Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biochem ; 123(7): 1259-1277, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35644025

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Despite causing great social and economic impact, there is currently no cure for AD. The most effective therapy to manage AD symptoms is based on acetylcholinesterase inhibitors (AChEi), from which rivastigmine presented numerous benefits. However, mutations in AChE, which affect approximately 5% of the population, can modify protein structure and function, changing the individual response to Alzheimer's treatment. In this study, we performed computer simulations of AChE wild type and variants R34Q, P135A, V333E, and H353N, identified by one or more genome-wide association studies, to evaluate their effects on protein structure and interaction with rivastigmine. The functional effects of AChE variants were predicted using eight machine learning algorithms, while the evolutionary conservation of AChE residues was analyzed using the ConSurf server. Autodock4.2.6 was used to predict the binding modes for the hAChE-rivastigmine complex, which is still unknown. Molecular dynamics (MD) simulations were performed in triplicates for the AChE wild type and mutants using the GROMACS packages. Among the analyzed variants, P135A was classified as deleterious by all the functional prediction algorithms, in addition to occurring at highly conserved positions, which may have harmful consequences on protein function. The molecular docking results suggested that rivastigmine interacts with hAChE at the upper active-site gorge, which was further confirmed by MD simulations. Our MD findings also suggested that the complex hAChE-rivastigmine remains stable over time. The essential dynamics revealed flexibility alterations at the active-site gorge upon mutations P135A, V333E, and H353N, which may lead to strong and nonintuitive consequences to hAChE binding. Nonetheless, similar binding affinities were registered in the MMPBSA analysis for the hAChE wild type and variants when complexed to rivastigmine. Finally, our findings indicated that the rivastigmine binding to hAChE is an energetically favorable process mainly driven by negatively charged amino acids.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Rivastigmina/uso terapéutico
2.
Biomed Chromatogr ; 34(7): e4832, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32190911

RESUMEN

Injectable solutions containing epinephrine (EPI) and norepinephrine (NE) are not stable, and their degradation is favored mainly by the oxidation of catechol moiety. As studies of these drugs under forced degradation conditions are scarce, herein, we report the identification of their degradation products (DP) in anesthetic formulations by the development of stability-indicating HPLC method. Finally, the risk assessment of the major degradation products was evaluated using in silico toxicity approach. HPLC method was developed to obtain a higher selectivity allowing adequate elution for both drugs and their DPs. The optimized conditions were developed using a C18 HPLC column, sodium 1-octanesulfonate, and methanol (80:20, v/v) as mobile phase, with a flow rate of 1.5 mL/min, UV detection at 199 nm. The analysis of standard solutions with these modifications resulted in greater retention time for EPI and NE, which allow the separation of these drugs from their respective DPs. Then, five DPs were identified and analyzed by in silico studies. Most of the DPs showed important alerts as hepatotoxicity and mutagenicity. To the best of our acknowledgment, this is the first report of a stability-indicating HPLC method that can be used with formulations containing catecholamines.


Asunto(s)
Anestésicos , Cromatografía Líquida de Alta Presión/métodos , Epinefrina , Norepinefrina , Anestesia Dental , Anestésicos/análisis , Anestésicos/química , Anestésicos/toxicidad , Animales , Simulación por Computador , Estabilidad de Medicamentos , Epinefrina/análisis , Epinefrina/química , Epinefrina/toxicidad , Límite de Detección , Modelos Lineales , Ratones , Norepinefrina/análisis , Norepinefrina/química , Norepinefrina/toxicidad , Ratas , Reproducibilidad de los Resultados
3.
Pharmaceutics ; 15(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37111580

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder in adults, which is associated with a highly disabling condition. To date, ALS remains incurable, and the only drugs approved by the FDA for its treatment confer a limited survival benefit. Recently, SOD1 binding ligand 1 (SBL-1) was shown to inhibit in vitro the oxidation of a critical residue for SOD1 aggregation, which is a central event in ALS-related neurodegeneration. In this work, we investigated the interactions between SOD1 wild-type and its most frequent variants, i.e., A4V (NP_000445.1:p.Ala5Val) and D90A (NP_000445.1:p.Asp91Val), with SBL-1 using molecular dynamics (MD) simulations. The pharmacokinetics and toxicological profile of SBL-1 were also characterized in silico. The MD results suggest that the complex SOD1-SBL-1 remains relatively stable and interacts within a close distance during the simulations. This analysis also suggests that the mechanism of action proposed by SBL-1 and its binding affinity to SOD1 may be preserved upon mutations A4V and D90A. The pharmacokinetics and toxicological assessments suggest that SBL-1 has drug-likeness characteristics with low toxicity. Our findings, therefore, suggested that SBL-1 may be a promising strategy to treat ALS based on an unprecedented mechanism, including for patients with these frequent mutations.

4.
Eur J Med Chem ; 150: 920-929, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29602038

RESUMEN

Leishmaniasis is a group of infectious neglected tropical diseases caused by more than 20 pathogenic species of Leishmania sp. Due to the limitations of the current treatments available, chalcone moiety has been drawn with a lot of attention due to the simple chemistry and synthesis, being reported with antileishmanial activity in particular against amastigote form. This review aims to provide an overview towards antileishmanial activity of chalcones derivatives against amastigote form for Leishmania major, L. amazonensis, L. panamensis, L. donovani and L. infantum as well as their structure-activity relationship (SAR), molecular targets and in silico ADMET evaluation. In this way, it is expected that this review may support the research and development of new promising chalcones candidates a leishmanicidal drugs.


Asunto(s)
Antiprotozoarios/farmacología , Chalcona/farmacología , Leishmania/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Chalcona/síntesis química , Chalcona/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA