Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nature ; 605(7909): 274-278, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35546194

RESUMEN

Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions1,2. Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell3, producing a rhenium-nitrogen alloy and achieving the synthesis of rhenium nitride Re7N3-which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.

2.
J Am Chem Soc ; 146(26): 18161-18171, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38916483

RESUMEN

Inorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN]- and [CN2]2- anions, as well as the high-pressure formed guanidinates featuring [CN3]5- anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN4-built anions are missing. In this study, four polycarbonitride compounds (LaCN3, TbCN3, CeCN5, and TbCN5) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa. Synchrotron single-crystal X-ray diffraction (SCXRD) reveals that their crystal structures are built of a previously unobserved anionic single-bonded carbon-nitrogen three-dimensional (3D) framework consisting of CN4 tetrahedra connected via di- or oligo-nitrogen linkers. A crystal-chemical analysis demonstrates that these polycarbonitride compounds have similarities to lanthanide silicon phosphides. Decompression experiments reveal the existence of LaCN3 and CeCN5 compounds over a very large pressure range. Density functional theory (DFT) supports these discoveries and provides further insight into the stability and physical properties of the synthesized compounds.

3.
Angew Chem Int Ed Engl ; 62(47): e202311519, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37776234

RESUMEN

The stabilization of nitrogen-rich phases presents a significant chemical challenge due to the inherent stability of the dinitrogen molecule. This stabilization can be achieved by utilizing strong covalent bonds in complex anions with carbon, such as cyanide CN- and NCN2- carbodiimide, while more nitrogen-rich carbonitrides are hitherto unknown. Following a rational chemical design approach, we synthesized antimony guanidinate SbCN3 at pressures of 32-38 GPa using various synthetic routes in laser-heated diamond anvil cells. SbCN3 , which is isostructural to calcite CaCO3 , can be recovered under ambient conditions. Its structure contains the previously elusive guanidinate anion [CN3 ]5- , marking a fundamental milestone in carbonitride chemistry. The crystal structure of SbCN3 was solved and refined from synchrotron single-crystal X-ray diffraction data and was fully corroborated by theoretical calculations, which also predict that SbCN3 has a direct band gap with the value of 2.20 eV. This study opens a straightforward route to the entire new family of inorganic nitridocarbonates.

4.
Chemistry ; 28(62): e202203123, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36323532

RESUMEN

Invited for the cover of this issue are Dominique Laniel (University of Edinburgh), Florian Trybel (University of Linköping), and their colleagues. The image depicts a bridge built of the newly discovered δ-P3 N5 solid with the structure featuring PN6 units, a previously missing connection between the carbon group elements nitrides and chalcogens nitrides. Read the full text of the article at 10.1002/chem.202201998.

5.
Chemistry ; 28(62): e202201998, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-35997073

RESUMEN

Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus-nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. δ-P3 N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K0 =322 GPa for δ-P3 N5 and 339 GPa for PN2 . Upon decompression below 7 GPa, δ-P3 N5 undergoes a transformation into a novel α'-P3 N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of α'-P3 N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure.

6.
Angew Chem Int Ed Engl ; 61(34): e202207469, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35726633

RESUMEN

Two novel yttrium nitrides, YN6 and Y2 N11 , were synthesized by direct reaction between yttrium and nitrogen at 100 GPa and 3000 K in a laser-heated diamond anvil cell. High-pressure synchrotron single-crystal X-ray diffraction revealed that the crystal structures of YN6 and Y2 N11 feature a unique organization of nitrogen atoms-a previously unknown anionic N18 macrocycle and a polynitrogen double helix, respectively. Density functional theory calculations, confirming the dynamical stability of the YN6 and Y2 N11 compounds, show an anion-driven metallicity, explaining the unusual bond orders in the polynitrogen units. As the charge state of the polynitrogen double helix in Y2 N11 is different from that previously found in Hf2 N11 and because N18 macrocycles have never been predicted or observed, their discovery significantly extends the chemistry of polynitrides.

7.
Phys Rev Lett ; 126(17): 175501, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988447

RESUMEN

High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN_{4}. A triclinic phase of beryllium tetranitride tr-BeN_{4} was synthesized from elements at ∼85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN_{4} layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated π systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN_{4} layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN_{4} layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.

8.
Angew Chem Int Ed Engl ; 60(16): 9003-9008, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33556216

RESUMEN

The synthesis of polynitrogen compounds is of great importance due to their potential as high-energy-density materials (HEDM), but because of the intrinsic instability of these compounds, their synthesis and stabilization is a fundamental challenge. Polymeric nitrogen units which may be stabilized in compounds with metals at high pressure are now restricted to non-branched chains with an average N-N bond order of 1.25, limiting their HEDM performances. Herein, we demonstrate the synthesis of a novel polynitrogen compound TaN5 via a direct reaction between tantalum and nitrogen in a diamond anvil cell at circa 100 GPa. TaN5 is the first example of a material containing branched all-single-bonded nitrogen chains [N5 5- ]∞ . Apart from that we discover two novel Ta-N compounds: TaN4 with finite N4 4- chains and the incommensurately modulated compound TaN2-x , which is recoverable at ambient conditions.

9.
Phys Rev Lett ; 125(4): 045701, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32794779

RESUMEN

The lead-free halide double perovskite class of materials offers a promising venue for resolving issues related to toxicity of Pb and long-term stability of the lead-containing halide perovskites. We present a first-principles study of the lattice vibrations in Cs_{2}AgBiBr_{6}, the prototypical compound in this class and show that the lattice dynamics of Cs_{2}AgBiBr_{6} is highly anharmonic, largely in regards to tilting of AgBr_{6} and BiBr_{6} octahedra. Using an energy- and temperature-dependent phonon spectral function, we then show how the experimentally observed cubic-to-tetragonal phase transformation is caused by the collapse of a soft phonon branch. We finally reveal that the softness and anharmonicity of Cs_{2}AgBiBr_{6} yield an ultralow thermal conductivity, unexpected of high-symmetry cubic structures.

10.
Angew Chem Int Ed Engl ; 59(26): 10321-10326, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32212190

RESUMEN

Polynitrides are intrinsically thermodynamically unstable at ambient conditions and require peculiar synthetic approaches. Now, a one-step synthesis of metal-inorganic frameworks Hf4 N20 ⋅N2 , WN8 ⋅N2 , and Os5 N28 ⋅3 N2 via direct reactions between elements in a diamond anvil cell at pressures exceeding 100 GPa is reported. The porous frameworks (Hf4 N20 , WN8 , and Os5 N28 ) are built from transition-metal atoms linked either by polymeric polydiazenediyl (polyacetylene-like) nitrogen chains or through dinitrogen units. Triply bound dinitrogen molecules occupy channels of these frameworks. Owing to conjugated polydiazenediyl chains, these compounds exhibit metallic properties. The high-pressure reaction between Hf and N2 also leads to a non-centrosymmetric polynitride Hf2 N11 that features double-helix catena-poly[tetraz-1-ene-1,4-diyl] nitrogen chains [-N-N-N=N-]∞ .

11.
Angew Chem Int Ed Engl ; 59(35): 15191-15194, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32412132

RESUMEN

Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2 AgBiBr6 , shows attractive optical and electronic features, making it promising for high-efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal-engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2 AgBiBr6 under ambient conditions. The band-gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first-principles calculations indicate that enhanced Ag-Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band-gap narrowing effect. This work provides new insights for achieving lead-free double perovskites with suitable band gaps for optoelectronic applications.

12.
Inorg Chem ; 58(14): 9195-9204, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247816

RESUMEN

Sulfur and nitrogen represent one of the most studied inorganic binary systems at ambient pressure on account of their large wealth of metastable exotic ring-like compounds. Under high pressure conditions, however, their behavior is unknown. Here, sulfur and nitrogen were compressed in a diamond anvil cell up to about 120 GPa and laser-heated at regular pressure intervals in an attempt to stabilize novel sulfur-nitrogen compounds. Above 64 GPa, an orthorhombic (space group Pnnm) SN2 compound was synthesized and characterized by single-crystal and powder X-ray diffraction as well as Raman spectroscopy. It is shown to adopt a CaCl2-type structure-hence it is isostructural, isomassic, and isoelectronic to CaCl2-type SiO2-comprised of SN6 octahedra. Complementary theoretical calculations were performed to provide further insight into the physicochemical properties of SN2, notably its equation of state, the bonding type between its constitutive elements, and its electronic density of states. This new solid is shown to be metastable down to about 20 GPa, after which it spontaneously decomposes into S and N2. This investigation shows that despite the many metastable S-N compounds existing at ambient conditions, none of them are formed by pressure.

13.
Nat Mater ; 16(8): 814-818, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28459444

RESUMEN

The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 °C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.

14.
Angew Chem Int Ed Engl ; 57(29): 9048-9053, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29774981

RESUMEN

A nitrogen-rich compound, ReN8 ⋅x N2 , was synthesized by a direct reaction between rhenium and nitrogen at high pressure and high temperature in a laser-heated diamond anvil cell. Single-crystal X-ray diffraction revealed that the crystal structure, which is based on the ReN8 framework, has rectangular-shaped channels that accommodate nitrogen molecules. Thus, despite a very high synthesis pressure, exceeding 100 GPa, ReN8 ⋅x N2 is an inclusion compound. The amount of trapped nitrogen (x) depends on the synthesis conditions. The polydiazenediyl chains [-N=N-]∞ that constitute the framework have not been previously observed in any compound. Ab initio calculations on ReN8 ⋅x N2 provide strong support for the experimental results and conclusions.

16.
Phys Rev Lett ; 117(20): 205502, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886477

RESUMEN

We develop a method to accurately and efficiently determine the vibrational free energy as a function of temperature and volume for substitutional alloys from first principles. Taking Ti_{1-x}Al_{x}N alloy as a model system, we calculate the isostructural phase diagram by finding the global minimum of the free energy corresponding to the true equilibrium state of the system. We demonstrate that the vibrational contribution including anharmonicity and temperature dependence of the mixing enthalpy have a decisive impact on the calculated phase diagram of a Ti_{1-x}Al_{x}N alloy, lowering the maximum temperature for the miscibility gap from 6560 to 2860 K. Our local chemical composition measurements on thermally aged Ti_{0.5}Al_{0.5}N alloys agree with the calculated phase diagram.

17.
Phys Rev Lett ; 117(22): 220503, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27925750

RESUMEN

Dynamic nuclear polarization (DNP) is an attractive method for initializing nuclear spins that are strongly coupled to optically active electron spins because it functions at room temperature and does not require strong magnetic fields. In this Letter, we theoretically demonstrate that DNP, with near-unity polarization efficiency, can be generally realized in weakly coupled electron spin-nuclear spin systems. Furthermore, we theoretically and experimentally show that the nuclear spin polarization can be reversed by magnetic field variations as small as 0.8 Gauss. This mechanism offers new avenues for DNP-based sensors and radio-frequency free control of nuclear qubits.

18.
J Phys Chem A ; 120(43): 8761-8768, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27700093

RESUMEN

Free energy calculations at finite temperature based on ab initio molecular dynamics (AIMD) simulations have become possible, but they are still highly computationally demanding. Besides, achieving simultaneously high accuracy of the calculated results and efficiency of the computational algorithm is still a challenge. In this work we describe an efficient algorithm to determine accurate free energies of solids in simulations using the recently proposed temperature-dependent effective potential method (TDEP). We provide a detailed analysis of numerical approximations employed in the TDEP algorithm. We show that for a model system considered in this work, hcp Fe, the obtained thermal equation of state at 2000 K is in excellent agreement with the results of standard calculations within the quasiharmonic approximation.

19.
Phys Rev Lett ; 112(18): 187601, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856721

RESUMEN

The electron spins of semiconductor defects can have complex interactions with their host, particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral divacancies give rise to spin states with a strong Stark effect, sub-10(-6) strain sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15%-36%. These results establish SiC color centers as compelling systems for sensing nanoscale electric and strain fields.

20.
J Phys Chem C Nanomater Interfaces ; 128(12): 5313-5320, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38567374

RESUMEN

Solution-processable semiconductors with antiferromagnetic (AFM) order are attractive for future spintronics and information storage technology. Halide perovskites containing magnetic ions have emerged as multifunctional materials, demonstrating a cross-link between structural, optical, electrical, and magnetic properties. However, stable optoelectronic halide perovskites that are antiferromagnetic remain sparse, and the critical design rules to optimize magnetic coupling still must be developed. Here, we combine the complementary magnetometry and electron-spin-resonance experiments, together with first-principles calculations to study the antiferromagnetic coupling in stable Cs2(Ag:Na)FeCl6 bulk semiconductor alloys grown by the hydrothermal method. We show the importance of nonmagnetic monovalence ions at the BI site (Na/Ag) in facilitating the superexchange interaction via orbital hybridization, offering the tunability of the Curie-Weiss parameters between -27 and -210 K, with a potential to promote magnetic frustration via alloying the nonmagnetic BI site (Ag:Na ratio). Combining our experimental evidence with first-principles calculations, we draw a cohesive picture of the material design for B-site-ordered antiferromagnetic halide double perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA