multistep affinity enrichment of specific protein complexes. The multifunctional capabilities of this protein-tagging system also permit in vivo validation of interactions using acceptor photobleaching Förster resonance energy transfer and fluorescence cross-correlation spectroscopy quantitative imaging. By coupling SCAP to cross-linking mass spectrometry, an integrative structural model of the complex of interest can be generated. We demonstrate this approach using the Spindlin1 and SPINDOC protein complex, culminating in a structural model with two SPINDOC molecules docked on one SPIN1 molecule. In this model, SPINDOC interacts with the SPIN1 interface previously shown to bind a lysine and arginine methylated sequence of histone H3. Our approach combines serial affinity purification, live cell imaging, and cross-linking mass spectrometry to build integrative structural models of protein complexes.


Asunto(s)
Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Modelos Moleculares , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/aislamiento & purificación , Proteínas Co-Represoras/metabolismo , Estudios de Factibilidad , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Microscopía Intravital , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/química , Fosfoproteínas/genética , Fosfoproteínas/aislamiento & purificación , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
8.
Genes Dev ; 28(24): 2750-63, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25512562

RESUMEN

KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and have been shown to play important roles in transcriptional regulation. Here, we demonstrate that the Drosophila KAT6 Enok acetylates histone H3 Lys 23 (H3K23) in vitro and in vivo. Mutants lacking functional Enok exhibited defects in the localization of Oskar (Osk) to the posterior end of the oocyte, resulting in loss of germline formation and abdominal segments in the embryo. RNA sequencing (RNA-seq) analysis revealed that spire (spir) and maelstrom (mael), both required for the posterior localization of Osk in the oocyte, were down-regulated in enok mutants. Chromatin immunoprecipitation showed that Enok is localized to and acetylates H3K23 at the spir and mael genes. Furthermore, Gal4-driven expression of spir in the germline can largely rescue the defective Osk localization in enok mutant ovaries. Our results suggest that the Enok-mediated H3K23 acetylation (H3K23Ac) promotes the expression of spir, providing a specific mechanism linking oocyte polarization to histone modification.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Regulación del Desarrollo de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Proteínas de Microfilamentos/genética , Acetilación , Animales , Inmunoprecipitación de Cromatina , Drosophila melanogaster/genética , Embrión no Mamífero , Femenino , Histona Acetiltransferasas/genética , Histonas/metabolismo , Proteínas de Microfilamentos/metabolismo , Mutación , Oocitos/citología , Oocitos/enzimología , Ovario/metabolismo , Isoformas de Proteínas
9.
Genes Dev ; 28(3): 259-72, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24493646

RESUMEN

The Spt-Ada-Gcn5-acetyltransferase (SAGA) chromatin-modifying complex possesses acetyltransferase and deubiquitinase activities. Within this modular complex, Ataxin-7 anchors the deubiquitinase activity to the larger complex. Here we identified and characterized Drosophila Ataxin-7 and found that reduction of Ataxin-7 protein results in loss of components from the SAGA complex. In contrast to yeast, where loss of Ataxin-7 inactivates the deubiquitinase and results in increased H2B ubiquitination, loss of Ataxin-7 results in decreased H2B ubiquitination and H3K9 acetylation without affecting other histone marks. Interestingly, the effect on ubiquitination was conserved in human cells, suggesting a novel mechanism regulating histone deubiquitination in higher organisms. Consistent with this mechanism in vivo, we found that a recombinant deubiquitinase module is active in the absence of Ataxin-7 in vitro. When we examined the consequences of reduced Ataxin-7 in vivo, we found that flies exhibited pronounced neural and retinal degeneration, impaired movement, and early lethality.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Retina/patología , Secuencia de Aminoácidos , Animales , Ataxina-7 , Drosophila melanogaster/enzimología , Células HeLa , Histonas/metabolismo , Humanos , Longevidad/genética , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Regiones Promotoras Genéticas/genética , Estructura Cuaternaria de Proteína , Alineación de Secuencia , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
10.
Nucleic Acids Res ; 47(7): 3383-3394, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30715476

RESUMEN

The Gcn5 acetyltransferase functions in multiple acetyltransferase complexes in yeast and metazoans. Yeast Gcn5 is part of the large SAGA (Spt-Ada-Gcn5 acetyltransferase) complex and a smaller ADA acetyltransferase complex. In flies and mammals, Gcn5 (and its homolog pCAF) is part of various versions of the SAGA complex and another large acetyltransferase complex, ATAC (Ada2A containing acetyltransferase complex). However, a complex analogous to the small ADA complex in yeast has never been described in metazoans. Previous studies in Drosophila hinted at the existence of a small complex which contains Ada2b, a partner of Gcn5 in the SAGA complex. Here we have purified and characterized the composition of this complex and show that it is composed of Gcn5, Ada2b, Ada3 and Sgf29. Hence, we have named it the metazoan 'ADA complex'. We demonstrate that the fly ADA complex has histone acetylation activity on histones and nucleosome substrates. Moreover, ChIP-Sequencing experiments identified Ada2b peaks that overlap with another SAGA subunit, Spt3, as well as Ada2b peaks that do not overlap with Spt3 suggesting that the ADA complex binds chromosomal sites independent of the larger SAGA complex.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Histona Acetiltransferasas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/citología , Histona Acetiltransferasas/aislamiento & purificación , Complejos Multienzimáticos/aislamiento & purificación , Proteínas Nucleares/aislamiento & purificación , Transactivadores/aislamiento & purificación , Transactivadores/metabolismo
11.
Genes Dev ; 25(14): 1499-509, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21764853

RESUMEN

The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex was discovered from Saccharomyces cerevisiae and has been well characterized as an important transcriptional coactivator that interacts both with sequence-specific transcription factors and the TATA-binding protein TBP. SAGA contains a histone acetyltransferase and a ubiquitin protease. In metazoans, SAGA is essential for development, yet little is known about the function of SAGA in differentiating tissue. We analyzed the composition, interacting proteins, and genomic distribution of SAGA in muscle and neuronal tissue of late stage Drosophila melanogaster embryos. The subunit composition of SAGA was the same in each tissue; however, SAGA was associated with considerably more transcription factors in muscle compared with neurons. Consistent with this finding, SAGA was found to occupy more genes specifically in muscle than in neurons. Strikingly, SAGA occupancy was not limited to enhancers and promoters but primarily colocalized with RNA polymerase II within transcribed sequences. SAGA binding peaks at the site of RNA polymerase pausing at the 5' end of transcribed sequences. In addition, many tissue-specific SAGA-bound genes required its ubiquitin protease activity for full expression. These data indicate that in metazoans SAGA plays a prominent post-transcription initiation role in tissue-specific gene expression.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Músculos/metabolismo , Neuronas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional , Acetilación , Animales , ADN Polimerasa II/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Músculos/enzimología , Neuronas/enzimología , Sistemas de Lectura Abierta , Péptido Hidrolasas/metabolismo , Regiones Promotoras Genéticas , Transporte de Proteínas , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo
12.
Genes Dev ; 24(19): 2133-45, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20889714

RESUMEN

Heterochromatin protein 1 (HP1) is well known as a silencing protein found at pericentric heterochromatin. Most eukaryotes have at least three isoforms of HP1 that play differential roles in heterochromatin and euchromatin. In addition to its role in heterochromatin, HP1 proteins have been shown to function in transcription elongation. To gain insights into the transcription functions of HP1, we sought to identify novel HP1-interacting proteins. Biochemical and proteomic approaches revealed that HP1 interacts with the histone chaperone complex FACT (facilitates chromatin transcription). HP1c interacts with the SSRP1 (structure-specific recognition protein 1) subunit and the intact FACT complex. Moreover, HP1c guides the recruitment of FACT to active genes and links FACT to active forms of RNA polymerase II. The absence of HP1c partially impairs the recruitment of FACT into heat-shock loci and causes a defect in heat-shock gene expression. Thus, HP1c functions to recruit the FACT complex to RNA polymerase II.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Chaperonas de Histonas/metabolismo , ARN Polimerasa II/metabolismo , Animales , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Fosforilación , Unión Proteica , Isoformas de Proteínas , Secuencias Repetidas Terminales , Factores de Elongación Transcripcional/metabolismo
13.
Genes Dev ; 23(24): 2818-23, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20008933

RESUMEN

The histone acetyltransferase complex SAGA is well characterized as a coactivator complex in yeast. In this study of Drosophila SAGA (dSAGA), we describe three novel components that include an ortholog of Spt20, a potential ortholog of Sgf73/ATXN7, and a novel histone fold protein, SAF6 (SAGA factor-like TAF6). SAF6, which binds directly to TAF9, functions analogously in dSAGA to TAF6/TAF6L in the yeast and human SAGA complexes, respectively. Moreover, TAF6 in flies is restricted to TFIID. Mutations in saf6 disrupt SAGA-regulated gene expression without disrupting acetylated or ubiquitinated histone levels. Thus, SAF6 is essential for SAGA coactivator function independent of the enzymatic activities of the complex.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histona Acetiltransferasas/genética , Mutación/genética , Péptidos/aislamiento & purificación , Unión Proteica , Pliegue de Proteína
14.
Mol Cell ; 32(5): 696-706, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19061644

RESUMEN

Recent discoveries of histone demethylases demonstrate that histone methylation is reversible. However, mechanisms governing the targeting and regulation of histone demethylation remain elusive. Here we report that a Drosophila melanogaster JmjC domain-containing protein, dKDM4A, is a histone H3K36 demethylase. dKDM4A specifically demethylates H3K36me2 and H3K36me3 both in vitro and in vivo. Affinity purification and mass spectrometry analysis revealed that heterochromatin protein 1a (HP1a) associates with dKDMA4A. We found that the chromo shadow domain of HP1a and a HP1-interacting motif of dKDM4A are responsible for this interaction. HP1a stimulates the histone H3K36 demethylation activity of dKDM4A, and this stimulation depends on the H3K9me-binding motif of HP1a. Finally, we provide in vivo evidence suggesting that HP1a and dKDM4A interact with each other and that loss of HP1a leads to an increased level of histone H3K36me3. Collectively, these results suggest a function of HP1a in transcription facilitating H3K36 demethylation at transcribed and/or heterochromatin regions.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Histonas/metabolismo , Lisina/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Secuencias de Aminoácidos , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Secuencia de Consenso , Dimerización , Proteínas de Drosophila/química , Drosophila melanogaster/citología , Histona Demetilasas , Larva/enzimología , Metilación , Oxidorreductasas N-Desmetilantes/química , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
15.
J Cell Sci ; 126(Pt 1): 360-72, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22992459

RESUMEN

The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Microfilamentos/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Drosophila , Proteínas de Drosophila/genética , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/genética , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína del Síndrome de Wiskott-Aldrich/genética
16.
Development ; 139(4): 641-56, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22274696

RESUMEN

The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells.


Asunto(s)
Fusión Celular , Drosophila/embriología , Ratones/embriología , Mioblastos/fisiología , Animales , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Drosophila/anatomía & histología , Células Gigantes/citología , Células Gigantes/fisiología , Fusión de Membrana/fisiología , Ratones/anatomía & histología , Morfogénesis/fisiología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Mioblastos/citología , Regeneración/fisiología , Transducción de Señal/fisiología
17.
Development ; 138(8): 1551-62, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21389053

RESUMEN

Myoblast fusion is an intricate process that is initiated by cell recognition and adhesion, and culminates in cell membrane breakdown and formation of multinucleate syncytia. In the Drosophila embryo, this process occurs asymmetrically between founder cells that pattern the musculature and fusion-competent myoblasts (FCMs) that account for the bulk of the myoblasts. The present studies clarify and amplify current models of myoblast fusion in several important ways. We demonstrate that the non-conventional guanine nucleotide exchange factor (GEF) Mbc plays a fundamental role in the FCMs, where it functions to activate Rac1, but is not required in the founder cells for fusion. Mbc, active Rac1 and F-actin foci are highly enriched in the FCMs, where they localize to the Sns:Kirre junction. Furthermore, Mbc is crucial for the integrity of the F-actin foci and the FCM cytoskeleton, presumably via its activation of Rac1 in these cells. Finally, the local asymmetric distribution of these proteins at adhesion sites is reminiscent of invasive podosomes and, consistent with this model, they are enriched at sites of membrane deformation, where the FCM protrudes into the founder cell/myotube. These data are consistent with models promoting actin polymerization as the driving force for myoblast fusion.


Asunto(s)
Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Actinas/genética , Animales , Fusión Celular , Células Cultivadas , Proteínas del Citoesqueleto/genética , Drosophila , Proteínas de Drosophila/genética , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Microscopía Confocal , Proteínas de Unión al GTP rac/genética
18.
Methods ; 56(1): 55-62, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21871963

RESUMEN

Myoblast fusion in the Drosophila embryos is a complex process that includes changes in cell movement, morphology and behavior over time. The advent of fluorescent proteins (FPs) has made it possible to track and image live cells, to capture the process of myoblast fusion, and to carry out quantitative analysis of myoblasts in real time. By tagging proteins with FPs, it is also possible to monitor the subcellular events that accompany the fusion process. Herein, we discuss the recent progress that has been made in imaging myoblast fusion in Drosophila, reagents that are now available, and microscopy conditions to consider. Using an Actin-FP fusion protein along with a membrane marker to outline the cells, we show the dynamic formation and breakdown of F-actin foci at sites of fusion. We also describe the methods used successfully to show that these foci are primarily if not wholly present in the fusion-competent myoblasts.


Asunto(s)
Drosophila/embriología , Imagen Molecular/tendencias , Actinas/ultraestructura , Animales , Diferenciación Celular , Fusión Celular , Drosophila/citología , Embrión no Mamífero , Fluorescencia , Mioblastos/citología
19.
EMBO J ; 27(2): 394-405, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18188155

RESUMEN

Nonstop, which has previously been shown to have homology to ubiquitin proteases, is required for proper termination of axons R1-R6 in the optic lobe of the developing Drosophila eye. Herein, we establish that Nonstop actually functions as an ubiquitin protease to control the levels of ubiquitinated histone H2B in flies. We further establish that Nonstop is the functional homolog of yeast Ubp8, and can substitute for Ubp8 function in yeast cells. In yeast, Ubp8 activity requires Sgf11. We show that in Drosophila, loss of Sgf11 function causes similar photoreceptor axon-targeting defects as loss of Nonstop. Ubp8 and Sgf11 are components of the yeast SAGA complex, suggesting that Nonstop function might be mediated through the Drosophila SAGA complex. Indeed, we find that Nonstop does associate with SAGA components in flies, and mutants in other SAGA subunits display nonstop phenotypes, indicating that SAGA complex is required for accurate axon guidance in the optic lobe. Candidate genes regulated by SAGA that may be required for correct axon targeting were identified by microarray analysis of gene expression in SAGA mutants.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endopeptidasas/metabolismo , Histonas/metabolismo , Neuronas/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Endopeptidasas/genética , Regulación del Desarrollo de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Filogenia , Unión Proteica , Homología de Secuencia de Aminoácido , Ubiquitinación
20.
Exp Cell Res ; 316(18): 3007-13, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20580706

RESUMEN

The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process [1-4]. With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.


Asunto(s)
Drosophila/embriología , Embrión no Mamífero/citología , Músculo Esquelético/embriología , Mioblastos/fisiología , Animales , Fusión Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA